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Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hub-
bard Hamiltonian using the Bogoliubov-de Gennes �BdG� mean field approximation. We find that at weak
coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site
interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that
the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites.
These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, sug-
gesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of
the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model
and a Hamiltonian with d-wave pairing symmetry.
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I. MOTIVATION

One of the main themes of recent studies of strongly cor-
related electronic systems is the importance of spatial inho-
mogeneities. These can result either from intrinsic quenched
disorder in the system, as in the metal-insulator transition in
two dimensions,1,2 or arise spontaneously in an otherwise
translationally invariant system. For example, holes doped
into the high temperature superconductors �HTS� appear not
to spread out uniformly in the CuO2 planes, but instead ar-
range themselves in the form of stripes, checkerboard, or
perhaps even more exotic structures.3–7 Besides the cuprate
superconductors, such spatially varying density and spin
structures are also key features in the physics of the
manganites8,9 and cobaltites.10,11

Considerable theoretical work on the interplay between
spatial inhomogeneity, magnetism, and superconductivity
has utilized the repulsive Hubbard and t-J Hamiltonians.12–18

For the two-dimensional �2D� square lattice these models are
known to display antiferromagnetism at half-filling, and, al-
though it is less certain, perhaps also d-wave superconduc-
tivity when doped. There is considerable evidence that they
also might possess inhomogeneous stripe or checkerboard
ground states.15,16 While DMRG treatments15 provide de-
tailed information on the real space charge, spin, and pairing
orders, the precise nature of the interplay, and whether the
different orders compete or cooperate, remains unclear. In
addition, the enhancement of the superconducting transition
temperature Tc by local inhomogeneity has been demon-
strated by Martin et al.19

II. MODEL AND METHODOLOGY

In this paper we address the general issue of whether in-
homogeneous regions of attraction favor superconductivity

relative to the homogeneous system with the same average
attraction, either by increasing the zero temperature pairing
amplitude or the transition temperature. In many of the sys-
tems for which this question is fundamental, such as the
cuprate superconductors mentioned above, the situation is
complicated by the presence of other types of order such as
antiferromagnetism, exotic spin-gap phases, and nontrivial
d-wave symmetry of the superconducting order parameter.
Rather than using a model like the repulsive Hubbard Hamil-
tonian which incorporates this full richness, it is useful to
study the problem first in a more simple context. Here we
will present a solution of the inhomogeneous Bogoliubov-de
Gennes �BdG� equations for the attractive Hubbard Hamil-
tonian,

H = − t �
�ij�,�

�ci�
† cj� + cj�

† ci�� − ��
i�

ci�
† ci,� − �

i

�Ui�ni↑ni↓,

�1�

with t the hopping amplitude, � the chemical potential, and
Ui the local attractive interaction between the fermions of
opposite spins residing on the same lattice site i. Our focus
will be on inhomogeneous patterns in the interaction Ui. The
interaction in the attractive Hubbard model can be thought of
as a phenomenological one, originating, for example, from
integrating out a local phonon mode.20 The two-dimensional
uniform attractive Hubbard model is known to yield degen-
erate superconductivity and charge density wave �CDW�
long range order at half-filling and zero temperature.21–23

However, away from half-filling, the CDW pairing symmetry
is broken and superconductivity is more favorable, and the
superconducting phase transition is at finite temperature.

Within the BdG mean field decomposition, we replace the
local pairing amplitude and local density by their average

PHYSICAL REVIEW B 73, 104518 �2006�

1098-0121/2006/73�10�/104518�5�/$23.00 ©2006 The American Physical Society104518-1

http://dx.doi.org/10.1103/PhysRevB.73.104518


values, �i= �ci↑ci↓� and �ni��= �ci�
† ci�� and arrive at the qua-

dratic effective Hamiltonian

Hef f = − t �
�ij�,�

�ci�
† cj� + cj�

† ci,�� − �
i�

�̃ici�
† ci�

− �
i

�Ui���ici↑
† ci↓

† + �i
*ci↓ci↑� , �2�

where �̃i=�+ �Ui � �ni� /2 includes a site-dependent Hartree
shift with �ni�=���ni��. All energies will be referenced to
t=1.

