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In this work, we have used the exchange-only optimized effective potential in the self-consistent calculations
of the density functional Kohn-Sham equations for simple metal clusters in stabilized jellium model with
self-compression. The results for the closed-shell clusters of Al, Na, and Cs with N=2, 8, 18, 20, 34, and 40
show that the clusters are 3% more compressed here than in the local spin density approximation �LSDA�. On
the other hand, in the LSDA, neglecting the correlation results in a contraction by 1.4%.
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I. INTRODUCTION

The Kohn-Sham1 �KS� density functional theory2 �DFT�
is one of the most powerful techniques in electronic structure
calculations. However, the exact form of the exchange-
correlation functional is still unknown and, in practice, one
must use approximations. In spite of the success of the local
spin density approximation1 �LSDA� and the generalized
gradient approximation3 �GGA�, it is observed that, in some
cases, these approximations fail to predict correct behaviors,
even qualitatively. For example, in some 3d transition metal
monoxides, which are Mott insulators, they predict metallic
behaviors.4–7 On the other hand, appropriate self-interaction
corrected versions of these approximations are observed to
predict correct antiferromagnetic insulating behaviors for
FeO and CoO.7,8 These observations motivates one to use
functionals in which the self-interaction contribution is re-
moved exactly. One of the functionals, which satisfies this
constraint, is the exact exchange �EEX� orbital dependent
functional. Using the EEX functional leads to the correct
asymptotic 1 /r behavior of the KS potential for finite sys-
tems as well as to correct results for the high density limit in
which the exchange energy is dominated.9 Although neglect-
ing the correlation effects in orbital dependent functionals
fails to reproduce the dispersion forces such as the van der
Waals forces,10,11 the EEX in some respects is advantageous
over the local and semilocal approximations.11,12 To obtain
the local exchange potential from the orbital dependent func-
tional, one should solve the optimized effective potential
�OEP� integral equation. Recently, Kümmel and Perdew13,14

have invented an iterative method which allows one to solve
the OEP integral equation accurately and efficiently even for
three-dimensional systems. This method is used in this work.

To simplify the cluster problem, we have used the stabi-
lized jellium model with self-compression15,16 �SJM-SC� em-
ploying spherical geometry for the jellium background. It has
been shown that the application of the LSDA-SJM-SC to
neutral metal clusters predicts smaller equilibrium rs values
than the bulk values for small clusters and converges to it for
very large clusters.15 This trend is consistent with the results
of ab initio calculations.17,18

In this work, we have used the EEX-SJM-SC to obtain the
equilibrium sizes and energies of closed-shell neutral
N-electron clusters of Al, Na, and Cs for N=2, 8, 18, 20, 34,
and 40 �for Al, N=18 corresponds to Al6 cluster and other

values do not correspond to a real Aln�. In order to have an
estimate for the self-interaction effects, we have repeated the
calculations for the exchange-only local spin density ap-
proximation �x-LSDA� in which the spin-polarized version
of the Dirac form, Ex=cx�drn4/3, is used. Comparison of the
results shows that �except for N=40 in Al case� the relation
r̄s

EEX� r̄s
x−LSDA� r̄s

LSDA. The organization of this paper is as
follows. In Sec. II, we explain the calculational schemes.
Section III is devoted to the results of our calculations and
finally, we conclude this work in Sec. IV.

II. CALCULATIONAL SCHEMES

In this section, we first explain how to implement the
exact exchange in the SJM and then will explain the proce-
dure for the OEP calculations.

A. Exact-exchange stabilized jellium model

As in the original19 SJM, here the Ashcroft empty core
pseudopotential20 is used for the interaction of an electron
with an ion of charge z. For a given bulk metal with Wigner-
Seitz radius rs

B, the core radius of the pseudopotential rc is
obtained by setting the pressure of the bulk system equal to
zero �as in Eq. 7 of Ref. 21 but neglecting the correlation �c�

rc�rs
B� =

�rs
B�3/2

3
�− 2ts�rs� − �x�rs� − �M�rs��rs=rs

B
1/2 . �1�

Here, ts and �x are the kinetic and exchange energy per par-
ticle for an electron gas system, respectively, and �M is the
average Madelung energy.19 Using Eq. �1� for a given metal
shows that the core radius assumes smaller values com-
pared to the case when the correlation is present. In the
EEX-SJM-SC, the total energy of a cluster is given by

EEEX-SJM�n↑,n↓,rs,rs
B� = EEEX-JM�n↑,n↓,rs�

+ ��M + w̄R� � drn+�r� + 	�v
WS

�� dr��r��n�r� − n+�r�� , �2�

where, EEEX-JM is the total energy in the exact-exchange jel-
lium model with the exchange energy given by

