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Controllable kinetic magnetoelectric effect in two-dimensional electron gases with both Rashba
and Dresselhaus spin-orbit couplings
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A microscopic model calculation of the electric-field-induced nonequilibrium spin accumulation due to
kinetic magnetoelectric effect in two-dimensional electron gases with both Rashba and Dresselhaus spin-orbit
couplings is presented. The results show that by modulating the relative strength of the two different spin-orbit
couplings, both the magnitude and the polarization direction of the nonequilibrium spin accumulation can be

effectively controlled.

DOI: 10.1103/PhysRevB.73.113312

During the last several years, there has been growing in-
terest in spin-based semiconductor electronics, where the
electron spin rather than charge is at the very center of
interest.! Creation and effective control of spin-polarized
currents and/or nonequilibrium spin densities in nonmagnetic
semiconductors are necessary for the practical implementa-
tion of semiconducting spin electronics, and various ways
have been proposed for solving this problem; e.g., spin in-
jections from ferromagnetic metals or from diluted magnetic
semiconductors.> In order to take advantage of traditional
semiconductor technologies, it would be much more attrac-
tive if application of an electric field alone would suffice to
induce a nonequilibrium spin density or spin-polarized cur-
rent in a nonmagnetic semiconductor, and several novel ef-
fects, e.g., intrinsic or extrinsic spin Hall effect’'2 and ki-
netic magnetoelectric effect,'>'* have been predicted that
might offer such opportunities. All these effects rely on spin-
orbit interactions in semiconducting materials. A spin Hall
effect can arise from both intrinsic and extrinsic spin-orbit
couplings in two-dimensional or bulk semiconducting mate-
rials, in which an external electric field will induce a spin
current in the direction perpendicular to the electric field, and
a nonequilibrium and inhomogeneous spin accumulation can
hence result near the edges of a sample.!""'? Kinetic magne-
toelectric effect is due to intrinsic spin-orbit couplings in
two-dimensional electronic systems, e.g., Rashba spin-orbit
coupling in two-dimensional electron gases. In the kinetic
magnetoelectric effect in a Rashba two-dimensional electron
gas, an external electric field will induce a homogeneous
nonequilibrium spin density in the sample with the spin po-
larization direction perpendicular to the electric field.'>!# In
both these effects, the magnitude of the nonequilibrium spin
density is proportional to the driving electric field and hence
can be easily controlled by varying the electric field. For the
practical uses of these effects, it would be desirable if both
the magnitude and the polarization direction of the nonequi-
librium spin accumulation can be effectively controlled. In
this brief report we investigate how to control the polariza-
tion direction of the nonequilibrium spin accumulation due
to kinetic magnetoelectric effect in a semiconducting mate-
rial. We show that if there are two different intrinsic spin-
orbit couplings existing in a semiconducting material and the
relative strength of the two different spin-orbit interactions
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can be effectively modulated by applying some kinds of ex-
ternal forces (e.g., by a gate voltage), then both the magni-
tude and the polarization direction of the nonequilibrium
spin accumulation due to kinetic magnetoelectric effect in
such a system might be effectively controlled. Two-
dimensional electron gases (2DEGs) with both Rashba and
Dresselhaus spin-orbit couplings can serve as examples of
such a system. As is well known, Rashba spin-orbit coupling
in 2DEGs is caused by the lacking of inversion symmetry of
the trapping wells and can be effectively modulated by ap-
plying a gate voltage. In contrast, Dresselhaus spin-orbit
coupling is due to structural inversion asymmetry and hence
is independent of the applied gate voltage. Thus, in 2DEGs
with both Rashba and Dresselhaus spin-orbit couplings, the
relative strength of the two different spin-orbit interactions
can be effectively modulated by applying a gate voltage. In
this brief report we present a microscopic model calculation
of the electric-field-induced nonequilibrium spin accumula-
tion due to kinetic magnetoelectric effect in 2DEGs with
both Rashba and Dresselhaus spin-orbit couplings. (Non-
equilibrium spin accumulation due to an intrinsic spin Hall
effect in a thin strip of such a system was investigated by
Malshukov et al. For details please refer to Ref. 15.) We will
investigate in detail how the magnitude and the polarization
direction of the nonequilibrium spin accumulation changes
as the relative strength of the two different spin-orbit inter-
actions varies.
The single-particle Hamiltonian for 2DEGs with both
Rashba and Dresselhaus spin-orbit coupling reads!®!”
S
Hy,= % + a(&xky - &ykx) + ﬁ(&xkx - &yky)’ (1)

