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We study the spin Hall effect taking into account the impurity scattering effect as general as possible with
the focus on the definition of the spin current. The conserved bulk spin current �Zhang et al., cond-mat/
0503505� satisfying the continuity equation of spin is considered in addition to the conventional one defined by
the symmetric product of the spin and velocity operators. Conditions for nonzero spin Hall current are clarified.
In particular, it is found that �i� the spin Hall current is nonzero in the Rashba model with a finite-range
impurity potential, and �ii� the spin Hall current vanishes in the cubic Rashba model with a �-function impurity
potential.
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Spintronics is one of the most promising new technolo-
gies, where the spin degrees of freedom of electrons in semi-
conductors are manipulated and utilized for functions such as
memory, operation, and communication.1,2 One of the key
routes to spintronics is to invent an efficient method to inject
spins into semiconductors. In this respect, the intrinsic spin
Hall effect �SHE� has attracted recent intensive attention
since its theoretical proposal.3,4 This can give a larger effect
by orders of magnitude than the extrinsic one based on the
impurity scatterings proposed long before.5–7

Recently two experiments have been reported on observa-
tions of the SHE in GaAs and related materials.8,9 Kato
et al.8 observed the Kerr rotation due to the spin accumula-
tion ��10 �B��m�−3� near the edges of the n-type GaAs
sample. They suggested the extrinsic mechanism of the SHE
since it was almost insensitive to the crystal orientation.
Wunderlich et al.9 observed the circularly polarized light
emitting diode �LED� signal from spin-polarized interfacial
two-dimensional holes in p-type GaAs system. From an es-
timation of transport lifetime, they concluded that the spin
accumulation is due to the intrinsic SHE.

The debates on the impurity effect on the intrinsic SHE
have continued, which are in parallel to those for the anoma-
lous Hall effect in ferromagnets. In the latter case, the intrin-
sic mechanism of Karplus-Luttinger10 was criticized and ex-
trinsic mechanisms due to impurity scatterings were
proposed.11 The Hall conductivity is a singular function as
the disorder strength approaches zero. In the metallic case,
the vertex correction in the diagrammatic language incorpo-
rates a deviation of the electronic distribution function from
equilibrium, and it represents the dissipative current. This
situation is similar also in the spin Hall current.

Actually, the disorder effect on the spin Hall current of the
Rashba model in two dimensions has been intensively stud-
ied. Sinova et al.4 obtained the universal value e / �8��12 for
the spin Hall conductivity �SHC� �H

s without disorder. When
the self-energy correction due to impurity scattering is taken
into account, the SHC �H

s is reduced continuously as a func-
tion of the disorder strength from the universal value
e / �8��.13 On the other hand, Inoue et al.14 studied the vertex
correction and found that �H

s vanishes in the clean limit

within the Born approximation. Furthermore, it has been
shown that the SHC �H

s vanishes for any value of the lifetime
� using the Keldysh formalism,15–17 the Kubo formula
analytically,18–20 and numerically,21,22 and the Boltzmann
equation.23 Thus after long debates, people have reached the
consensus that the SHC �H

s for the Rashba model vanishes
for any �.24

However, the vanishing result of �H
s depends on the defi-

nition of the spin current. In the previous calculations on the
SHC, the spin current is defined ad hoc as a symmetrized
product of the spin and the velocity Js= 1

2 �vy ,sz�, where vy
=�H /�py, in response to the electric field E along the x axis.
However, this “conventional” definition of spin current loses
its physical foundation when the spin-orbit coupling is
present and the conservation law of the spin is violated. This
is an important issue since the concept of “current” depends
crucially on conservation; nonlocal effects of the current
comes from the fact that an incoming flow goes out without
loss. Therefore we need to search for a proper definition of a
conserved spin current in the bulk. From this viewpoint, the
conserved spin current Js

25 deserves scrutiny. If �dV	ṡz
=0,
it satisfies the Onsager’s reciprocity relation and the continu-
ity equation for the spin in the bulk: �t	sz
+� ·Js=0. Fur-
thermore it is free from an artifact that the spin current is
proportional to time derivative of the spin operator;18,19

hence, the spin Hall current can be nonzero even for the
Rashba model. Even though the experiments on the SHE up
to now8,9 detect the spin accumulation at the sample edges,
we stick here to the SHE defined by the bulk spin current.
This is because we consider that the generation of the con-
served spin current in the bulk is a more fundamental phe-
nomenon than the spin accumulation at edges, which is not
solely determined by this spin current since the continuity
equation for the spin is not satisfied there. In principle, there
should be other means to detect the SHE without using the
spin accumulation such as voltage measurement with the in-
jected spin current.26