PHYSICAL REVIEW B 73, 113106 �2006�

1098-0121/2006/73�11�/113106�4�/$23.00 ©2006 The American Physical Society113106-1

http://dx.doi.org/10.1103/PhysRevB.73.113106


Ex = �
�=↑,↓

�
i,j=1

N� � drdr�
�i�

* �r�� j�
* �r��� j��r��i��r��

�r − r��
. �3�

All equations throughout this paper are expressed in
Rydberg atomic units. Here, n� with �= ↑ ,↓ are the electron
spin densities and rs is the Wigner-Seitz �WS� radius for the
jellium sphere of the cluster. w̄R is the average value of the
repulsive part of the pseudopotential, n�r� and n+�r� are the
total electron density and the jellium background density,
respectively. ��r� is the step function with unit value inside
the jellium and zero for the outside. 	�v
WS is the average of
the difference potential over the WS cell and the difference
potential �v is defined as the difference between the pseudo-
potential of a lattice of ions and the electrostatic potential of
the jellium positive background. As in the original19 SJM
�but in the absence of the correlation energy component�, at
equilibrium density we have

	�v
WS = −
1

3
�2ts�nB� + �x�nB�� . �4�

To obtain the equilibrium size and energy of a N-atom
cluster in EEX-SJM-SC, we solve the equation


 �

�rs
E�N,rs,rc�


rs=r̄s�N�
= 0, �5�

where N and rc are kept constant and E is given by Eq. �2�.
The procedure for the x-LSDA is the same as above except
for that the Dirac exchange energy must be used.

B. The OEP equations

Kümmel and Perdew14 have proved, in a simple way, that
the OEP integral equation is equivalent to

�
i=1

N�

�i�
* �r��i��r� + c.c. = 0. �6�

�i� are the self-consistent KS orbitals and �i� are orbital
shifts. The self-consistent orbital shifts and the local ex-
change potentials are obtained from the iterative solutions of
inhomogeneous KS equations. Taking spherical geometry for
the jellium background and inserting

�i��r� =
	i��r�

r
Yli,mi

�
� , �7�

and

�i��r� =
�i��r�

r
Yli,mi

�
� , �8�

in to the inhomogeneous KS equation �Eq. 21 of Ref. 14�,
one obtains22

� d2

dr2 + �i� − vef f��r� −
li�li + 1�

r2 ��i��r� = qi��r� . �9�

Here, �i� and vef f� are the KS eigenvalues and effective po-
tentials, respectively. The right hand side of Eq. �9� can be
written as

qi��r� = qi�
�1��r� + qi�

�2��r� , �10�

with

qi�
�1��r� = �vx��r� − v̄xi� + ūxi��	i��r� , �11�

in which,

v̄xi� = �
0

�

dr	i��r�vx��r�	i��r� �12�

and

ūxi� = − 2�
j=1

N�

�
l=�li−lj�

li+lj 4


2l + 1
�I�ljmj,limi,lmj − mi��2

� �
0

�

dr	i��r�	 j��r�B��i, j,l;r� . �13�

Here,

I�ljmj,limi,lm� =� d
Yljmj

* �
�Ylimi
�
�Ylm�
� , �14�

and

B��i, j,l;r� = �
r�=0

r

dr�	i��r��	 j��r��
r�l

rl+1

+ �
r�=r

�

dr�	i��r��	 j��r��
rl

r�l+1 . �15�

The bar over I2 implies average over mi and mj. On the other
hand, the quantity qi�

�2� reduces to

qi�
�2��r� = 2�

j=1

N�

�
l=�li−lj�

li+lj 4


2l + 1
	 j��r�B��i, j,l;r�

� �I�ljmj,limi,lmj − mi��2. �16�

The procedure for the self-consistent iterative solutions of
the OEP equations is explained in Refs. 14 and 22.

III. RESULTS AND DISCUSSION

We have used the EEX-SJM-SC to obtain the equilibrium
sizes and energies of closed-shell 2, 8, 18, 20, 34, and 40
electron neutral clusters of Al, Na, and Cs.