where ; (i=x,y,z) are the usual Pauli matrices, k is the
wave vector of a conduction electron, « is the Rashba spin-

orbit coupling constant, and S the Dresselhaus spin-orbit
coupling constant. For a given wave vector k, the eigenfunc-

tions of H,, can be expressed as

1 ( e )
k\)=—F . , 2
[k\) V2 \Nemin? (2)
where A=+1 and the angle ¢, is defined by
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ak, + Bk,
tan ¢y = X—ﬁl (3)
ak, + Bk,
The corresponding eigenvalues of I:Im are given by
hZ 2
G =+ M@ + B + dapk.k,. (4)
m

The expectation value of the spin of an electron in the state
[k\) will given by

h
SV (k) = (k| 6{kA) = 5\, (K)e, + 5\, (Ke,. (5)
where
Oy 1 ©) hoo
Sxa(k) = A cos(¢), Sy ,(k)=— oA sin(¢y).  (6)

In the presence of impurity scatterings, the total Hamil-
tonian will be H=H,,+ V(r), where V(r) is the impurity scat-
tering potential. (For simplicity, we assume that only spinless
impurity scatterings are present.) The scattering state of a
conduction electron can be determined from the Lippman-
Schwinger equation.'® In the Born approximation, one has

V ! !
KA, = [KA) + >, ——
k'\'

— kN, 7
€\~ €y T+ lO+| ( )

where |k\),, is the scattering state and Vi xn
=(k’\'| V(r)|k\) the scattering matrix elements. The expec-
tation value of the electron spin will be modified to be
Sy.i(K)=2(k\| G;|k\),, (i=x,y,z). Substituting Eq. (7) into
this equation, one gets

V ’ ! <(}l> ! !
S,.(k) = SO(Kky) + i > Re| —— RN (g
’ ’ N ek)\_ek’)\’+l0

where (G n = (kN |6;|k’N'). In the weak impurity scat-
tering regime, the off-diagonal matrix elements of the den-
sity matrix can be neglected and the net spin density can be
given by

(=2 S, (KfK), 9)
k\

where (S;) is the ith component of the net spin density and
/r(K) the distribution function of conduction electrons (i.e.,
the diagonal matrix elements of the density matrix). In the
absence of external electric field, f)(k) will be given by the
equilibrium Fermi distribution function, fy(K)=/,(&)
=[1+e'@-%T]-1 From Eqs. (2) and (8), one can show
that S\ ;(-k)=-S5, ;(k). Since fi(€\)= fo(€_x\), the integrals
in Eq. (9) vanish exactly in the equilibrium state, i.e., no net
spin density survives in the absence of external electric
fields. When an external electric field is applied, the distri-
bution function f,(k) will become asymmetric under the
transformation k<« —k since the Fermi sphere will be dis-
placed along the direction of the external electric field; hence
a net spin density may be result. In the weak impurity scat-
tering regime, the nonequilibrium distribution function can
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be derived by solving the Boltzmann transport equation,
which reads (in a steady state and assuming a homogeneous

system)
K- L(k) — ( ‘9_f>\> , (10)
Jk at coll.

where k=—¢E/#% and (df, /). is the collision integral due
to impurity scatterings:

J
(A) =" E ka,k/wfx(k)[l —f)\/(k’)]ﬁ(ek)\ - ek’h’)
coll.

at N

+ 2 Wi (K[ = f(K) (€, — €ryr).

