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We experimentally and theoretically investigate the influence of periodic defects on the transmission prop-
erties of one-dimensional metallodielectric photonic crystal slabs. The spectral positions and the excitation
efficiencies of the quasiguided waveguide modes in the slab are determined by the reciprocal lattice vector and
the structure factor of the supercells, respectively. We show that by introducing periodic defects in the wire
position, the structure factor of the supercells can be strongly modified. For a polarization of the light perpen-
dicular to the wires, the coupling of higher order Bragg resonances of the lattice structure to localized nanowire
plasmon resonances can be sensitively controlled by the structure of the supercell. All experimental results
show a good agreement with the theory.
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I. INTRODUCTION

Since the proposals by Yablonovitch1 and John,2 struc-
tures with periodically modulated dielectric permittivity
yielding Bragg diffraction of light have attracted not only
fundamental but also technological interest. Besides singly
periodic crystals, also more complex geometries, such as
quasiperiodic structures with two or more incommensurate
periods, have been investigated.3–5 In addition to work on
planar structures with asymmetric unit cells6,7 or artificial
disorder,8,9 especially, doubly periodic structures have been
studied extensively.10 Such structures are composed of con-
ventional slab waveguides which are modified by adding two
gratings with different periods. It has been suggested that
doubly periodic structures might be able to increase the an-
gular tolerance of resonant grating filters without modifying
the spectral bandwidth.11

Further effort has been devoted to the analysis of periodic
structures with a structured elementary supercell. Such su-
perlattice geometries have been applied in a wide variety of
different physical fields, and many interesting fundamental
effects have been demonstrated.12,13 In the optical regime,
for example, dielectric superlattice structures support photo-
nic Bloch oscillations.14 Also, extended wavelength tunabil-
ity of distributed feedback lasers with a superstructure grat-
ing has been demonstrated.15 Undesired superlattice
structures can occur in the fabrication process of photonic
crystals. If electron beam lithography is used and larger areas
are obtained by stitching of the limited writing field, the error
in the positioning will be periodically reproduced and can
lead to a superstructure effect in the periodic arrangement.16

If the considered periodic structure supports optically ac-
tive internal excitations such as excitons in quantum nano-
structures or particle plasmons in metal nanodots or nano-

wires, additional coupling effects can appear. A large amount
of experimental and theoretical work has been performed to
investigate the propagation of collective excitations in these
artificial structures.17 Such optically active photonic crystal
structures have recently attracted growing interest, and some
fundamental physical effects were demonstrated.18–21

In this paper, we present experimental and theoretical
studies of metallic photonic crystal superlattice slabs. Such
slabs consist of metal nanowire supercells that are periodi-
cally deposited on top of a dielectric waveguide slab. We
show that the specific superlattice geometry leads to a strong
modification of the plasmon resonance in this kind of polari-
tonic photonic crystal. The modification of the band structure
gives rise to coupling phenomena between higher-order
Bragg resonances and the localized plasmons in the metal
nanowires. We show that the superperiod of the lattice deter-
mines the spectral positions of the occurring quasiguided
modes, whereas the specific supercell geometry affects the
excitation efficiencies. The analysis is based upon optical
transmission measurements as well as numerical simulations
using a scattering-matrix formalism.22

II. SAMPLES AND EXPERIMENTAL TECHNIQUES

Electron beam lithography was used to prepare gold nano-
wire arrays with a size of 100�100 �m2 on top of dielectric
indium-tin-oxide �ITO� waveguide layers deposited on a
quartz substrate. Such a one-dimensional �1D� active photo-
nic crystal structure supports electronic resonances in the
form of localized plasmons of the gold nanowires as well as
photonic resonances in the form of quasiguided modes of the
dielectric ITO layer.23,24 For all experiments, the ITO layer
thickness of 140 nm, the gold nanowire height of 20 nm, and
the wire width of 100 nm were kept fixed.
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A schematic view of the sample structure is shown in Fig.
1. In contrast to a simple grating structure23,24 with a single
wire per unit cell �with period dx2�, the superlattice unit cell
�supercell� is now composed of a set of n wires by means of
adding a specific number of defects �removal or displace-
ment of individual wires�. We would like to emphasize that
this structure is singly periodic with a superperiod dx1,
whereas the periodicity within the supercell �subcell period
dx2� is destroyed by inserting defects. However, the degree to
which it is destroyed can be effectively controlled by the
relative strengths of the inserted defects.