In this paper, we study the SHE as generally as possible,
taking into account the disorder with the definitions of the
conventional and conserved spin current. Applying this con-
sideration, some new results are obtained for the Rashba and
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cubic Rashba models. We employ the Keldysh
formalism,15,27,28 by which the infinite series of the Feynman
diagrams both for the self-energy and vertex correction are
taken into account compactly, and the expression for the
SHC is obtained for both definitions of the spin current de-
scribed above.

We consider a generic model with spin-orbit coupling
with a random impurity potential, this random potential is
assumed to be spin-independent, and the time-reversal sym-
metric model exclusively. In the Keldysh formalism, a
Green’s function matrix G� is introduced,

G� = �GR G�

0 GA � , �1�

where the superscripts R, A, and � denote the retarded, ad-
vanced, and lesser Green’s functions, respectively. The self-
energy matrix 	� is defined similarly. The Green’s functions
satisfy

�GR�−1
� G� − G�

� �GA�−1 = 	�
� GA − GR

� 	�, �2�

�G0
−1 − 	R,A� � GR,A = ��1 − 2� , �3�

where �A � B��1,2��d3A�1,3�B�3,2� and G0 is the unper-
turbed Green’s function. We then separate the center-of-mass
and the relative coordinates and perform the Fourier trans-
form to the relative coordinates.27,28 The final result is writ-
ten in terms of the center-of-mass coordinates �T ,R� and the
relative momentum �
 ,p�. We put the constant electric field
E= �E ,0 ,0� and look for solutions independent of T and R.
Therefore, the quantum Boltzmann equation �QBE� for par-
ticles with charge q is written by

�G� ,H� = − iqE · �pG� −
i

2
qE · ��pH,�
G� �

−
i

2
qE · ���p	� ,�
G� � − ��
	� ,�pG� �� + �	� ,G� � .

�4�

Here one can show from Eq. �4� that the time derivative

Ȯ of an arbitrary operator O, which is independent of p, R,
T, and 
, has a vanishing expectation value in the steady

state, 	Ȯ
=0, even with a general form of the impurity
potential.18,19 We start with

	Ȯ
 =
1

i
� d


2�
� d2p

�2��2 tr�ȮG��

=� d


2�
� d2p

�2��2 tr�O�G� ,H��� , �5�

where � �� denotes the lesser �upper right� component of the
matrix in the Keldysh space. Equation �4� is plugged into Eq.
�5�, and evaluate the respective terms in the RHS of Eq. �4�.
The first term −iqE ·�pG� becomes zero after an integration
over p. The second term vanishes after an 
-integration. The
third and fourth terms vanish after partial integrations in
terms of p and 
. Lastly, to evaluate the last term ��	� ,G� ���,
we need a relationship between the self-energies and Green’s

functions. We employ the self-consistent Born approximation
�the diagrams in Figs. 1�a� and 1�b��29 for the impurity scat-
tering. Up to the second order it is given by

	� �
,p� = ni� d2p�

�2��2 �Vp,p��
2G� �
,p��

+ ni� d2p�d2p�

�2��4 Vp,p�Vp�,p�Vp�,pG� �
,p��G� �
,p�� .

�6�

where ni is an impurity density, and Vp,p� is the Fourier trans-
form of the impurity potential. From the second Born ap-

proximation Eq. �6� one can easily show 	Ȯ
=0 for arbitrary
forms of impurity potentials.30 This holds true even for
higher-order Born approximation. On the other hand, for the

charge current v= Ṙ, this argument does not apply, and 	v

can be nonzero in the steady state as expected.

Now we proceed to a closed form of the SHC. The ex-
pectation value of the conventional spin current Js

 1
2 �vy ,sz� is obtained as

	Js

E

= − lim
E→0

i

2E
� d


2�

d2p

�2��2 tr�sz� �H

�py
,G� ��

E

�

, �7�

where � �E implies that we retain the terms linear in a uni-
form electric field E=Ex̂.