We adopt the criterion of comparing the tendency for su-
perconductivity in the homogeneous system with the same
attraction −U on all lattice sites, with cases when sites with
attraction are mixed with sites where the attraction is absent,
i.e., Ui=0.19,24 Specifically, we have studied systems in
which sites with attractive interaction are randomly
distributed24 or arranged in checkerboard and stripe patterns.
In all three inhomogeneous patterns, exactly half of the lat-
tice sites carry interaction, and the interacting sites carry
twice the value of U as in the case of the uniform pattern.

This conventional mean-field approach does not capture
the Kosterlitz-Thouless nature of the phase transition in two
dimensions. Nevertheless, this weakness can be repaired25

upon regarding the local pairing amplitudes as complex vari-
ables and performing a finite temperature Monte Carlo inte-
gration over the associated amplitude and phase degrees of
freedom. Unlike BCS, this Monte Carlo mean field �MCMF�
approach allows identification of the weak and strong cou-
pling regimes via the phase correlation function. We will use
this Monte Carlo technique as an independent confirmation
of our results.

III. SOLUTIONS AND PHASE DIAGRAM

For the doping of n=0.8 at T=0, as depicted in Fig. 1�a�,
an inhomogeneous system with bimodal Ui=0,2U has a
larger zero temperature gap than a uniform system with

Ui=U below the maximum value of Ū�r=1�	2.0 with

r= �̄inhomog/�uniform. At half-filling in Fig. 1�b�, this effect for
the stripe pattern terminates at a slightly smaller value of

Ū�r=1�	1.5 and at the same time, the magnitude of �̄�r=1� has

also diminished. There is an upper critical Ūc above which
superconductivity is obliterated by inhomogeneity. For the

checkerboard pattern at half-filling in particular, �̄ becomes
zero as one enters the insulating CDW phase of static pairs.
For the doping of n=1.2 �above half-filling� in Fig. 1�c� for

random and stripe patterns and �̄ for the checkerboard pat-
tern still remains infinitesimal over almost the entire range of

Ū. The MCMF data in Fig. 1�d� provide confirmation of the
BdG results. While the MCMF method remains limited to
relatively small lattice sizes, BdG allows us to invoke lattice
sizes as large as L=1500 to reduce the finite size effects at

small Ū values. As observed in Fig. 1�d�, the finite size ef-

fects are more significant for the uniform pattern when Ū
�3.0 and less severe for the checkerboard. The good agree-
ment between these two approaches helps justify both the
application and results of the BdG technique.

Figure 2 illustrates further the size of the effect due to
inhomogeneity, using data over a broad range of densities.
For the checkerboard pattern in Fig. 2�a�, as the doping
changes from n=0.2 to 0.9, the intersection point of the ratio

r= �̄check/�uniform and unity line is shifted towards smaller

Ū�r=1�. Precisely at half-filling, �̄ for the checkerboard pat-

FIG. 1. Variation of the mean
zero temperature pairing ampli-

tude �̄ versus mean interaction Ū
for �a� below half-filling �n=0.8�,
�b� half-filling �n=1.0�, and �c�
above half-filling �n=1.2�. There
is no pairing at n�1 in the check-
erboard case. For the stripe,
checkerboard, and uniform pat-
terns, data are fully converged on
the momentum space grid. That is,
data for the indicated lattice sizes
lie on top of each other. For the
random pattern it is not possible to
study large lattices, and a single
size, L=14 is shown. Panel �d�
compares the MCMF results
�T	0� at L=10 with their BdG
counterparts at L=10, 500, and
1500 for the uniform and checker-
board patterns.
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tern vanishes. For stripes, however, as shown in Fig. 2�b�, the

enhancement shift towards smaller Ū�r=1� continues through
half-filling to almost n=1.35. Figure 2�c� shows the value of

the pairing amplitude �̄�r=1� as a function of the electron
doping. Fillings around quarter-filling �n=0.5� have the larg-

est ratio in pair amplitude of the bimodal Ui=0,2U to uni-
form Ui=U interaction distributions.