The optical properties of the samples were determined by
a standard white-light transmission setup at normal light in-
cidence. In this geometry, the periodic arrangement of the
nanowires acts as a surface corrugation, which can be used to
excite quasiguided slab modes. In the transverse electric
�TE� case where the polarization of the electric field is par-
allel to the wires, these modes are characterized by sharp
spectral features in the extinction spectrum. In transverse
magnetic �TM� polarization, the light field can excite an ad-
ditional collective oscillation of the conduction band elec-
trons in the gold nanowires. This spectrally broad resonance,

a so-called particle plasmon, can couple to the quasiguided
modes of the slab to form a waveguide-plasmon polariton.23

III. EXPERIMENTAL AND THEORETICAL RESULTS

In this work, three different sample series for polarization
directions parallel �TE� and perpendicular �TM� to the wires
will be investigated to demonstrate the influence of various
superlattice configurations on the optical transmission spec-
tra �the plane of light incidence was kept perpendicular to the
wires, i.e., x-z plane in Fig. 1�. We will show that the super-
cell geometry determines the excitation efficiencies of the
possible waveguide modes.

In the first superlattice design A, only the number of nano-
wires per supercell was changed while all other parameters
were kept fixed. In the second design B, the superperiod of
the lattice was varied by means of expanding the distance
between the supercells. In the third design C, periodic de-
fects in the wire positions in each supercell were introduced
with controlled magnitude. All experimental results are com-
pared with calculations using a scattering matrix formalism
and Fourier decomposition of the grating structure.

A. Influence of the supercell structure

For the first sample series, we start with a singly periodic
structure with a fixed period of dx=dx2=440 nm. This perfect
grating structure can be interpreted as a superlattice in some
respects. Introducing, e.g., a superperiod of 6�440 nm
=2640 nm, the structure exhibits six nanowires within each
individual supercell. Now the number of wires per supercell
�with a fixed superperiod dx1=2640 nm, see Fig. 2�a�� is de-
creased one by one, so that we end up in a simple lattice with
a single wire per supercell.

FIG. 1. Schematic view of the sample geometry. The gold nano-
wires are deposited on top of a dielectric slab waveguide made of
ITO. The superperiod is marked by dx1 and the subcell period by
dx2. For some experiments, the number of nanowires n in the su-
percell was changed.

FIG. 2. �a� Schematic views of the sample geometries for design A. While the superperiod dx1=2640 nm and the subcell period dx2

=440 nm have been retained unchanged in this series, the number of missing nanowires per supercell is increased stepwise from 0 to 5.
Dispersion relations of TE guided modes obtained by the empty-lattice approximation are shown in �b�. The modes are folded into the first
Brillouin zone of a lattice with periods dx=440 nm �dotted line� and dx=2640 nm �solid line�. The numbers indicate the order of the Bragg
resonance at the zone center for the period of dx=2640 nm. In �c� the Fourier decompositions of the grating structures are presented in
dependence on the spatial frequency. The number in brackets denotes the sample in this series.
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The experimental results for this structure design and TE
polarization are shown in Fig. 3�a�. The extinction spectra
are characterized by various sharp spectral features, which
can be related to the excitation of quasiguided modes in the
ITO waveguide of the photonic crystal slab structure. All
experimental spectra in Fig. 3�a� are well reproduced by
scattering-matrix-based calculations.22 The obtained theoret-
ical results for TE polarization are depicted in Fig. 3�b�. The
measured linewidths of the individual modes in TE polariza-
tion deviate slightly from the theoretical values. Although the
observed broadening can be partially explained by fabrica-
tion tolerances �e.g., variation of the exact periods� and sur-
face roughness, especially the limited number of illuminated
supercells ��20� due to finite beam diameter in the experi-
ment has to be taken into account. The fabrication tolerances
are also important for the plasmon resonances in TM polar-
ization. They lead to a faster decay �homogeneous broaden-
ing� and a distribution �inhomogeneous broadening� of the
plasmon resonances. For convergence of the truncated scat-
tering matrix, we used 301 harmonics for TE and 451 har-
monics for TM polarization.

