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We explore theoretically electromagnetically induced transparency �EIT� in a superconducting quantum
circuit �SQC�. The system is a persistent-current flux qubit biased in a � configuration. Previously �Phys. Rev.
Lett. 93, 087003 �2004��, we showed that an ideally prepared EIT system provides a sensitive means to probe
decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and
specific decoherence mechanisms �population loss via tunneling, pure dephasing, and incoherent population
exchange�. We find an initial, rapid population loss from the � system for an imperfectly prepared dark state.
This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT
resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with
coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe,
identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation
to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we
show how these effects can be mitigated by compensation of the resulting ac Stark shifts.
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I. INTRODUCTION

Superconducting quantum circuits �SQC’s� based on Jo-
sephson junctions �JJs� exhibit macroscopic quantum-
coherent phenomena.1 These circuits exhibit quantized flux
or charge states, depending on their fabrication parameters.
The quantized states are analogous to the quantized internal
�hyperfine and Zeeman� levels in an atom, and the SQC’s
thus behave like “artificial atoms.” Spectroscopy,2–5 Rabi os-
cillations and Ramsey interferometry,6–12 cavity quantum
electrodynamics,13,14 and Stückelberg oscillations15,16 are ex-
amples of quantum-mechanical behavior first realized in
atomic systems that have also been recently demonstrated
with SQC’s.

We recently leveraged the atom-SQC analogy to propose
electromagnetically induced transparency17,18 �EIT� in super-
conducting circuits.19 EIT has attracted much attention in
atomic systems in the context of slow light,20 quantum mem-
ory,21–23 and nonlinear optics.24 EIT occurs in so-called “�
systems” comprising two metastable states, each coupled via
resonant electromagnetic fields to a third, excited state. For
particular initial states called “dark states,” the absorption on
both transitions is suppressed due to destructive quantum
interference, thus making the atom transparent to the applied
fields. Though EIT is often studied in the context of the
behavior of a weak “probe” field in the presence of a stron-
ger “pump” field, we focus on the case where the two fields
have comparable amplitude. In Ref. 19, we analyzed a su-
perconducting persistent-current qubit biased such that it ex-
hibited a � configuration: two metastable states �the qubit�
and a third, shorter-lived state �the readout state�. We showed
that EIT provides a nondestructive means to confirm the
preparation of an arbitrary superposition state of the qubit.

Moreover, we showed that the proposed EIT scheme can
sensitively probe the qubit decoherence rate using a method
analogous to the proposal in Ref. 25 for atomic systems. This
method complements other available techniques of probing
decoherence such as spin echo26 and Rabi oscillation
decay.27 Because the EIT method requires no manipulation
of the qubit during the probing, it offers unique advantages
in this regard. In addition to our EIT work, several groups
have considered the use of “dark states” in SQC’s compris-
ing a � configuration to implement adiabatic passage and its
application to quantum information processing.28–30

In the present work, we extend and augment our analysis
in Ref. 19 with realistic effects which arise in SQC’s due to
the presence of additional quantized levels �beyond the
three-level “�-system” model�. These effects have qualita-
tively unique signatures in an EIT experiment, and this work
provides a tool for identifying their origin. This allows a
more complete understanding of the full level structure of the
SQC system, and it further clarifies the necessary criteria for
the experimental observation of EIT. The present work car-
ries the spirit of previous investigations in which additional
degrees of freedom �beyond two-level models� were required
to explain quantitatively experimental Rabi oscillations in
SQC’s. Examples of these works include resonant tunneling
across the barrier,31 diagonal dipole matrix elements,32 and
coupling to additional degrees of freedom outside the SQC,
such as microresonators.27,33 Just as EIT is sensitive to deco-
herence, it will be similarly sensitive to effects beyond the
idealized three-level model.

