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Existence of the Shockley surface states in photonic crystals is demonstrated for the first time. We show that
in photonic crystals, the surface states of defect chain with unit cell containing one defect are the Tamm rather
than Shockley states as commonly assumed. The Shockley states can appear only in the defect chain with unit
cell containing more than one defect. We first analyze the surface states using the tight-binding theory. Theo-
retical predictions are confirmed by the numerical simulations.
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There is a great deal of interest in the surface excitations
supported by a periodical array of the dielectric materials or
photonic crystals �PC�. Such surface waves are called surface
Bloch waves �SBW�.1 The SBWs appear to be superior al-
ternatives in many applications to another surface excitations
called surface plasmon polaritons.2 First of all, the properties
of PC can be engineered to allow for the SBW at virtually
any optical frequency. Second, the low loss of the dielectric
PCs may enhance the surface sensitivity.3 The SBWs were
demonstrated experimentally and theoretically both in one
dimensional1,4,5 and in multi-dimensional6–9 PCs. It has been
shown recently that, similar to surface plasmon on corru-
gated metal film,10 the SBWs on PCs can cause highly direc-
tional emission from the PC waveguide.11 This effect holds
promise for application of the SBWs in subwavelength de-
vices.

Surface states in solids can be either Tamm states12 or
Shockley states.13 The Tamm surface states for electrons are
the direct consequence of the strong perturbation at a solid
surface, resulting in an asymmetric potential about the sur-
face, or asymmetric termination of periodical potential.12

They appear as soon as an asymmetry parameter becomes
comparable to the coupling constant � between the nearest
neighbors in the lattice. Since the coupling constant � deter-
mines the width of the allowed band directly, the Tamm
states are more likely to occur for narrow-band materials
with large interatomic distance.12 The situation is quite dif-
ferent for the Shockley surface states which appear when
atoms are close to each other and interact strongly.13 The
Shockley states do not require existence of an asymmetric
potential at the surface and they emerge from the so-called
crossing bands.13 Attempts were made to extend such analo-
gies to PCs.1,14 In studying multilayer structures, Yeh and
Yariv1,5 identified SBWs in this one-dimensional PCs as
analogous to the Shockley surface states in solids. However
the authors could not reconcile this analogy with the fact that
the surface electromagnetic wave can appear inside the band
gap only when the separation between the identical layers
�waveguides� is large enough. While the key condition for
the Shockley surface states in solids is that the interatomic
distance becomes small enough such that the allowed energy
bands involved13 cross. In spite of this basic difference, the
idea of similarity between the SBWs in PCs and the Shock-
ley states in solids has been widely accepted.14

The goal of this paper is twofold. First we show that the
surface states in PCs with a basis of one dielectric rod

�simple unit cell�, are not the Shockley states as commonly
assumed, but rather the Tamm states. Second we demonstrate
a new type of the surface excitation in PCs which is analo-
gous to the Shockley surface states. We show that the Shock-
ley surface states can appear in a PC with a complex basis of
at least two rods �complex unit cell�. The unit cell should
contain either alternating dielectric rods supporting the s-
and p-modes or/and alternating strong and weak bonds. We
first investigate both types of the surface states in these struc-
tures theoretically using the empirical tight-binding model.
Our theoretical predictions are then confirmed by the finite
difference time domain �FDTD� simulations. As model sys-
tems we consider structures shown in Fig. 1. They are peri-
odic arrays of the infinitely long dielectric rods embedded in
another dielectric medium. These otherwise perfect two-
dimensional PCs are doped with a chain of the defect rods
separated by d. Structure 1 in Fig. 1�a� consists of single-
defect unit cells and corresponds to the situation commonly
studied for surface states in PCs.1,6,14 Structures 2 �Fig. 1�b��

FIG. 1. �Color online� Coupled-defect structures including
s-defects �small filled circles� and p-defects �open large circles�
embedded in a host PC �gray circles�: �a� Structure 1 with unit cell
containing one s-defect; �b� Structure 2 with equivalent bonds be-
tween the s- and p-defects with 6 complete unit cells; �c� Structure
3 with alternating strong �short� and weak �long� bonds and 4 com-
plete unit cells.
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and 3 �Fig. 1�c�� consist of complex unit cells with two dif-
ferent defects connected by either equivalent bonds �Fig.
1�b�� or alternating strong �short� and weak �long� bonds
�Fig. 1�c��. We assume that one of the defects supports the
nondegenerate s-mode and the other—the double-degenerate
p-mode. In order to simplify the analysis we design these
structures in such a way that the defect states �or the allowed
band of the chain� fall inside the band gap of the host crystal.
Then at the first order approximation we neglect the coupling
between the defect rods and the host crystal. Therefore, we
can consider these structures as periodical chains installed in
another quasi-homogeneous medium.

