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Uniaxially anisotropic chiral media are quite easy to be realized artificially, where the chirality appears only
in one direction. In this report, we investigate the refractive properties of a plane wave incident from free space
to such uniaxially chiral media. We show that different negative phase or group refractions occur in one or two
eigenwaves simultaneously or separately. Hence, the uniaxially chiral media may support more kinds of
negative refractions than isotropic chiral media and the left-handed materials. In the uniaxially chiral proposal,
the condition to realize the negative refraction can be quite loose.
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Recently, more and more interests are focused on the the-
oretical and experimental studies on the negative refraction
index media due to their potential applications in microwave
and optics. Negative refraction was first demonstrated when
electromagnetic �EM� waves are incident from free space to
a left-handed medium1 �LHM�, which has been verified ex-
perimentally using a periodic structure of split-ring resona-
tors and conducting wires.2 Later it was shown that negative
refraction is also supported by indefinite media.3,4 An alter-
native route to realize negative refractions is to use photonic
or phononic crystals with positive indices, which is actually
determined by the dispersion characters of wave propagation
in periodic structures.5 Recent studies show that negative re-
fractions can also be achieved for one of the eigenwaves in
an isotropic chiral medium6–8 and a gyrotropic chiral
medium,9,10 where the chirality is a scalar in both cases.
While the present report was under review, further investiga-
tions on the isotropic chiral media and optically active media
were reported,11,12 showing the possibility to generate sub-
wavelength imaging using the chiral slab.

The chiral medium is well known in the optical frequen-
cies for the optical activity phenomenon, where a linearly
polarized light is rotated when passing through some crystal-
line and biological substances.13 At microwave frequencies,
the chiral medium can be realized artificially using miniature
wire spirals or conducting springs. In Ref. 6, Pendry pro-
posed a Swiss roll structure to achieve a resonant chiral me-
dium, which can generate negative refractions. Compared
with LHM structures, chiral particles have two advantages.
First, the artificial LHM uses two sets of resonant structures
for electric and magnetic responses, respectively. Such two
structures must resonate in the same frequency range to re-
alize negative refractions, which restricts a very narrow
LHM band. In the chiral design, however, only one reso-
nance is required.6 Second, the unit-to-wavelength ratio in
the LHM structure is usually worse than 0.1. The smaller the
ratio is, the better the structure behaves like a material. In the
chiral design proposed in Ref. 6, the ratio can be less than
0.01.

In the previous study of chiral route to negative refraction,
an isotropic chiral medium has been assumed,6–8 which is,
however, very difficult to be realized in practice. Usually, the
chiral particles are anisotropic. In this report, we will inves-

tigate the refractive properties of EM waves in a general case
where the host medium is uniaxially anisotropic and the
chirality appears only in one direction. Such a uniaxially
anisotropic chiral medium is very easily fabricated. Figure 1
describes three typical ways to realize such a medium. In
general, the constitutive relations are written as

D = ��tIt + �zẑẑ� � E + i�ẑẑ � H , �1�

B = ��tIt + �zẑẑ� � H − i�ẑẑ � E , �2�

where ��0, �t�0 and �z�0 have been assumed for easy
realization in practice, and �t and �z can be either positive or
negative depending upon the host medium.

As shown in Fig. 1, the whole space is divided into two
regions. Region 0 is free space and Region 1 is occupied by

FIG. 1. �Color online� A plane wave incident from free space
into a uniaxially anisotropic chiral medium. Such a chiral medium
can be easily realized by placing metallic inclusions, e.g., wire spi-
rals or copper springs which are oriented in the z direction in the
host medium. �a� The host is conventional right-handed medium,
where �t�0 and �z�0. �b� The host medium contains resonant
dipoles directed to the z direction, where �t�0 and �z�0. Such a
chiral medium can also be realized using Swiss-roll array directed
to the z direction. �c� The host medium contains resonant dipoles
oriented in the transverse direction, where �t�0 and �z�0.
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the uniaxially chiral medium. A time harmonic plane wave is
incident from free space to Region 1 at an oblique angle �i
with respect to the normal direction of the interface. Then,
the corresponding wave vector can be expressed as ki=kyŷ
+k0zẑ. In the uniaxially chiral medium, the electric and mag-
netic fields are generally written as

E = �E1t + E1zẑ�eikyyeik1zz, �3�

H = �H1t + H1zẑ�eikyyeik1zz, �4�

where the subscripts 1t and 1z represent the transverse and
longitudinal components, respectively. From the Maxwell’s
equations, we have

� � E = i�B , �5�

� � H = − i�D . �6�

Letting �=�t+ ik1zẑ and substituting Eqs. �3� and �4� into �5�
and �6�, we can obtain the transverse fields expressed as
functions of E1z and H1z.