As expected for the structure with the perfect periodicity
of 440 nm, the uppermost extinction spectra �denoted as “0”�
are characterized by a single resonance peak at �1.9 eV
within the shown spectral range. This peak can be simply

explained by the excitation of the symmetric band-edge
eigenstate at the second-order stopband. An empty-lattice ap-
proximation can help to understand the position of the reso-
nance in the spectrum. In this approximation, a rough esti-
mate of the spectral position of the mode can be obtained
assuming a homogeneous waveguide by folding the disper-
sion relation of the TE mode back into the first Brillouin
zone of the periodically corrugated waveguide structure �dot-
ted line in Fig. 2�b��.

In Figs. 3�a� and 3�b�, additional peaks immediately arise
below and above this single extinction maximum, when the
number of nanowires is decreased stepwise and defects
�missing nanowires� are introduced periodically. The spectral
positions of the resonances are almost independent of the
number of wires per supercell. A remaining slight shift is
caused by a change of the effective refractive index of the
waveguide slab due to the removed gold wires. While the
extinction of the central peak at �1.9 eV is constantly re-
duced, the appearing additional resonances show a rather
complex behavior. Finally, the lowermost spectra �5� are
characterized by a couple of extinction maxima which are
more or less evenly distributed and weakly pronounced.

Again the empty-lattice approximation can be used to
clarify the origin of the appearing additional resonances. The
zone-folding demonstrates that the spectral position of the
individual resonances is unambiguously determined by the

FIG. 3. Measured �a�, �c� and calculated �b�, �d� extinction spectra of the sample design A of metallodielectric superlattice structures for
normal light incidence and both polarization directions. The number in brackets denotes the sample in this series. The individual spectra are
shifted upward for clarity in each panel. While the periods dx1=2640 nm and dx2=440 nm have been retained unchanged, the number of
missing nanowires per supercell is increased stepwise from 0 to 5. The arrows mark the eighth Bragg resonance. For better visibility of the
peaks, the experimentally obtained spectra �4� and �5� in panels �a� and �c� are multiplied by a factor of 2 and 5, respectively.
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superperiod dx1=2640 nm. As shown in Fig. 2�b�, the folding
of the TE mode of the homogeneous waveguide results in a
strongly modified band diagram for this corrugation period.
Now the higher order Bragg resonances at the zone center
are lowered in energy due to a size reduction of the Brillouin
zone by the larger period of 2640 nm �solid line�. According
to the empty-lattice approximation, the observed resonant
features of the superlattice structure can be related to higher
order Bragg resonances. Therefore, the lowest peak in the
spectra at �1.6 eV in Fig. 3�a� corresponds to the fifth Bragg
resonance. The strongest extinction peak at �1.9 eV for ex-
ample can be interpreted as the sixth Bragg resonance at the
zone center of the photonic crystal band structure with a
period of 2640 nm. Due to the specific geometry, the spectral
position of the sixth Bragg resonance in the superlattice
framework corresponds to the first Bragg resonance of a lat-
tice with a regular period of 440 nm.

Although the simple empty-lattice picture can be used to
calculate the approximate positions of the peaks in the super-
lattice structure, the model makes no predictions about the
excitation efficiencies of the individual modes. However,
more information concerning the efficiencies can be obtained
by Fourier decomposition of the grating geometry. Yariv and
Nakamura showed, in a detailed analysis of periodically cor-
rugated waveguides, that in the theory of mode coupling in
planar photonic crystal structures, the coupling strength is
brought about by the amplitudes of the corresponding Fou-
rier harmonics of the spatial lattice.25

Strictly speaking, such coupled-mode analysis is valid
only in the weak coupling regime, which corresponds to a
small waveguide corrugation. Although our case is more
complicated, these arguments still work qualitatively, as can
be seen from the comparison between the scattering-matrix
calculations and the simple Fourier analysis. According to
the latter, the coupling strength between the incoming wave
at normal incidence and the pair of counter-propagating TE
modes with momenta Gl= ±2�l /dx �l=1,2 , . . . � is propor-
tional to the amplitude of the lth Fourier harmonic of the
spatial perturbation. Then the power Pl flowing from the in-
cident light into the quasiguided mode with momentum Gl is
proportional to the squared modulus of the amplitude of the
lth Fourier harmonic

Pl � �F�Gl��2 = �	 F�r� · exp�− iGl · r�d3r�2

, �1�

where F�r� is the spatial scattering potential of the lattice
structure.

The results are analogous to the technique of structure
determination of solids from x-ray diffraction experiments,26

where in a kinematic approximation of elastic scattering, the
intensity of the scattered beam is proportional to the square
of the structure factor �i.e., the Fourier transform� of the
crystal unit cell.