In the framework of the tight-binding model,16 the wave
function of the defect chain with complex unit cell �Fig. 1� is
represented as a linear combination of the s-type, �s�r−nd�,
and two double degenerate p-type, �px�y��r−md�, eigenfunc-
tions of the individual defects located at the nth and mth
sites, respectively, ��r , t�=�nan�t��s�r−nd�
+�m,i=x,ybm

i �t��pi�r−md�. The consistent description of this
structure should include the coupling matrix elements be-
tween the nearest s-modes, �s, and the p-modes, �p, along
with the coupling matrix elements between the nearest
s-mode and px-mode, �sp, and between the px- and s-defects,
�ps �see Fig. 1�. By symmetry, the coupling between the s-
and py-modes vanishes. Therefore, for our problem we can
consider both defects as singlet mode s- and p-defects, and
the x- and y-indexes will be dropped from now on. The cou-
pling matrix elements �s��p� define the width of the allowed
bands for the simple chains including only the equidistant s-
or p-defect. While the matrix elements �sp and �ps describe
the interaction between the s- and p-defects. The dynamics
of the field amplitudes al�t� and bl�t� in the lth unit cell is
described by the following equations

i
d

dt
al = �sal + �s�al−1 + al+1� + �spbl + �psbl−1,

i
d

dt
bl = �pbl + �p�bl−1 + bn+1� + �spal + �psal+1, �1�

where �s,p=�s,p− i�s,p are the complex eigenvalues of the
individual s- or p-defect. The coupling matrix elements are
determined by the overlap integrals between the relevant de-
fect modes.16 For a infinite chain, the solution of the problem
is given by the dispersion relation:

�1,2�k� = 1/2��s + �p + 2��s + �p�c�

± 1/2���s − �p + 2c��s − �p��2 + 4�̃sp
2 . �2�

where �̃sp
2 =�sp

2 +�ps
2 +2�sp�psc and c=cos�kd�. In the case of

a finite chain with N unit cells we have 2N−2 evolution
equations from �1�, with 2 boundary conditions:

i
d

dt
a1 = �s�a1 + �spb2, i

d

dt
bN = �p�bN + �sp� aN, �3�

where �s�, �p�, and �s�, �p�, �sp� are the eigenvalues and cou-
pling constants of the end defects, respectively.

Equations �1� and �3� form the basis for the surface state
problem of a one-dimensional system. The Tamm surface
states immediately follow from the set, if we neglect the s-p
hybridization.17 Then two surface states will emerge from the
allowed band into the forbidden band if the asymmetry pa-
rameters satisfy ��s,p−�s,p� � /�s,p�1.15 Since coupling con-
stant �s,p determines the width of the allowed band directly,
the Tamm states are more likely to occur in the case of nar-
row band corresponding to large interatomic distance. On the
other hand, the Shockley states do not require such asymme-
try at surface and appear due to the termination of the s-
p-hybridized chain.15 To focus on the Shockley states only,
we assume no asymmetric perturbation at the ends by setting
�s,p� =�s,p and �sp,s,p� =�sp,s,p.

We analyze now the Shockley problem for structures 2
and 3. Structure 2 in Fig. 1�b� is characterized by two iden-
tical bonds, or �sp=−�ps, and, by symmetry, �s�p	0. To
simplify the analysis we assume that �s=�p=� and �s=
−�p=�. The energy spectrum of Eqs. �1� and �3� are shown
in terms of ��−�� /� in Fig. 2 for 4 complete �Fig. 2�a�� and
5 incomplete unit cells �Fig. 2�b�� as function of the normal-
ized coupling parameter 
= ��sp /��. The dashed lines show
the edges of the allowed bands calculated from Eq. �2�. We
can see that, when a critical value of 
 is reached, the two
states fall inside the inverted band gap. They become the
surface modes localized at the surface and described by a
complex wave vector. For the chain with integer number of
complete unit cells, the surface modes are close to the two
band-edges of the crossing bands �Fig. 2�a��. While in the
case of the incomplete unit cells, the surface modes appear
only near one band-edge �Fig. 2�b��.