The effects we investigate arise primarily from differ-
ences between SQC’s and the atomic systems considered in
much of the literature. First, while damping of the excited
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level is provided naturally by spontaneous emission in at-
oms, in SQC’s, this decay is “manufactured” by resonant
biasing across the tunnel barrier followed by fast measure-
ment with a superconducting quantum interference device
�SQUID�. This process must be considered in more detail to
assure this decay is indeed analogous to spontaneous decay
in atoms. Second, the transitions are at microwave rather
than optical frequencies, whereas the Rabi frequency cou-
pling rates and dephasing rates tend to be faster than in
atomic systems. This means that various couplings in the
system can be more comparable to the level spacings and
thus the rotating wave approximation �RWA� is often not as
valid as in atomic systems. Third, the level structure itself is
quite different. In particular, there is typically some degree of
dipole-like coupling between all pairs of levels in the sys-
tem, because selection rules allow all possible transitions.34

Fourth, in SQC’s, there is the possibility of direct resonant
tunneling across the barrier, a feature which is absent in
atomic systems.

This paper is organized in the following manner. In Sec.
II, we introduce the proposed system, a persistent-current
�PC� qubit.35,36 We discuss the conditions under which the
PC qubit exhibits a � configuration among its multilevel
energy band structure that is conducive for an EIT demon-
stration. We then present the Hamiltonian and density matrix
approaches to analyze the system dynamics. In Sec. III, we
use the Hamiltonian approach to give useful analytic ap-
proximations to the full system, which allow us to investi-
gate EIT in a reduced three-level system. We explore effects
of population and phase mismatch between the prepared ini-
tial state and the desired dark state �as defined by the applied
fields� and the effect of detuning the applied fields from their
resonances. We also consider the SQUID measurement rate
and its effect on the effective decay and frequency of the
excited “readout” level. In Sec. IV, we use the density matrix
approach to include pure dephasing and incoherent popula-
tion loss and exchange, generalizing our previous results in
Ref. 19. We explore the affect on EIT in the presence of
coherent and incoherent tunneling processes. Generally, one
must make the EIT “preparation rate” �proportional to the
microwave field intensities� faster than the decoherence rate
in order to observe EIT. In Sec. V, we go beyond the RWA to
examine the important issue of microwave-field-induced off-
resonant transitions in the spirit of previous work on two-
level systems.37 We conclude that off-resonant transitions
cause frequency shifts and losses which depend on the cou-
pling field intensities. Unlike decoherence and detuning,
these transitions generally manifest themselves as the field
intensities are increased. The high-field frequency shifts are
analogous to the ac Stark shifts observed in atomic systems.
We show how the off-resonant effects can be mitigated and,
in some cases, eliminated by compensating for the frequency
shifts.

II. PC QUBIT

A. PC-qubit model

The persistent-current qubit is a superconductive loop in-
terrupted by two Josephson junctions of equal size and a

third junction scaled smaller in area by the factor 0.5��
�1 �Fig. 1�a��.35,36 Its dynamics is described by the Hamil-
tonian

FIG. 1. A PC qubit with a dc SQUID measuring device. �a� A
PC qubit, a superconducting loop with two Josephson junctions of
equal dimension and the third scaled by a factor �, as shown in the
inner loop. The outer loop is a dc SQUID, which is used to measure
the magnetic moment of the qubit. �b� A representation of the po-
tential energy of the PC qubit as a function of f , the magnetic flux
in the loop in units of the flux quantum �0. The qubit potential can
range from an asymmetric double well biased to the right to a
symmetric double well and to a symmetric double well biased to the
left for f ranging from �1/2, =1/2, and �1/2, respectively. �c�
One-dimensional double-well potential and energy-level diagram
for f =0.502, in which case we have a three-level system in the
left-hand well. States �1� and �2� are metastable, while �3� will have
significant loss via resonant tunneling to �4� ��34�. The right-hand
well states undergo fast damping ��4 ,�5 ,�6� via the SQUID mea-
surement and intrawell relaxation to lower states. Coupling between
our three levels is induced by two resonant microwave fields with
Rabi frequencies 	13 and 	23, forming the � system. The qubit
parameters we use in calculations are 
2−
1= �2�� 27.8 GHz and

3−
2= �2�� 27 GHz, with matrix elements xij for �i , j�
= �1,2� , �2,3�, and �1,3� set to −0.0145, −0.0371, and −0.0263,
respectively.
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Hpc =
1