In Table I, we have listed the equilibrium rs values, total
energies and exchange energies. As is seen, the equilibrium
rs values of the clusters are almost the same up to three
decimals for23 the KLI and OEP schemes whereas, there are
significant differences between the OEP, x-LSDA, and
LSDA values. The almost identity of the KLI and OEP rs
values is because these schemes are asymptotically identical.
On the other hand, the average 1.5% larger r̄s values in the
x-LSDA than in the OEP can be explained by the fact that in
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the x-LSDA, the self-interaction contribution of an electron
tends to expand its wave function, and therefore, in the
x-LSDA, the equilibrium is achieved at larger rs values. To
illustrate the trend in the r̄s values, we calculate the differ-
ence �r̄s

LSD− r̄s
KLI� for all species. The result shows that the

difference is about 3% on average. We therefore conclude
that the EEX-SJM-SC predicts smaller bond lengths com-
pared to the LSDA-SJM-SC. Comparison of the r̄s values for
the LSDA and x-LSDA shows that bond lengths in the
LSDA is about 1.4% larger on average. This difference
should be attributed to the correlation effects.

Comparison of the equilibrium total energies of the OEP
and KLI shows that OEP energies are on average 0.02%
more negative. This result should be compared to the simple
JM results,22,24 which is 1.2%. On the other hand, compari-
son of the exchange energies shows that on the average, the
exchange energies in OEP is 0.34% more negative than those
in the KLI. The same comparisons between OEP and
x-LSDA shows that EOEP�Ex-LSDA by 5.2% on average, and
Ex

OEP�Ex
x-LSDA by 11% on average.

Finally, we compare the results of LSDA and x-LSDA,
which will show the correlation effects. As is seen in Table I,
the total energies are close to each other for the high-density
cases. That is, in the high-density limit the exchange domi-
nates the correlation. However, the total energies in the
LSDA are more negative by 10% on average which is due to
the correlation effects. On the other hand, the difference in
the exchange energies is about 0.96% on average, which is
quite a small fraction. In the high-density limit, the inequal-
ity Ex

x-LSD�Ex
LSDA holds, whereas, in the low-density limit,

the inequality changes sign.

In Table II, we have listed the lowest and highest occu-
pied KS eigenvalues for different schemes. As in the
simple22 JM, the OEP KS eigenvalue bands are contracted
relative to those of the KLI. That is, for all N, the relation
�OEP��KLI holds. Here, �=�H−�L is the difference be-
tween the maximum occupied and minimum occupied KS
eigenvalues. For the same external potential, the OEP and
KLI results coincide for two-electron systems and �=0. The
results in Table II show that the maximum relative contrac-
tion, ��OEP−�KLI� /�KLI, is 2.7% which corresponds to Cs18.

IV. SUMMARY AND CONCLUSION

In this work, we have considered the EXX-SJM-SC, in
which we have used the exact orbital-dependent exchange
functional. This model is applied for the simple metal clus-
ters of Al, Na, and Cs. For the local exchange potential in the
KS equation, we have solved the OEP integral equation by
the iterative method. By finding the minimum energy of an
N-atom cluster as a function of rs, we have obtained the
equilibrium sizes and energies of the closed-shell clusters
�N=2,8 ,18,20,34,40� for the four schemes of LSDA, KLI,
OEP, and x-LSDA. The results show that in the EEX-SJM,
the clusters are more contracted relative to the x-LSDA-SJM.
The reason is that the self-interaction energy of an electron
decreases as the wave function of that electron expands. On
the other hand, the KLI and OEP results show equal values
�up to three decimals� for the equilibrium rs values. This has
origins in the identity of the OEP and KLI schemes in the
asymptotic regions. The equiliblium sizes in the LSDA and

TABLE I. Equilibrium sizes r̄s in bohrs, the absolute values of total and exchange energies in Rydbergs are compared for KLI, OEP,
x-LSDA, and LSDA schemes. In the LSDA, the total energies include the correlation energies as well.

Atom rs
B N

KLI OEP x-LSDA LSDA

r̄s −Ē −Ex r̄s −Ē −Ex r̄s −Ē −Ex r̄s −Ē −Ex

Ala 2.07 2 1.430 1.5700 0.9253 1.430 1.5700 0.9253 1.468 1.4364 0.7574 1.506 1.5585 0.7541

8 1.744 5.8640 3.6018 1.744 5.8647 3.6089 1.775 5.5768 3.2430 1.793 6.1204 3.2361

18 1.876 12.7709 7.9467 1.876 12.7734 7.9760 1.898 12.3315 7.3889 1.909 13.5947 7.3850

20 1.846 14.3309 8.8532 1.847 14.3319 8.8706 1.869 13.8729 8.2870 1.881 15.2718 8.2738

34 1.928 23.9914 14.9857 1.928 23.9968 15.0339 1.944 23.3442 14.1758 1.950 25.7679 14.1829

40 1.901 28.2841 17.5064 1.901 28.2863 17.5348 1.893 27.6468 16.9255 1.926 30.4900 16.7211

Na 3.99 2 3.403 0.8409 0.4785 3.403 0.8409 0.4785 3.475 0.7721 0.3918 3.538 0.8646 0.3964