Structure 3 �Fig. 1�c�� provides another example of the
Shockley states.15 For the sake of simplicity, we neglect the
next nearest coupling, �s=�p=0, and assume that �s=�p
=�. The energy spectrum in unit of ��−�� /�sp is plotted
against the ratio of the two coupling parameters �
= ��ps /�sp� for 4 complete �Fig. 2�c�� and 5 incomplete unit

FIG. 2. �Color online� Energy spectrum of the defect chain with
unit cell containing double defects with complete �a� and �c� and
incomplete unit cells �b� and �d� for structures 2 �a� and �b� and
structures 3�c� and �d�. Insets illustrate the structures studied.
Dashed lines show the boundaries of the allowed bands.
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cells �Fig. 2�d��. First we analyze the structure with integer
number of unit cells. If �=0 ��ps=0�, then the spectrum
consists of 2 fourfold degenerate levels �1,2=�±�sp. When
��0, the degeneracy is removed, resulting in 2 bands sepa-
rated by the direct band gap. For �=1 �or ��sp � = ��ps��, the
chain becomes the same as structure 2 with equivalent bonds
and the two bands cross. When ��1, an inverted band gap
is opened. At the same time, two states emerge from the
allowed bands and move to the middle of the inverted band
gap �Fig. 2�c��, generating two surface modes. From this
analysis we can conclude that, in the structure with non-
equivalent bonds, the surface states appear only at ��1, that
is, only if the surfaces break the strong bonds. �Note from
Fig. 1�c� �ps bond is broken at surfaces.� We will not see the
surface state in the opposite case if the two surfaces break
the two weak bonds when �	1 �Fig. 1�c��. A direct conse-
quence of this effect is that in the structures with incomplete
number of unit cells one surface mode exists for any values
of the parameter �. The termination of such a structure im-
plies that one of the surfaces must break the strong bond �see
inset in Fig. 2�d��. This necessarily gives rise to one surface
mode at �=� �Fig. 2�d��.

To confirm the results of theoretical analysis, we perform
a numerical simulation using the FDTD technique. Our com-
putational domain are shown in Fig. 1 with perfectly
matched layer boundary conditions. The PC structures are
square lattice of the silicon rods ��r=11.9� in vacuum ��o

=1�. The main requirement for structure 1 to demonstrate the
Tamm surface states is a large asymmetry parameter ����
−� � �. It can be shown that the eigenvalues ��’s� of defects
depend on their distance to surface.17 The eigenvalue of a
defect decreases drastically when the defect is moved to-
wards the surface. This effect can be used to control the
asymetry parameter, and thus the absence or existence of the
Tamm surface states. Our analysis showed that the condi-
tions of the Tamm states can be realized with regular rods of
radius R=0.35a and defect rods of Rd=0.2a, where a is the
lattice constant. Such a defect creates the s-mode almost in
the middle of the first band gap of TM mode �magnetic field
in the plane�. The defects are right at the surfaces as shown
in Fig. 1�a� to have a large asymmetry parameter. To dem-
onstrate the Shockley states in structures 2 and 3, we choose
the host crystal with rods of radius R=0.2a which has a TM
bandgap of �̃=�a /2c= �0.28,0.48�. The two defects sup-
porting the s- and p-modes are rods of radius Rd1=0.06a and
Rd2=0.3a, respectively. These defects have almost the same
eigenvalues �̃=0.358, which are close to the middle of the
band gap. Thus, the coupling between host crystal bands and
the defect chain can be ignored for these structures. To focus
on the Shockley surface states only, we add one extra layer
of the host crystal in structures 2 and 3 in Figs. 1�b� and 1�c�
to avoid having no-zero asymmetry parameter.

The transmission coefficients calculated from the FDTD
simulations and the field pattern for structure 1 with different
defect separations are presented in Fig. 3�a�. In agreement
with Tamm’s theory,15 the surface mode moves deeper inside
the band gap, and becomes more strongly localized to the
surface, the larger the distance between the defects �or the
smaller the allowed band� �compare Fig. 3�b� and Fig. 3�c��.

Our analysis also showed that the surface states disappear
when the asymmetry parameter decreases, such as ���−� �
	�. We conclude that the surface states in PCs such as
structure 1 with a single-defect unit cell are the direct con-
sequence of the asymmetric termination of the periodic po-
tential at the surface, �� ,����. These features are typical of
the Tamm states, rather than of the Shockley states in solids
contrary to what was assumed in previous papers.1,14

The results of our analysis for structures 2 and 3 are sum-
marized in Fig. 4. The transmission coefficient and the dis-
persion relation for structure 2 are shown in Fig. 4�a� and
4�b�. In agreement with the theoretical prediction of Fig.
2�a�, we can clearly see the opening of the inverted band gap
and the two surface modes indicated by arrows in Fig. 4�a�.
The distributions of the z component of the electric field for
these modes are shown in Figs. 4�c� and 4�d�. One of the
surface modes splits off from the s-band �Fig. 4�c�� and
another—from the p-band �Fig. 4�d��. Both modes are not
strongly localized to the surface since they lie close to the
band-edges. Our detail analysis showed that the surface
states disappear as soon as the distance between the s- and
p-defects increases or the sp-coupling decreases.