Let us turn to the second definition of the spin current Js
as proposed by Zhang et al.25 Js is defined to satisfy �t	sz

+� ·Js=0, and is divided into 	Js
+P�, where Js= 1

2 �v ,sz�.
The second term P� is called the torque dipole density, and is
required to satisfy lim�→0 limQ→0�	ṡz�� ,Q�
+ iQ ·
P��� ,Q��=0, where �� ,Q� are the Fourier components of
the center-of-mass coordinates. We put Qx=0, and take the
limit Qy =Q→0, i.e., P�P� · ŷ=−lim�→0 limQ→0�1/ iQ�
�	ṡz�� ,Q�
. More explicitly, E is spatially modulated along
the y-axis, E=EeiQY−i�Tx̂.25 Note that 	ṡz�0,0�
=0 from Eq.
�5�, which means P� is finite and well-defined. In response to
the electric field, the Green’s function G� and the self-energy
	� acquire terms proportional to eiQY−i�T. P� is expressed as

P� = − i lim
Q→0

1

Q
� d


2�
� d2p

�2��2 tr�sz�H,G� ��� . �8�

We first write down the QBE to the linear order in E and to
the linear order in � or Q. Next, we replace the term �H ,G� ��

FIG. 1. Diagrammatic representation of the self-energy 	� in the
present self-consistent approximation. Doubled line is the dressed
Keldysh Green’s function G� . Dashed line with a cross denotes the
average over the impurity positions in the second order for �a� and
in the third order �b�, respectively.
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in Eq. �8� with the corresponding term in the QBE. While
there arise a number of terms, most of them give no contri-
bution to P� after partial integrations over pi or 
. To calcu-
late the remaining terms, we note that this electric field nec-
essarily accompanies a magnetic field according to the
Maxwell equation. To deal with the response to these two
fields, it is convenient to consider the corresponding vector
potential, A= �AeiQY−i�T ,0 ,0�. Relevant terms in the QBE
are classified to those proportional to i�A=E �electric field�
or those proportional to −iQA=B �magnetic field�. The re-
sulting form is a sum of the contributions from the response
to a dc electric field Ex̂ and that to a dc magnetic field Bẑ:

Js

E
= lim

E→0

i

E
� d


2�

d2p

�2��2 tr�1

2
sz� �	�

�py
,G� ��

E

�

+ lim
B→0

i

B
� d


2�

d2p

�2��2 tr�szG� −
1

2
sz� �	�

�

,G� ��

B

�

. �9�

Here Js=Js · ŷ, and � �B retains the terms linear in an uni-
form magnetic field B=Bẑ. Because B does not drive the
system off-equilibrium, the relation in equilibrium, G0

�= �1
−tanh�
 /2kBT���G0

A−G0
R� /2, is satisfied even in the presence

of B=Bẑ. The details of the derivation of Eq. �9� will be
presented elsewhere.31 Remarkably, in calculating the total
conserved spin current Js= 	Js
+ P�, there appears a term in
P� which exactly cancels 	Js
. We also note that this formula
is quite generic and applies to any model. The expression of
the charge current is obtained just by replacing sz by −e in
Eq. �9�, and the B-term in the final formula is reminiscent of
the Streda formula.32,33

We now discuss the explicit models based on the results
obtained above. Here we consider the Rashba model

H =
p2

2m
+ �� � p� · ẑ + v , �10�

and the cubic Rashba model

H =
p2

2m
+

i

2
�p−

3�+ − p+
3�−� + v . �11�

Here, �= ��x ,�y ,�z�=2s is the Pauli matrix, p±= px± ipy,
�±=�x± i�y, and v is an impurity random potential. We take
the unit where �=c=1. The Rashba model represents an
n-type semiconductor in two-dimensional heterostructure.
The second term in Eq. �10� represents the spin-orbit cou-
pling with an inversion-symmetry-breaking potential along
the z direction perpendicular to the plane. As noticed in Refs.
18 and 19, Js is proportional to ṡy: Js= py�z /2m
= �H ,�y� /4im. Therefore, from the generic argument in Eq.
�5�, there occurs no spin Hall current when this definition of
the spin current is employed for the Rashba model �Table
I�a��. This result is consistent with previous works using
various methods, including the calculations in the clean limit
by the Kubo formula,14,20 and Keldysh formalism.16 For fi-
nite � ��F��1�, it is also consistent with the analytic18,19 and
numerical21,22 results by the Kubo formula, and with the re-
sults by the Keldysh formalism.15,17 The calculation in Ref.
19 by the Kubo formula for finite � ��F��1� is similar to

ours by the Keldysh formalism. Nevertheless, our approach
better reveals the reason why the spin Hall current generally
vanishes when Js� ṡy.