For a quantitative prediction of the excitation efficiencies,
the specific nanowire arrangement has been modeled using
Eq. �1�. In our approximation, we substituted F�r� with the
1D lattice geometry of the sample. As spatial resolution, we
used a discretization of 1 nm. The scattering potential at each

point of the nanowires was set to one, while all other values
were zero. The squared modulus of the individual Fourier
components in dependence on the spatial frequency of the
superlattice structure is shown in Fig. 2�c�. Due to the mirror
symmetry of the grating structure, only the positive spatial
harmonics are depicted. As expected, the Fourier decompo-
sition of the two perfect grating structures, �0� and �5�, re-
sults in regular distribution in reciprocal space too, where
only the amplitudes for multiples of the reciprocal lattice
vector are nonzero. Also the amplitudes of higher spatial
frequencies are reduced due to the finite width of the nano-
wires.

It is important to note that our previously discussed su-
perlattice series is somewhat special. The reciprocal lattice
vector �2� /dx2� of grating structure �0� is a direct multiple of
the reciprocal vector �2� /dx1� of structure �5�. Therefore, the
first Fourier harmonic of the structure �0� can alternatively be
interpreted as the sixth spatial harmonic of a superlattice
with a superperiod of dx1=2640 nm. If the number of nano-
wires and, therefore, the structure of the supercell is modified
without changing the superperiod, the amplitudes of the spa-
tial harmonics show a quite complex behavior in dependence
on the specific supercell geometry. A more precise compari-
son between Fig. 3�a� and Fig. 2�c� reveals that the excitation
efficiencies of the Bragg resonances are directly correlated
with the spatial Fourier harmonics of the superlattice. A
larger amplitude of a particular spatial harmonic results in a
stronger excitation of the corresponding Bragg resonance
and, therefore, a larger peak in the extinction spectrum. Due
to the fact that only normalized amplitudes are displayed in
Fig. 2�c�, the specific intensity distributions of the extinction
maxima have to be interpreted with respect to the amplitude
of the sixth Bragg resonance in the Fourier spectrum.

Even small details of the extinction spectra can be found
in the related Fourier decompositions. The eighth Bragg
resonance of the TE mode �marked by arrows in Fig. 3� for
example is suppressed in the spectrum of the superlattice
structure �3�. This observation is clearly confirmed by the
corresponding Fourier decomposition of structure �3�, where
the amplitude of the eighth spatial harmonic is zero. An
analogous situation can be observed in x-ray diffraction
where certain diffraction orders are missing in some special
crystal classes although the appropriate Bragg condition is
satisfied, i.e., the structure factor is equal to zero.

For TM polarization and normal light incidence, the mea-
sured extinction spectra look quite different in comparison to
the TE case �Fig. 3�c��. Now the electric field is oriented
perpendicular to the gold nanowires and can excite the nano-
wire plasmon resonance.23 In contrast to TE polarization, the
TM polarized spectrum �0� of Fig. 3 exhibits two extinction
maxima in the considered spectral range. Due to the strong
coupling between the TM quasiguided modes and the local-
ized particle plasmons, one can observe a spectral mode
splitting instead of a spectral overlap of the resonances.24

Therefore, the splitting of the plasmon resonance can be in-
terpreted as the formation of a new polaritonic state, similar
to the normal mode coupling in semiconductor
microcavities.27

Removing individual nanowires of the supercell leads to
the excitation of higher order Bragg resonances of the super-
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period analogous to the quasiguided modes in TE polariza-
tion. Due to the larger period dx1 of the superlattice, the
energetic gap between the modes is smaller than for a simple
lattice with a period of dx2 �see TE polarization�. Therefore,
more than one higher order Bragg resonance of the TM mode
can couple to the plasmon resonance of the nanowires. As
can be seen in Fig. 3�c�, the normal mode splitting decreases
with the number of missing wires. In the polariton picture,
this behavior is an indication of reduced coupling strength
between the two resonances due to the lower excitation effi-
ciency of the higher order waveguide modes.28

This sample series demonstrates that the structure of the
supercell in the superlattice geometry influences the excita-
tion efficiency of the modes and, therefore, the coupling to
the plasmon resonance.