The lack of superconductivity in the checkerboard pattern
at half-filling is associated with the formation of a compet-
ing, insulating CDW phase. This can be seen directly in the
density of states as a gap develops at the Fermi energy de-
spite the fact that �sc=0. The occupation of sites in real
space becomes increasingly disparate as U increases, with
the sites with U�0 becoming fully packed with nU	2.0,
while the noninteracting sites become empty, n�U=0�	0.0.

For stripes at half-filling also, at large enough values of Ū
superconductivity is obliterated. Above half-filling, however,
when the order parameter vanishes for both the checkerboard
and stripes, the density of states remains finite at the Fermi
energy, indicating a metallic phase.

The proximity effect for the noninteracting sites neigh-
bored by the interacting sites plays a major role in the mag-
nitude of the pair amplitude in the inhomogeneous lattice. In
Fig. 1�a�, �n=0.8� the value of Ū at which the checkerboard
and stripe patterns have the same pair amplitude as the uni-

form system is Ū�r=1�	2.0. In Figs. 3�a� and 3�b�, �̄ for both
these two patterns has been plotted as the average of the
pairing amplitudes on interacting and noninteracting sites.
Due to the proximity effect, even in the absence of interac-
tion on a lattice site, there exists a finite value of pairing
amplitude through the tunneling effect from its neighboring
interacting sites. While �U for both the checkerboard and

stripe patterns consistently increases as a function of Ū,

��U=0� increases up to Ū�r=1�	2.0 where according to Fig.
1�a�, the homogeneous and inhomogeneous lattices have the

same pairing amplitude. ��U=0� then falls off for larger Ū

values. Hence the region of growth of ��U=0� with Ū coin-
cides with pairing amplitude of the inhomogeneous system
being large.

The superconducting transition temperature of a lattice
with a bimodal Ui can also be larger than a uniform interac-

tion distribution. According to Fig. 1�a�, at Ū=1.5, �̄�T=0�
is enhanced due to inhomogeneity but not at Ū=3.0. Figure 4

illustrates the collapse of �̄ as the temperature is increased
for the uniform, checkerboard, and stripe patterns. In Fig.

4�a� corresponding to Ū=1.5, inhomogeneity has a similar
effect on the gap through all values of finite T up to Tc which
is significantly larger for the inhomogeneous patterns. In Fig.

4�b� corresponding to Ū=3.0, at T=0, �̄ for the uniform
pattern is significantly larger than its inhomogeneous coun-
terparts. However, because the gap of the inhomogeneous
system is nonzero to higher temperatures than the uniform
system, for values of 0.5�T�1.25, there exists an enhance-

ment region for �̄ for inhomogeneous patterns. For the uni-
form pattern, we find the Tc in very good agreement with the
BCS value, kbTc	���0�U� /1.76, as expected for our mean
field treatment. Note that the effect of inhomogeneity on Tc
would appear to be even more dramatic if we compared the
inhomogeneous curves against their BCS counterparts with

the same �̄�T=0�. A similar increase in Tc upon introducing
a checkerboard pattern is found in the MCMF calculations as

FIG. 2. Panel �a�: the ratio r= �̄check/�uniform as a function of Ū
and different dopings of electrons at T=0. Panel �b�: the same re-

sults as for panel �a� for the ratio r= �̄stripe /�uniform. Panel �c�: Value
of the pairing amplitude at which r=1 versus the electron doping.
At weak coupling, the zero temperature pairing amplitude can be a
factor of 3 to 4 larger than the uniform system. Lattice sizes of
L=1500 for the uniform and L=500 and 1000 for inhomogeneous
patterns were utilized.
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well, arising from the loss of long-range phase coherence.
This is particularly significant because the MCMF incorpo-
rates the subtle nature of the superconducting transition in
2D discussed earlier. We have also independently confirmed
that our conclusions and arguments equally apply for a
model with nearest-neighbor attraction, leading to a d-wave
SC close to half-filling, which reflects the cuprates’ phenom-
enology more truthfully.25