The cubic Rashba model, on the other hand, describes the
heavy-hole bands of cubic semiconductors in heterostructute.
The conventional spin current Js can no longer be expressed

as Ȯ; hence the previous argument for vanishing spin Hall
current does not apply. Indeed, the resulting SHC is
nonzero34 �Table I�b��, which is consistent with Refs. 35 and
36. Therefore, the zero or nonzero spin Hall current for the
conventional spin current Js is mostly determined whether it
is expressed by the time derivative of some local operator or
not.

Next we turn to the conserved spin current Js. Both in the
Rashba and the cubic Rashba models, the B-term in Eq. �9�
vanishes, because the Hamiltonian lacks a �z-term, and the
self-energy is independent of the spin. The remaining E-term
in Eq. �9� for the Rashba model is calculated as follows. In
the first Born approximation �the first term in Eq. �6��, Js
=0 for general Vp−p�. In the second Born approximation, we
obtain

Js = −
ini

4
� d


2�

d2p

�2��2

d2p�

�2��2

d2p�

�2��2 tr��z�G� �
,p� · G�

�
,p��G� �
,p���E
�

��Vp−p�Vp�−p�Vp�−p�

�py�
� . �12�

Even for higher-order Born approximation, the formula for
Js can be written down. We can then see that Js always
depends on �py

V, and the spin Hall current for Js is extrinsic
for both the Rashba and the cubic Rashba models, depending
explicitly on the impurity potential. All these considerations
are summarized in Table I. With the �-impurity potential the
conserved spin Hall current vanish both for the Rashba
model and the cubic Rashba model. We note that calculated
the conserved SHC without disorder is �H

s =e /8� for the
Rashba model and �H

s =−9e /8� in the cubic Rashba

TABLE I. Spin Hall effect in the �a� �linear� Rashba model and
�b� cubic Rashba model, with various types of the impurity poten-
tial for the two different definitions: 	Js
 is the conventional spin
current, Js= 1

2 �vy ,sz�, and Js is the conserved effective spin current,
Js= 	Js
+ P�. We show the new results in the boldface.

�a� Rashba model

Impurity potential Born approx.

Definition of spin current

	Js
 Js

��r� 1st/higher 037 0

Vp−p� 1st 038 0

higher 0 Finite

�b� Cubic Rashba model

��r� 1st/higher Finite35,36 0

Vp−p� 1st Finite 0

higher Finite Finite
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model.25 These results are reproduced in our calculations by
neglecting the self-energy of the lesser Green’s function and
taking the clean limit.

We now demonstrate the finite spin Hall current for Js in
the Rashba model with the short-range �not �-function� im-
purity potential V�r�=Ue−�r / ��2

with ���1, where U is the
magnitude of the impurity potential, � is the size of the po-
tential range and � is a momentum cutoff. As an approxima-
tion, we substitute the Green’s functions in Eq. �9� with those
for the �-function impurity potential, and calculate Js. Fig-
ure 2 shows the results for the SHC �H

s in the parameter
space of pF /�F and ��F. Since the SHC �H

s is proportional
to ��pF�2 and U /�F within our calculation scheme, the ver-
tical axis is set to be �H

s ��pF�−2��F /U�, and is normalized by

the universal value e / �8��. �H
s has a maximum value along

the line �=2pF��1 at each  and the maximum value
depends on log�� / pF�. This conserved spin current is non-
zero even for the Rashba model in two dimensions.

The above results give us a hint to look for systems show-
ing the spin Hall current. One important feature is that the
Hamiltonian should involve sz. The Luttinger model3 satis-
fies this condition while the cubic Rashba model does not.
Therefore, the complete confinement of the electronic mo-
tion along one direction is not desirable. We have assumed
that the spin-orbit interaction is unchanged by disorder. In
reality, the impurity potential v�r� induces a spin-orbit cou-
pling as �p��v� ·s. This is also expected to contribute to the
extrinsic spin Hall effect.39 This effect is beyond the scope of
the present paper.

In conclusion, we derived a general exact formula of the
spin Hall conductivity for the two kinds of spin current: �a�
The product of spin and velocity operators and �b� the effec-
tive conserved spin current. The conditions for the nonzero
spin Hall current has been clarified and are applied to the
Rashba and cubic Rashba models.
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