As a particular example of structure 3 we present in Fig.
4�e� the comparison between calculated transmission coeffi-
cients of structure 3 with 4 complete unit cells terminated by
the weak bonds �solid line� and the structure with 5 incom-
plete unit cells �dashed line�. As predicted, there is no surface
mode for the structure with weak-bond termination �Fig.
2�c�, �	1�. All the eigenvalues get inside of the allowed
bands. In agreement with the theory �Fig. 2�d��, one surface
mode pointed by arrow in Fig. 4�e� appears close to the
middle of the band gap in the structure with incomplete num-
ber of unit cells. The field distribution for this mode is very
strongly localized to the surface as shown in Fig. 4�g�.

FIG. 3. �Color online� �a� Calculated transmission coefficient for
structure 1 with defect separation d=2a �solid line�, 3a �dashed
line�, and 4a �dash-dotted line�. The arrows point to the surface
modes; The field patttern with defects separated by 2a �b� and 4a
�c� at the resonance frequencies indicated by the arrow.
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We analyze the results of the FDTD simulation in terms
of the tight-binding model of Eqs. �1� and �3�. First, we
found the unknown parameters, �s,p, �s,p, and �sp,ps, by fit-
ting the dispersion relation �1,2�k� �2� to the exact spectrum
of the infinite chain calculated using the super-cell plane-
wave technique. Using the parameters we calculated the
spectrum of the finite chain. The results of our analysis are
summarized in Fig. 4�b� for structure 2 with 6 complete unit
cells, and in Fig. 4�f� for structure 3 with 5 incomplete unit
cells. The two dash-dotted curves that intersect show the
spectrum of the uncoupled chains of the s- and p-defects
��sp,ps=0�, respectively. The solid and dashed lines represent
the super-cell plane wave calculation and fitted dispersion

relation �2� for the infinite chain, respectively. The stars
show the calculated spectrum of the finite chain. The theo-
retical analysis clearly demonstrates the two surface states
close to the band-edge in the case of structure 2 �Fig. 4�b��
and the one surface states in the middle of the band gap in
the case of structure 3 with 5 incomplete unit cells �Fig.
4�f��. The comparison of the FDTD results with the theoret-
ical calculation shows a reasonable agreement between the
calculated spectrum of the finite chain �stars in Fig. 4�b� and
in Fig. 4�f�� and resonant peaks in the transmission coeffi-
cient �Figs. 4�a� and 4�e��.

In conclusion, we demonstrated theoretically and numeri-
cally the existence of the Shockley surface states in PCs for
the first time. We showed that the Shockley surface states can
appear in the PC with either alternating defects supporting
the so-called s and p-modes or/and alternating strong and
weak bonds. We showed that the Shockley states appear even
without any perturbation at the surface ���=��. This is in
contrast to the Tamm surface states in PCs which are a direct
consequence of the strong surface perturbation, leading to an
asymmetry at surfaces ����−� � /��1�. We showed that,
similar to the solids, the main feature of the Shockley surface
states in PCs is their emergence from the crossing bands. Our
study shows that the properties of surface states such as fre-
quency and localization depth can be controlled by coupling
parameters and asymmetric parameter. This offers a signifi-
cant advantage over surface states in other system where one
has to accept what ever nature leaves with us. By contrast,
surface states can be created or engineered at a desired fre-
quency with specified extent of localization completely by
design. Finally, our results will hopefully resolve some of the
confusion in the literature regarding the nature of the surface
modes and help more fully understand the surface modes in
PCs. We believe that the design flexibility coupled with the
fuller understanding will eventually benefit the full exploita-
tion of surface states in PCs for many applications including
the sub-wavelength optics.
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FIG. 4. �Color online� Calculated transmission coefficients for
structure 2 �a� and structure 3 �e� in the case of 4 complete unit cells
�solid line� and in the case of 5 incomplete unit cells �dashed line�,
where the arrows indicate the surface modes. The structures are
shown in the insets; Spectrum of structure 2 �b� and structure 3 �f�
with 5 incomplete unit cells: The two dash-dotted lines show the
spectrum of the uncoupled chains of the s- and p-defects. The solid
and dashed lines represent the super-cell plane wave calculation and
fitted dispersion relation �1,2�k� �2� for the infinite chain, respec-
tively. The stars show the calculated spectrum of the finite chain.
�c�, �d�, and �g� show the �Ez� of the surface modes indicated by
arrows in �a� and �e�, respectively.
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