B. Influence of the superperiod

The specific influence of the superperiod dx1 is demon-
strated by a second sample series �design B�. The schematic
view of the considered sample structures is displayed in Fig.
4�a�. All sample structures are again based on gold nanowire
arrays deposited on top of a 140-nm-thick ITO waveguide
layer. While the subcell period of 475 nm and the number of
nanowires �n=10� per supercell have been kept constant for
all samples in this series, only the superperiod dx1 is in-
creased from 4750 nm �0� to 5550 nm �8� in steps of
100 nm. Apart from structure �0�, the superperiod dx1 is no
longer an exact multiple of the subcell period dx2. The ex-
perimental and theoretical extinction spectra for this series
are shown in Fig. 5. The qualitative agreement is excellent
and only small deviations are observable. In comparison to
the experimentally detected resonances, the corresponding
theoretical peaks obtained by the scattering matrix method
are slightly blueshifted. This fact can be related to uncertain-
ties in the exact determination of the nanowire periods. For
the deviation of the linewidths, the same arguments used in
the discussion of design A hold.

The emerging extinction maxima in TE polarization show
a rather complex behavior depending on the superperiod dx1.
In contrast to the results of Fig. 3, the excitation efficiencies
as well as the spectral positions of the TE modes are now
strongly influenced by changing the superperiod. All ob-
served extinction maxima are caused by the excitation of
higher order Bragg resonances. The three resonant features
of structure �8�, for example, can be attributed to the 10th,
11th, and 12th Bragg resonance of the TE mode at the zone
center of the Brillouin zone. Generally, all superlattice spec-
tra, except for structure �0�, are characterized by at least two
more or less pronounced maxima in the considered spectral
range, while all others are suppressed simultaneously. The
relative amplitudes of the extinction maxima are again well
described by the amplitudes of the corresponding Fourier
decomposition of the spatial structure �Fig. 4�b��.

Superlattice design B clearly confirms the intuitive model
for the excited modes. While the superperiod dx1 determines
the spectral positions of the supported modes �higher order
Bragg resonances�, their individual excitation efficiencies, on
the other hand, are directly related to the specific subcell

period dx2. The stepwise reduction of the size of the Brillouin
zone, i.e., an increased superlattice period, leads to a reduc-
tion of the resonance energies of the individual Bragg reso-
nances. The 11th Bragg resonance, for example �see Fig.
5�b��, is shifted from 1.87 eV in structure �1� to approxi-
mately 1.66 eV in structure �8�. Simultaneously, the extinc-
tion efficiencies are also strongly modulated. After a first
enhancement �increased extinction�, the mode is again at-
tenuated for larger periods. Generally, the lth Bragg reso-
nance reaches its extinction maximum when the lth multiple
of the reciprocal lattice vector 2� /dx1 coincides with the
reciprocal lattice vector 2� /dx2 of the subcell. This impor-
tant fact is clearly visible in the measured and calculated
extinction spectra. Only those higher order Bragg resonances

FIG. 4. �a� Schematic views of the sample geometries for design
B. The number in brackets denotes the sample in this series. While
the subcell period dx2=475 nm and the number of nanowires �n
=10� have been kept constant for all samples in this series, the
superperiod dx1 is increased from 4750 nm �0� to 5550 nm �8� in
steps of 100 nm. In �b�, the Fourier decompositions of the grating
structures are shown in dependence on the spatial frequency and the
superperiod dx1.
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whose spectral positions are close to the first Bragg reso-
nance of a regular grating with exact period of 475 nm show
up in the obtained spectra. It is the structure factor, i.e., the
Fourier transform of the supercell spatial structure, which
determines the amplitudes of the individual peaks.

For TM polarization and normal light incidence, the plas-
mon resonance is again visible in the extinction spectra
�Figs. 5�c� and 5�d��. Similar to design A, the plasmon reso-
nance shows the typical polariton behavior for the singly
periodic structure �0�. When increasing the superperiod, ad-
ditional dips in the plasmon resonance appear. Again the
higher order Bragg resonances for TM polarization can
couple to the plasmon and form waveguide-plasmon polari-
tons �1�–�8�. In this sample design, the spectral positions of
the quasiguided modes are not fixed, but change with the
superperiod of the lattice. Therefore, the spectral position of
the peaks in the plasmon resonance change with the super-
period due to the coupling effect to the optical waveguide
modes. In contrast to periodic structures with a simple unit
cell,24 where only the positions of the quasiguided modes are
influenced by the lattice period, in the superlattice design, the
excitation efficiencies are additionally determined by the
subcell structure. This kind of form shape or structure factor
can be used to modify independently the coupling strength to
the plasmon resonance and the spectral position of the wave-
guide modes.