14 Furthermore, we get wave equa-
tions for the longitudinal electric and magnetic fields as

��t
2I + 	2� �z/�t i�/�t

− i�/�t �z/�t
���E1z

H1z
� = 0, �7�

where 	2=kt
2−k1z

2 , and kt
2=�2�t�t. Since the fields do not

have variance in the x direction, we easily obtain �t
2 ·E�H�

=−ky
2E�H�. When connecting this formula with Eq. �7�, we

obtain the relation that must be obeyed in the uniaxially an-
isotropic chiral medium

ky
2 = 
±	2, �8�

which is actually the eigenvalues of the second matrix in Eq.
�7�, and where


± =
1

2
� �z

�t
+

�z

�t
±	
 �z

�t
−

�z

�t
�2

+ 4
�2

�t�t
� . �9�

Equation �8� actually defines the dispersion relations in the
uniaxially chiral medium

ky
2


±
+ k1z

2 = kt
2. �10�

Let ky =k± sin �p± and k1z=k± cos �p±, where �p± are phase
refraction angles and k± are wave numbers for the eigen-
waves in the uniaxially chiral medium. From Eq. �10�, we
have

k± = kt/	cos �p±
2 + sin �p±

2 /
±. �11�

On the other hand, the continuity of electric and magnetic
fields on the medium interface requires

k0 sin �i = k+ sin �p+ = k− sin �p−, �12�

where k0 is the wave number in free space. Hence, it is easy
to find

sin �p± = k0 sin �i
	cos �p±

2 + sin �p±
2 /
±/kt. �13�

Clearly, in the uniaxially chiral medium, the phase refraction
angles for both p+ and p− waves can be expressed as the

transcendental function of the incident angle �i.
From Eqs. �5� and �6�, all field components in the uniaxi-

ally chiral medium can be expressed as functions of E1y once
the wave number k± is determined

E1x = − i��t�±E1y/k1z, �14�

E1z = − 	2E1y/�kyk1z� , �15�

H1x = − ��tE1y/k1z, �16�

H1y = − i�±E1y , �17�

H1z = i�±	2E1y/�kyk1z� , �18�

where �±=�t�
±−�z /�t� /�. Considering 	2=kt
2−k1z

2 =ky
2 /
±,

we can obtain the Poynting vectors in the y and z directions
as

S1y =
�ky


±k1z
2 �E1y�2�±, �19�

S1z =
�

k1z
�E1y�2�±, �20�

in which �±=�t�±
2 +�t. Hence the group refraction angle de-

fined by �gp±
= tan−1 S1y /S1z can be given as

�gp±
= tan−1�tan �p±

/
±� . �21�

Now let us inspect Eqs. �8�–�10� again. When the plane
wave enters the uniaxially anisotropic chiral medium from
free space, it will obviously be decomposed into two eigen-
waves, which we may call p+ and p− waves with the wave
numbers defined in Eq. �11�, respectively. For different mod-
els of uniaxially chiral media illustrated in Fig. 1, the disper-
sion relations and refraction properties will be quite differ-
ent.

When wire spirals or copper springs, which are oriented
in the z direction, are hosted in a conventional right-handed
medium, as shown in Fig. 1�a�, we have �t�0 and �z�0. In
most of the traditional analysis, we assume �� � �	�z�z so
that 
± are always positive. Thus the dispersion relations in
Eq. �10� describe elliptical curves for both p+ and p− waves,
as demonstrated in Fig. 2�a�. In such a condition, S1y is al-
ways parallel to the transverse wave number ky and S1z is
always parallel to k1z due to �±�0, which indicates positive
phase and group refractions for both p+ and p− waves, as
illustrated in Fig.3�a�.