KN
(11)

where wy, xr)+ are the transition probabilities given by the
Fermi’s golden rule, wy o\ = 27/ fi)n;| Vi |* (n; is the
density of impurities). In the linear response regime, the gen-
eral form of the solution for f,(K) can be expressed as

of\(k) = EM[QM(E Vi) + b (E X e) - vig ],

(96]()\
(12)

where f)(K) = f\(K)—fo( &), Vin=f "' Ve, is the velocity
of conduction electrons, e, is a unit vector along the normal
of the two-dimensional plane, ay, and by, are two unknown
coefficients that need to be determined self-consistently from
Eq. (10). The last term in Eq. (12) characterizes the aniso-
tropy of impurity scatterings. Because the energy spectrums
of conduction electrons are anisotropic in the presence of
both Rashba and Dresselhaus spin-orbit couplings, the impu-
rity scatterings may be highly anisotropic even if the impu-
rity scattering potential V(r) is isotropic. Substituting Eq.
(12) into Eq. (10), one can find that the coefficients ay, and
by, will satisfy the following equations:

a7 + b /7D =1, (13)
A/ Tig) = b/ T = 0, (14)
where T:(l)\’z) are two characteristic relaxation times defined by
1 Viern/|
0= 2 W] - - cos[ A(vig A Vi) {
7 [Via
[N U kA
(15)
1 vienr|
= 2 Wionra sin[ 6(vi, A Viernr) ] (16)
v kN Vial

in which 6(vi, Avyr,s) denotes the angle between vy, and
Virnr- From Egs. (13) and (14), one gets
(1) (2)

7
ag\ = (11())\ 7_(2) 2 byy = (12()}\7_(1) 5. (17)
1+ [7/75] 1+ [73 7]

The electric-field-induced nonequilibrium spin density
can be calculated by substituting Eq. (8) and the solution for
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(k) into Eq. (9), but no simple expressions can be obtained
due to the complexities involved in the integrals in Egs. (8)
and (15) to (16); hence, numerical calculations must be re-
sorted to.!® For simplicity, in the following we will assume a
S-function-shaped (short-ranged) impurity scattering poten-
tial, V(r)=V,&(r), where V,, characterizes the impurity scat-
tering strength. The following parameters will be needed in
the numerical calculations: the electron’s effective mass
m, the electron density n, the impurity density n;, the impu-
rity scattering strength V), and the spin-orbit coupling con-
stants « and B. We take m=0.06m,, n=1.9X10"> cm2,
n;=1.0x 10" cm™2, and V,=1.4 X 10™"" meV cm. These val-
ues are typical of current high quality 2DEG samples. The
Rashba and Dresselhaus spin-orbit coupling strengths will be
characterized by two spin-orbit coupling energy scales
g,=ma’/h* and £g=mp?/h*. In current high quality 2DEG
samples, the range of €, and &g is 0~3 meV.?” We assume
that the external electric field E is applied along the x
direction, E=E,e,. From Egs. (9) and (12), one can see that
both (S,) and (S,) will be proportional to E,, hence the mag-
nitude of the nonequilibrium spin accumulation (given by
(S):[(Sx)2+(Sy)2]” 2) will also be proportional to E, but the
spin polarization direction will be independent of E,. In or-
der to see whether the polarization direction of the nonequi-
librium spin accumulation and/or its magnitude can be effec-
tively controlled by tuning the relative strength of the Rashba
and Dresselhaus spin-orbit couplings, in Figs. 1(a) and 1(b)
and Figs. 2(a) and 2(b), we have plotted schematically the
variations of both the magnitude and the polarization direc-
tion of the nonequilibrium spin accumulation with the
changes of the Rashba and Dresselhaus spin-orbit coupling
energies, respectively. (It should be noted that, unlike the
intrinsic spin Hall effect in thin strips of such systems, '’ the
kinetic magnetoelectric effect does not lead to the generation
of a nonvanishing z component of the spin density.!>!%)
From Figs. 1 and 2 one can see that the variations of (S) with
the changes of the spin-orbit coupling energies are not very
substantial ((S)/E, remains on the order of 10° ugz cm™'/V),
but the polarization direction of the nonequilibrium spin ac-
cumulation can be modulated significantly as the relative
strength of the two different spin-orbit interactions varies.
From Figs. 1(b) and 2(b), one can see that, if a> S, the
polarization direction of the spin accumulation will tend to
be perpendicular to the external electric field, and if a<<f3,
the spin polarization direction will tend to be parallel to the
external electric field. This suggests that by tuning the rela-
tive strength of the two different spin-orbit interactions
(which can be achieved by applying a gate voltage), the po-
larization direction of the nonequilibrium spin accumulation
can be effectively controlled. From the physical point of
view, this controllability is due to the following. As can be
seen from the Hamiltonian (1), both Rashba and Dresselhaus
spin-orbit couplings act like a momentum-dependent effec-
tive magnetic field, but the directions of the effective mag-
netic fields due to Rashba and Dresselhaus spin-orbit cou-
plings are different from each other. In the absence of
external electric fields, the averaged effective magnetic fields
due to both Rashba and Dresselhaus spin-orbit couplings
vanish exactly, and hence no net spin density can survive. If
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FIG. 1. Variations of (a) the magnitude (divided by the electric
field E,) and (b) the polarization direction of the nonequilibrium
spin accumulation with the changes of the Rashba spin-orbit cou-
pling energy €,. In both (b) and Fig. 2(b), the symbol ® stands for
the angle (in units of degrees) between the spin polarization direc-
tion and the external electric field. The parameters used were given
in the text and shown in the figures.