IV. SUMMARY AND DISCUSSION

In summary, we have shown that for the attractive Hub-
bard model on a square lattice, there is a significant range of
doping and interaction strength over which the superconduct-
ing order parameter is larger for Ui=0,2U than for Ui=U
uniformly. It is worth emphasizing that in most situations,
inhomogeneities reduce values of order parameters and criti-
cal temperatures, even when comparisons are made, as they
are in this paper, to homogeneous systems with the same
average value of all parameters. This is true, for example, of
classical site diluted Ising models, where the ferromagnetic J
is increased to compensate for absent sites, and quantum
models like the boson Hubbard model where random chemi-
cal potentials monotonically decrease and ultimately destroy
superfluidity.26,27 An exception is the increase of TNeel by
randomness reported in DMFT studies of the repulsive
model.28

The increase in the SC gap has been verified for the
checkerboard, stripe, and random patterns and thus is insen-
sitive to the pattern of disorder. The growth is due to the
proximity effect, i.e., the tunneling effect of the Cooper pairs
from the interacting sites leading to finite order parameter
values even on noninteracting sites. This conclusion is sup-
ported by the effect occurring at weak coupling, where the
coherence length is large, rather than in the strong coupling
regime of performed pairs. Agreement between the BdG re-
sults and the MCMF calculations justifies the application and

conclusions of the BdG approach within the small Ū regime.
Finally, nonuniform interaction strength also leads to the
strong signal in the phase transition temperature Tc. Counter-

intuitively, this increase in Tc continues even for values of Ū
for which the order parameter is larger with uniform Ui than
a bimodal choice. However, in this weak coupling parameter
regime, Tc is a supralinearly increasing function of U, so it
may be that in the inhomogeneous system, the sites with
larger U produce a nonlinear enhancement relative to Tc of
the homogeneous system and, through the proximity effect,
drag the Ui=0 sites along with them.

While the attractive Hubbard Hamiltonian obviously does
not incorporate many of the features of high Tc supercon-
ductors �notably the symmetry of the pairing�, the model has
been shown to provide useful insight into some of their phe-
nomenology, for example, the spin-gap.29 It is therefore

FIG. 3. Variation of the pairing amplitude vs the mean interaction Ū at T=0. Panel �a� shows �̄ as the average of �U and ��U=0� for the
checkerboard pattern at n=0.8 and the same for stripes in panel �b�. The enhancement of pairing by inhomogeneity is seen to arise from a
proximity effect whereby significant pair amplitude is induced on the U=0 sites by the U�0 sites. Lattice sizes of L=500 and 1000 were
utilized.

FIG. 4. Variation of the pairing
amplitude vs temperature T for

n=0.8. Panel �a�: �̄ as a function

of T for Ū=1.5 where checker-
board and stripe patterns with
Ui=0,2U have a larger T=0 pair
amplitude than Ui=0 �Fig. 1�a��.
Panel �b�: the same results for

Ū=3.0. Lattice sizes of L=1500
for the uniform and L=500 and
1000 for inhomogeneous patterns
were utilized.
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tempting to speculate that our results concerning inhomoge-
neity may have similar connections. Specifically, recent
ARPES data30 suggests that the underdoped phase of LSCO
�La2−xSrxCuO4� consists of SC clusters, embedded in the AF
host. In such a system, inhomogeneous gaps appear naturally
and our results here indicate that the superconducting transi-
tion is in fact determined by the largest gap values rather
than the much smaller gaps found at phase boundaries, as
one would naively think. This renders the SC phase more

stable than it would otherwise be, and also simplifies the
description of these systems.