However, the above condition just corresponds to a weak
coupling between the electric and magnetic fields. When the
coupling further increases, say, �� � �	�z�z, we have 
+�0,

−�0, and �±�0. This implies that the dispersion relation
for p+ wave remains elliptic while the dispersion curves for
p− wave are two-sheet hyperbola, as shown in Fig. 2�b�. As a
consequence, the p+ wave will experience positive phase and
group refractions with no limitation to the phase refraction
angle �p+, as shown in Fig. 3�b�.

For the p− wave, however, S1y is antiparallel with ky since

−�0 and �−�0, but S1z always points to the same direction
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as k1z �see Eq. �20��. In the mean time, S1z should be +z
directed in order to satisfy the radiation condition. Hence, k1z
is also along +z direction, and no backward wave is sup-
ported in the transmitted direction. From the boundary con-
dition, the transverse wave vector ky must be continuous at
the medium interface. Hence, the wave vector for the p−

wave is positively refracted in the uniaxially chiral medium,
which actually stands for a positive phase refraction. Since
the Poynting vector S1y has an opposite direction with the
transverse wave vector ky, the power flow for p− wave will
be negatively refracted. This represents a negative group ve-
locity in the uniaxially chiral medium, as shown in Fig. 3�b�.
Here, we clearly observe that the Poynting vector and the
wave vector for p− wave lie in different sides of the normal
direction of the interface, which implies that a negative
group refraction is supported at the medium interface when
the chirality appears only in one direction. We remark that all
phase refraction angles for the p− wave must be restricted
blow the following angle

�p− � �m = tan−1	�
−� , �22�

because k− will become imaginary when �p−��m.

When wire spirals or copper springs oriented in the z di-
rection are hosted in a medium containing resonant dipoles
directed to the z direction, as shown in Fig. 1�b�, we have

FIG. 2. �Color online� Dispersion curves for the p+ waves �solid
lines� and p− waves �dashed lines�. �a� In the traditional case, both
p+ and p− waves have elliptical dispersion relations �with different
axial ratios�, where �t=�0, �z=2�0, �t=�z=�0, and �=0.8	�0�0.
�b� In the strong chirality case corresponding to the uniaxial-chiral
model shown in Fig. 1�a�, the dispersion curve for p+ wave is an
ellipse and the dispersion curves for p− wave are two-sheet hyper-
bola, where �t=�0, �z=2�0, �t=�z=�0, and �=2	�0�0. The hyper-
bola always keep tangent with the ellipse. Such dispersion relations
also correspond to the uniaxial-chiral model shown in Fig. 1�b� with
an arbitrary chirality. �c� In the weak chirality case corresponding to
the uniaxial-chiral model shown in Fig. 1�c�, the p+ wave does not
exist, and the dispersion curves for p− wave are one-sheet hyper-
bola, where �t=−�0, �z=0.9�0, �t=�z=�0, and �=0.5	�0�0. �d� In
the strong chirality case corresponding to the uniaxial-chiral model
shown in Fig. 1�c�, the dispersion curves for both p+ and p− waves
are one-sheet hyperbola, where �t=−�0, �z=2�0, �t=�z=�0, and
�=1.45	�0�0.

FIG. 3. �Color online� Refraction properties of a plane wave
incident from free space to a uniaxially anisotropic chiral medium
�UACM�. �a� Positive phase and group refractions for both p+ and
p− waves. �b� Positive phase and group refractions for p+ wave and
positive phase refraction and negative group refraction for p− wave.
�c� Positive phase refraction and negative group refraction for p−

wave. The p+ wave does not exist. �d� Negative phase refraction
and positive group refraction for p− wave. The p+ wave does not
exist. �e� Positive phase refractions and negative group refractions
for both p+ and p− waves. �f� Positive phase refraction and negative
group refraction for p+ wave and negative phase refraction and
positive group refraction for p− wave. �g� Negative phase refrac-
tions and positive group refractions for both p+ and p− waves. �h�
Negative phase refraction and positive group refraction for p+ wave
and positive phase refraction and negative group refraction for p−

wave.
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�t�0 and �z�0. Such a uniaxially chiral medium can also
be realized using Swiss-roll array directed to the z direction.6