8 3.664 3.2841 1.8579 3.663 3.2846 1.8632 3.719 3.1343 1.6774 3.745 3.5261 1.6856

18 3.784 7.3064 4.1549 3.784 7.3084 4.1772 3.821 7.0700 3.8619 3.838 7.9710 3.8769

20 3.758 8.1240 4.5669 3.758 8.1251 4.5794 3.800 7.8873 4.2867 3.816 8.8856 4.2995

34 3.834 13.7980 7.8340 3.833 13.8028 7.8751 3.862 13.4458 7.4017 3.875 15.1665 7.4223

40 3.813 16.1410 9.0432 3.813 16.1431 9.0632 3.843 15.8198 8.6726 3.855 17.8365 8.6906

Cs 5.63 2 5.006 0.6123 0.3494 5.006 0.6123 0.3494 5.109 0.5624 0.2856 5.213 0.6395 0.2910

8 5.261 2.3990 1.3322 5.261 2.3994 1.3363 5.342 2.2918 1.2039 5.383 2.6135 1.2133

18 5.390 5.3547 2.9775 5.389 5.3564 2.9963 5.443 5.1842 2.7658 5.472 5.9215 2.7821

20 5.366 5.9403 3.2589 5.366 5.9414 3.2701 5.425 5.7729 3.0640 5.451 6.5894 3.0784

34 5.445 10.1156 5.6044 5.445 10.1200 5.6423 5.488 9.8599 5.2875 5.508 11.2652 5.3122

40 5.428 11.8123 6.4416 5.428 11.8144 6.4598 5.472 11.5881 6.1873 5.493 13.2347 6.2061

aHere, N=18 corresponds to Al6 cluster and other N’s do not correspond to a real Al clusters.

BRIEF REPORTS PHYSICAL REVIEW B 73, 113106 �2006�

113106-3



the x-LSDA differ by 1.4% on average. In the LSDA and
KLI, the difference is 3% on average. The total energies in
the OEP are more negative than the KLI by 0.02% on the
average. It should be mentioned that in the simple JM, the
KLI and OEP total energies for Al were positive �except for
N=2�. On the other hand, the exchange energy in the OEP is

about 0.34% more negative than that in the KLI. Comparison
of the OEP and x-LSDA shows a difference of 5.2% in the
total energies and 11% in the exchange. The difference in the
exchange energies of LSDA and x-LSDA is small �about
0.96%�, whereas the total energy in the LSDA is about 10%
more negative which is due to the correlation effects.
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compared for KLI, OEP, x-LSDA, and LSDA schemes.

Atom N

KLI OEP x-LSDA LSDA

−�L −�H −�L −�H −�L −�H −�L −�H

Al 2 0.8152 0.8152 0.8152 0.8152 0.4367 0.4367 0.5012 0.5012

8 1.1142 0.6714 1.1088 0.6713 0.8201 0.3919 0.8821 0.4605

18 1.1727 0.5507 1.1619 0.5492 0.9497 0.3310 1.0129 0.4009

20 1.1856 0.5000 1.1804 0.4993 0.9665 0.2964 1.0282 0.3622

34 1.2055 0.4826 1.1998 0.4789 1.0192 0.2939 1.0853 0.3649

40 1.2202 0.4490 1.2136 0.4450 1.0541 0.2761 1.0965 0.3401

Na 2 0.3883 0.3883 0.3883 0.3883 0.1951 0.1951 0.2437 0.2437

8 0.4467 0.3406 0.4451 0.3408 0.2963 0.1936 0.3453 0.2434

18 0.4544 0.2989 0.4502 0.2981 0.3373 0.1805 0.3859 0.2308

20 0.4485 0.2672 0.4470 0.2682 0.3361 0.1565 0.3851 0.2042

34 0.4583 0.2750 0.4551 0.2730 0.3588 0.1728 0.4078 0.2236

40 0.4520 0.2480 0.4502 0.2477 0.3564 0.1534 0.4055 0.2017

Cs 2 0.2723 0.2723 0.2723 0.2723 0.1324 0.1324 0.1724 0.1724

8 0.2923 0.2405 0.2913 0.2406 0.1843 0.1343 0.2247 0.1752

18 0.2907 0.2141 0.2880 0.2134 0.2061 0.1285 0.2461 0.1696

20 0.2850 0.1921 0.2847 0.1935 0.2048 0.1118 0.2454 0.1509

34 0.2897 0.1992 0.2873 0.1977 0.2176 0.1252 0.2580 0.1668

40 0.2835 0.1797 0.2831 0.1801 0.2157 0.1115 0.2564 0.1512
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