an external electric field is applied (e.g., in the x direction),
the averaged effective magnetic fields due to both Rashba
and Dresselhaus spin-orbit couplings will become nonvan-
ishing because (k) # 0 and also (k,) # 0 if B+ 0; thus a non-
equilibrium spin density can result. Because (k,)> (k,), the
average effective magnetic field (Hz) due to Rashba spin-
orbit coupling will tend to be along the y direction [i.e.,
(Hg)=(a(k,e,~k.e,))=—alk,)e,] but the effective magnetic
field (H),) due to Dresselhaus spin-orbit coupling tends to be
along the x direction [i.e., (Hp)=(B(k.e,~k,e,)) = B(k,)e,].
The total effective magnetic field felt by the conduction elec-
trons is the sum of the two effective fields (Hg) and (Hp),
whose direction will depend sensitively on the relative
strength of the Rashba and Dresselhaus spin-orbit couplings,
thus, by tuning the relative strength of the two different spin-
orbit couplings, the polarization direction of the nonequilib-
rium spin accumulation can be effectively modulated.

An interesting question related to kinetic magnetoelectric
effect is that whether the electric-field-driven charge current
will become spin polarized due to the occurrence of nonequi-
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FIG. 2. Variations of (a) the magnitude (divided by the electric
field E,) and (b) the polarization direction of the nonequilibrium
spin accumulation with the changes of the Dresselhaus spin-orbit
coupling energy &g. The parameters used were given in the text and
shown in the figures.

librium in-plane spin accumulation. Recently, Rashba
warned that, in a spin-orbit coupled system, nonvanishing
background spin currents (in the standard definitions of spin
currents) may be obtained even in the absence of external
electric fields, and such equilibrium background spin cur-
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rents are not transport spin currents and should be removed
in the calculations of transport spin currents.?! After remov-
ing the equilibrium background spin currents, the transport
spin current flowing to the x direction with spin parallel to
the x or y axis will be given by

=2 kN ARK),  (i=x,y), (18)
kA

where 8fy (k) =1)(k) - fo(€i,) and Ji(k,\)=(k\[J}[kN),., in
which j; is the spin current operator defined by
ji= %{Ui,ﬁx} and 0,=h"'9H/ dk, is the velocity operator. The
transport spin current flowing to the y direction with
spin parallel to the x or y direction can be calculated
similarly. By use of Egs. (2) and (7), one can show that
_]i(—k,)x):j;(k,)\). On the other hand one, has &fy\(-k)
=-0f\(k) according to Eq. (12); thus, the integrals in Eq.
(18) vanish exactly, suggesting that no spin-polarized trans-
port currents accompany with the electric-field-driven non-
equilibrium in-plane spin accumulation. A similar conclusion
was obtained in Ref. 13 for a Rashba two-dimensional elec-
tron gas based on the Green’s function approach.

In summary, a microscopic model calculation of kinetic
magnetoelectric effect in two-dimensional electron gases
with both Rashba and Dresselhaus spin-orbit couplings was
presented. The results show that by tuning the relative
strength of the two different spin-orbit couplings, both the
magnitude and the polarization direction of the nonequilib-
rium spin accumulation due to this effect can be effectively
controlled. Finally, it should be stressed that the approach
used in the present paper is valid only in the weak impurity
scattering regime, where the spin-orbit eigenstates are well
defined objects. In the presence of strong impurity scatter-
ings, the off-diagonal matrix elements of the density matrix
become important and hence more strict theoretical ap-
proaches (e.g., the quantum Kkinetic equation approach)
should be applied.
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