The original extinction spectrum �0� of design B is nearly
reproduced for a superperiod of dx1=5250 nm �5�, where dx1
is approximately an exact multiple of the subcell period dx2.
The experimental results show clearly that the subcell period
does not only influence which TM mode will be excited but
also the excitation efficiency and therefore the coupling
strength to the plasmon resonance. Again all spectra are well
reproduced by scattering matrix calculations.

C. Nonperiodic subcells

Using a third sample series �design C�, we will demon-
strate that the subcell period acts as a structure factor of the
excitation efficiencies of the higher order modes. From solid
state physics, it is well known that the diffraction intensities
in x-ray scattering experiments strongly depend on the tem-
perature of the crystal.29 The thermal movement of the atoms
in random directions leads to a variable distance between
next neighbors. As a consequence, the peak intensities of the
scattered light of the diffraction orders are reduced while the
linewidths are preserved.30

In the following, we use this physical effect to change the
structure factor of the supercells in a fixed superlattice ge-
ometry. For modeling the “temperature dependence” in our
structures, we used a superlattice similar to structure �1� of
design A but with six nanowires per supercell �see Fig. 6�. In

FIG. 5. Measured �a�, �c� and calculated �b�, �d� extinction spectra of the sample design B of metallodielectric superlattice structures for
normal light incidence and both polarization directions. The individual spectra are shifted upward for clarity in each panel. Again, the
number in brackets denotes the sample. While the subcell period of 475 nm and the number of nanowires �n=10� per supercell have been
kept constant for all samples with this design, the superperiod dx1 is increased from 4750 nm �0� to 5550 nm �8� in steps of 100 nm. The
numbers in panel �b� denote the order of the Bragg resonances.
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this series, the subcell period dx2=475 nm and the number of
nanowires have been kept constant. The superperiod dx1
=3325 nm was chosen as an exact multiple of the subcell
period. Hence, only one pronounced waveguide mode ap-
pears in the relevant spectral range �see Fig. 7 uppermost
spectrum� in analogy to structure �1� of the first sample se-
ries. The temperature of the lattice was modeled by introduc-
ing periodic defects, i.e., by changing the nanowire positions.
The deviations �r of the individual positions were deter-
mined by �r= fR for a weighting factor f and a set of six
random distances R of a uniform distribution �−135 nm to
135 nm�. The width of the distribution R was limited to
avoid crossing of the nanowire positions. A new set of R was
used for each weighting factor f . For the scattering matrix
simulations, we used the identical displacement �same set of
R� in each supercell of the lattice. We notice that this kind of
disorder is very special and only a rough approximation of
thermal disorder. For example, the spectral distance between
the Bragg resonances is fixed because the superperiodicity

dx1 is not destroyed at all. Strictly speaking, only in the case
of a very large number of randomly displaced nanowires in
the superperiod, dx1� lc, where lc is the coherence length of
the photonic modes �either quasiguided in TE or waveguide-
plasmon polaritons in TM�, this becomes a good model for
thermal effects in a perfect lattice with a simple period dx2
along the grating.

The experimental and theoretical results for this structure
design are shown in Fig. 8. For the first sample without any
displacement of the positions �f =0�, one strong peak is vis-
ible in TE polarization. This peak can be attributed to the
seventh Bragg resonance at the zone center of the reciprocal
lattice vector 2� /dx1. Since the superperiod is an exact mul-
tiple �7�475 nm� of the subcell period, only higher order
Bragg resonances of the superperiod which are multiples of 7
�7th, 14th, etc.� can be efficiently excited. By diminishing
influence of the subcell periodicity dx2 with introducing pe-
riodic displacements, the selection of distinct waveguide
modes can no longer take place. Therefore, the formally sup-
pressed resonances of the superperiod dx1 will become more
pronounced.

In Fig. 8�a�, additional peaks arise below and above the
single resonance when the displacement of the wires in the
lattice is increased. While the excitation efficiency of the
seventh Bragg resonance is reduced, other TE modes appear
more pronounced. The subcell periodicity is overwritten by
the random displacement and does not act as a structure fac-
tor for the superperiod anymore. Due to the very special
manner of destroying the structure factor in our samples, the
change in the wire positions influences only the subcell pe-
riodicity. The superperiod dx1 is not influenced in this case.