ACKNOWLEDGMENTS

We acknowledge useful conversations with G. Ortiz,
A. Moreo, and G. Alvarez. This research was supported
by NSF-DMR-0312261, NSF-DMR-0421810, NSF-DMR-
0443144, DOE DE-FG03-03NA00071, CNPq-Brazil,
FAPERJ-Brazil, and FUJB-Brazil.

1 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287
�1985�.

2 D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 �1994�.
3 K. McElroy, D.-H. Lee, J. E. Hoffman, K. M. Lang, J. Lee, E. W.

Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Phys. Rev. Lett.
94, 197005 �2005�.

4 T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M.
Takano, H. Takagi, and J. C. Davis, Nature �London� 430, 1001
�2004�.

5 M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani,
Science 303, 1995 �2004�.

6 H. A. Mook, P. Dai, and F. Dogan, Phys. Rev. Lett. 88, 097004
�2002�.

7 J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y.
Nakamura, and S. Uchida, Phys. Rev. Lett. 78, 338 �1997�.

8 Ch. Renner, G. Aeppli, B.-G. Kim, Y.-A. Soh, and S.-W. Cheong,
Nature �London� 416, 518 �2002�.

9 J. Burgy, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 92, 097202
�2004�.

10 M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J.
Cava, and N. P. Ong, Phys. Rev. Lett. 92, 247001 �2004�.

11 K.-W. Lee, J. Kunes, P. Novak, and W. E. Pickett, Phys. Rev. Lett.
94, 026403 �2005�.

12 J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, R7391 �1989�.
13 K. Machida, Physica C 158, 192 �1989�.
14 M. Kato, K. Machida, H. Nakanishi, and M. Fujita, J. Phys. Soc.

Jpn. 59, 1047 �1990�.
15 S. R. White and D. J. Scalapino, Phys. Rev. B 70, 220506�R�

�2004�.

16 M. Vojta, Phys. Rev. B 66, 104505 �2002�.
17 G. Seibold, C. Castellani, C. Di Castro, and M. Grilli, Phys. Rev.

B 58, 13506 �1998�.
18 S. A. Kivelson and E. Fradkin, cond-mat/0507459 �unpublished�.
19 I. Martin, D. Podolsky, and S. A. Kivelson, Phys. Rev. B 72,

060502�R� �2005�.
20 R. Micnas, J. Ranninger, and S. Robaskiewicz, Rev. Mod. Phys.

62, 113 �1990�, and references therein.
21 S. Robaszkiewicz, R. Micnas, and K. A. Chao, Phys. Rev. B 23,

1447 �1981�.
22 H. Shiba, Prog. Theor. Phys. 48, 2171 �1972�.
23 V. J. Emery, Phys. Rev. B 14, 2989 �1972�.
24 G. Litak and B. L. Györffy, Phys. Rev. B 62, 6629 �2000�.
25 M. Mayr, G. Alvarez, C. Şen, and E. Dagotto, Phys. Rev. Lett.

94, 217001 �2005�.
26 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 �1989�.
27 R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi, Phys. Rev.

Lett. 66, 3144 �1991�.
28 M. Ulmke, V. Janis, and D. Vollhardt, Phys. Rev. B 51, 10411

�1995�.
29 M. Randeria, in Bose Einstein Condensation, edited by A. Giffin,

D. Snoke, and S. Stringari �Cambridge University Press, Cam-
bridge, England, 1994�, and references cited therein.

30 T. Yoshida, X. J. Zhou, T. Sasagawa, W. L. Yang, P. V. Bogdanov,
A. Lanzara, Z. Hussain, T. Mizokawa, A. Fujimori, H. Eisaki,
Z.-X. Shen, T. Kakeshita, and S. Uchida, Phys. Rev. Lett. 91,
027001 �2003�.

EFFECT OF INHOMOGENEITY ON s-WAVE¼ PHYSICAL REVIEW B 73, 104518 �2006�

104518-5