2
C��0

2�
�2

��̇p
2 + �1 + 2���̇m

2 �

+ Ej�2 + � − 2 cos �pcos �m − � cos�2�f + 2�m�� ,

�1�

in which C is the capacitance of the larger junctions, �p,m
	��1±�2� /2, �i is the gauge-invariant phase across the
larger junctions i= 
1,2�, Ej = Ic�0 /2� is the Josephson cou-
pling energy, Ic is the critical current of the larger junctions,
and f is the magnetic flux through the loop in units of the
flux quantum �0.36

The qubit potential energy �the second term in Hpc� forms
a two-dimensional �2D� periodic double-well potential, a
one-dimensional slice through which is shown in Fig. 1�b�.
Each well corresponds to a distinct classical state of the elec-
tric current—i.e., left or right circulation through the loop—
with a net magnetization of which is discernable using a dc
SQUID.36 The relative depth of the two wells can be adjusted
by detuning the flux bias to either side of the symmetric
point f =1/2. The potential wells exhibit quantized energy
levels corresponding to the quantum states of the macro-
scopic circulating current,38–41 with the number of levels on
each side determined by the depth and frequencies of the
wells. In this basis the Hamiltonian can be written

Hpc = H0 + Htunnel, �2�

H0 =  �
i


i�i�i� , �3�

Htunnel =  �
i,j�i

�ij�i�j� . �4�

We note here that two points of view may be taken when
discussing the system described by the Hamiltonian in Eq.
�2�. In one picture, the diabatic states �diagonal matrix ele-
ments� of the qubit are the uncoupled single-well states of
classical circulating current and these diabatic states are
coupled through the tunneling terms �off-diagonal matrix el-
ements�. In a second picture, the Hamiltonian is diagonal-
ized, resulting in eigenenergies and eigenstates of the
double-well potential. Although the perspectives differ, these
two pictures will, of course, lead to identical results; only the
interpretation differs. Throughout the paper, we primarily de-
scribe the dynamics in terms of diabatic �single-well� states
coupled through the tunneling barrier of the double-well po-
tential and driven by harmonic excitation. Exceptions, where
they exist, will be clearly noted.

The three-level � structure to implement EIT is then pro-
vided by the left-hand metastable states �1� , �2� and the fast
decaying level �3� shown in Fig. 1�c�. Each of these levels is
taken to have a finite loss rate �i

�t�, due to resonant tunneling
to a right-well state �at �ij� followed by relaxation of the
right-hand well state � j �which is a sum of population relax-
ation to lower levels and damping induced by a fast SQUID
measurement of the circulation current of right-hand well
states�. In particular, we desire a fast decay rate �3

�t�, which is
achieved by resonantly biasing �3� and �4� and a fast SQUID
measurement ��1–10 ns�, as analyzed in Sec. III D. Con-

versely, we desire states �1� and �2� to be long lived and the
tunneling �25 will cause loss and decoherence, which is ana-
lyzed in Sec. IV D ��16 is negligible by comparison�. Rough
estimates of the interwell loss rates for resonant-tunneling
are �1

�t���1 ms�−1, �2
�t��1 �s�−1, and �3

�t���1 ns�−1 and the
off-resonant biasing of states �1� - �6� and �2� - �5� will signifi-
cantly decrease these rates. In addition, states �2� and �3� can
have intrawell relaxation rates �3→1, �3→2, and �2→1 �not
shown in the diagram�. Under similar bias conditions the rate
�3→1+�3→2��25 �s�−1 �experimentally measured in Ref.
40� is much slower than �3

�t�. Also note that �2→1, another
source of decoherence of the metastable states, will be less
than �3→1+�3→2.

These quantized levels may be coupled using microwave
radiation. An applied radiation field � can be described
in terms of an amplitude, frequency, and phase: �f�

=g� cos�
�t+���. We find the resulting matrix elements for
level transitions �the Rabi frequencies� by treating �f� as a
small perturbation in the cos�2�f +2�m� term in Eq. �1�.
We write it as sin�2�f +2�m�sin�2��f��, which can be ap-
proximated as sin�2�f +2�m��2��f��, leading to a Rabi
frequency 	ij