For TM polarization and normal light incidence, the spec-
tra show a similar behavior as in TE polarization. The addi-
tional quasiguided modes couple to the localized particle
plasmon resonance and lead to further dips in the extinction
spectra. This behavior can be well observed for the weight-
ing factor of f =1.0 �strong displacement�, where the plas-
mon resonance shows two clearly pronounced dips. With in-
creasing displacement, the splitting of the polariton at 1.8 eV
is reduced due to the weaker excitation efficiency of the sev-
enth Bragg resonance of the superlattice. Simultaneously, the
sixth Bragg resonance appears more pronounced because the
structure factor of the other higher order resonances is dis-
tinct from zero now. Although the displacement of the wires
leads to a complex lattice structure, all spectra are again well
reproduced by the scattering matrix calculations.

In the case of strong deviations of the periodic wire posi-
tions �f �0.6�, some modes are missing in the measured and
calculated optical extinction spectra in Fig. 8. This fact is
especially visible in TE polarization. To clarify the origin of
the low excitation efficiency of these modes, the structure
factor for each sample was calculated by Fourier decompo-
sition of the lattice geometry. The results are shown in Fig. 7.
The amplitudes of the spatial harmonics show a complex
behavior when increasing the displacement. For a certain
strength of displacement, several harmonics vanish and ap-
pear again when changing the strength. This behavior is due
to the very specific design of our samples. The periodic de-
fects lead to special structure factors of the lattice for each
strength of displacements. Theoretical calculations show that

FIG. 6. Schematic view of the sample geometry for design C.
While all fundamental periods have been kept constant in this se-
ries, a small random displacement �r in the positions of the nano-
wires was introduced. The dotted squares mark the cross section of
original positions of the nanowires without displacement. The indi-
vidual wires in each supercell are labeled by the numbers 1 to 6.
Notice that the same randomization was used in each supercell
within the structure, i.e., all wires “1” have the same displacement
�r.

FIG. 7. Fourier decompositions of the grating structures �design
C� in dependence on the spatial frequency and the strength f of the
displacement. The individual Fourier spectra are shifted upward for
clarity.
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a change in the wires arrangement �the other set of R� but
with the same weighting factor for the displacement can lead
to completely different excitation efficiencies of the modes.
Therefore, depending on the specific wire positions, some
modes can vanish and appear again in different samples with
the same amount of defects.

IV. CONCLUSION

In conclusion, we have shown that the optical properties
of planar metallodielectric photonic crystals can be strongly
modified by realizing a superlattice geometry. The influence
of the superperiod dx1, the subcell period dx2, and the number
of nanowires n in the supercell have been analyzed in TE and
TM polarization. In the case of TE polarization, only the
quasiguided TE modes of the ITO waveguide slab can be
excited. The spectra clearly show that the superperiod dx1
determines the energy positions of the appearing resonances,
whereas the subcell period acts as a structure factor for these
modes. Therefore, the excitation efficiency and the energy
position of the quasiguided modes can be influenced inde-
pendently. For TM polarization, strong coupling phenomena
have been found. All higher order Bragg resonances, which

energetically overlap with the plasmon resonance, can couple
to the localized nanowire plasmons and form waveguide-
plasmon polaritons. The coupling strength depends on the
excitation efficiencies of the quasiguided modes. In the su-
perlattice geometry, narrow dips in the plasmon resonance
can, therefore, be created. When introducing periodic defects
in the nanowire positions, the influence of the structure fac-
tor of the subcell is reduced and other higher order Bragg
resonances can be excited. All experimental observations
were well reproduced by calculations with a scattering ma-
trix method and qualitatively explained by Fourier decompo-
sition of the lattice structure.
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FIG. 8. Measured �a�, �c� and calculated �b�, �d� extinction spectra of the sample design C of metallodielectric superlattice structures for
normal light incidence and both polarization directions. The individual spectra are shifted upward for clarity in each panel. While the subcell
period of 475 nm, the number of nanowires �n=6�, and the superperiod of 3325 nm have been kept constant for all samples with this design,
periodic defects in the position of the nanowires were introduced from f =0 �no defects, �rmax=0� to f =1.0 ��rmax= ±135 nm� in steps of
0.1. The numbers in panel �b� denote the order of the Bragg resonance. All extinction values in panel �a� are multiplied by a factor of 2 for
better visibility of the peaks.
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