In such a case, we always have 
+�0, 
−�0, and �±�0 for
arbitrary chiral parameter �. Hence, the dispersion relations
for p+ and p− waves are an ellipse and a two-sheet hyperbola,
respectively, as shown in Fig. 2�b�. Again, the p+ wave ex-
periences positive phase and group refractions, and the p−

wave experiences a positive phase refraction and a negative
group refraction at the medium interface, as illustrated in
Fig. 3�b�. Therefore, a negative group refraction is always
supported for the p− wave in the uniaxially anisotropic chiral
medium shown in Fig. 1�b�, no matter how small the chiral-
ity is. This is a very loose condition and can be easily real-
ized.

Next, we consider another uniaxially anisotropic chiral
medium: the wire spirals or copper springs are oriented in
the z direction while the host medium contains resonant di-
poles directed to the transverse direction, as demonstrated in
Fig. 1�c�. In such a case, �t�0 and �z�0, which results in
quite different diffraction properties for varied medium pa-
rameters.

When the chirality is weak ��� � �	�z�z�, we always ob-
tain 
+�0 and 
−�0 for arbitrary �z /�t+�z /�t. Since kt

2

=k0
2�t�t, the dispersion equation �14� will never be satisfied

for the p+ wave. Hence, the p+ wave does not exist in such a
uniaxially chiral medium. For the p− wave, the dispersion
curves are changed to one-sheet hyperbola, as shown in Fig.
2�c�. Because �t is negative, �− can be either positive or
negative. If �−�0, then S1y will be antiparallel with ky, and
S1z will point to the same direction as k1z. As a consequence,
a positive phase refraction and a negative group refraction
occur at the medium interface for the p− wave, as illustrated
in Fig. 3�c�. If �−�0, however, S1y will have the same di-
rection as ky and S1z will have opposite direction to k1z. Then
a reversed refraction property is achieved for the p− wave:
negative phase refraction and positive group refraction, as
shown in Fig. 3�d�. Negative phase refraction can be found
in isotropic and anisotropic metamaterials.6,15 We remark
that the condition to realize such negative refractions is also
very loose since the chirality is required to be small.

When the chirality is strong ��� � �	�z�z�, the signs of 
+

and 
− will be dependent upon the sign of �z /�t+�z /�t. If

�z /�t+�z /�t�0, we have 
+�0 and 
−�0. In such a case,
both p+ and p− waves do not exist in the chiral medium, and
a total reflection occurs at the medium interface. If �z /�t
+�z /�t�0, we have 
+�0 and 
−�0. Hence, the disper-
sion curves for both p+and p− waves are one-sheet hyper-
bola, as illustrated in Fig. 2�d�.

Similar to the earlier case, both �+ and �− can be either
positive or negative. If �+�0 and �−�0, then S1y has the
opposite direction to ky, and S1z has the same direction as k1z
for both p+ and p− waves, which correspond to positive
phase refractions and negative group refractions occur for
both waves, as demonstrated in Fig. 3�e�. If �+�0 and �−
�0, then S1y has the opposite direction to ky and S1z has the
same direction as k1z for the p+wave, and opposite phenom-
enon for the p− wave. Hence, a positive phase refraction and
a negative group refraction occur for p+ wave and a negative
phase refraction and a positive group refraction occur for p−

wave, as shown in Fig. 3�f�. If �+�0 and �−�0, a reversed
refraction property to that in Fig. 3�e� is achieved: both p+

and p− waves experience negative phase refractions and
positive group refractions, as illustrated in Fig. 3�g�. If �+
�0 and �−�0, a reversed refraction phenomenon to that in
Fig. 3�f� occurs: a negative phase refraction and positive
group refraction for the p+ wave and a positive phase refrac-
tion and negative group refraction for p− wave, as demon-
strated in Fig. 3�h�.

In conclusion, we have shown that negative phase or
group refractions occur in one or two eigenwaves in the
uniaxially anisotropic chiral medium, where the chirality ap-
pears only in one direction. Such a uniaxially chiral medium
can be easily realized in practice. In the chiral proposals
shown in Figs. 1�b� and 1�c�, the condition to support the
negative refraction is quite loose.
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