���	�2��g��Ejxij /, where xij 	i �sin�2�f
+2�m� � j�. The elements xij we calculate for our proposed
parameters are listed in the caption of Fig. 1�c�. In EIT, we
address the SQC with two microwave fields �fa
=gacos�
at+�a�, with 
a�
3−
1, and �fb=gbcos�
bt
+�b�, with 
b�
3−
2. The microwave induced Hamil-
tonian can then be written as

H�−wave =


2 �
i,j

�
�

�	ij
���e−i�
�t+��� + c.c.��i�j� , �5�

where i and j run over the states and � runs over the two
fields a and b. We emphasize that the above approximation is
a perturbative approach valid only for small driving ampli-
tudes. In the strongly driven limit, the approximation breaks
down, preventing the Rabi frequency from growing without
bound.7,15

Microwave excitation is used to establish the population
of metastable states �such as �1� and �2�� via photon-assisted
tunneling. In this scheme, the population of a metastable
state is driven via a resonant radiation field into a readout
state �i.e., �3�� which quickly tunnels to a measurement state
�i.e., �4��. This state has opposing current circulation with a
unique flux signature that can be measured using a dc
SQUID.36 In the present scheme, two fields are simulta-
neously applied �resonant with �1�↔ �3� and �2�↔ �3�; see
Fig. 1�c�� and EIT is manifested by a suppression of the
photon-assisted tunneling due to quantum interference be-
tween the two excitation processes.

B. Evolution model

It is convenient to calculate dynamics from the above
Hamiltonian terms in an interaction picture which transforms
away the diagonal energies H0 Eq. �3�. In this frame the total
Hamiltonian is then the sum of Eqs. �4� and �5�:
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H̃ =


2 �
i,j

�
�

�	ij
���e−i�
�t+��� + c.c.�ei�
i−
j�t�i�j�

+  �
i,j�i

�ije
i�
i−
j�t�i�j� . �6�

Note that the exponential arguments involve sums of micro-
wave frequencies 
� and level splittings 
i−
 j. When these
nearly cancel the state is said to be near-resonant and the
coupling is strong. However, for most of the terms, this can-
cellation does not occur and the term rotates its phase rapidly
on the scale of frequencies of interest �	ij

�l�, �ij, and � j�. Such
terms are neglected in the RWA.

We can also include incoherent losses from the levels, �i,
by introducing an additional non-Hermitian part of the

Hamiltonian H̃relax=−i�i��i /2� � i�i�. This is often done in
quantum optics42,43 to include non-Hermitian decay of radia-
tively decaying levels. We then describe the system by a

wave function ��̃�=�ic̃i�t� � i�, with the initial population nor-
malized to unity �i � c̃i�0��2=1 �this can decay in time due to

the non-Hermitian loss�. The evolution of ��̃� is then gov-
erned by Schrödinger’s equation

i 
�

�t
��̃� = �H̃ + H̃relax���̃� . �7�

Besides giving the coherent dynamics, this Schrödinger
equation correctly predicts the population relaxation of level
�i� at �i and also gives the correct dephasings of coherences
between �i� and other states at half this rate �i /2.

When necessary, we use a density matrix approach to in-
clude incoherent processes. For example, pure dephasing of
a coherence between the two metastable states �1� and �2�
goes beyond the Hamiltonian approach �7�. Similarly, inco-
herent feeding of levels �such as population into �1� from
interwell relaxation �2→1� goes beyond this description. The
density matrix is written �̃=�ij�̃ij � i�j�, where the population
in the levels is given by the diagonal terms �̃ii and corre-
sponds to �c̃i�2 in the wave-function description, while the
off-diagonal terms �̃ij correspond to c̃ic̃ j

*and describe coher-
ences between levels. The evolution of the density matrix is
given by

i 
�

�t
�̃ = �H̃ + H̃relax, �̃� + L�̃ . �8�

The first term reproduces the part already predicted by the
Schrödinger equation �7�, while the superoperator L, the
Lindbladian,42 accounts for other incoherent processes. For
pure dephasing of the �i�↔ �j� coherence, �ij, we introduce a
term Lij,ij =−�12. For a population relaxation from �j�→ �i�,
� j→i, we introduce L j j,ii= +� j→i. The associated population
loss from �j� and decoherences are already included through
Eq. �7� �via a term −i �� j→i /2� � i�i��.

Throughout the paper, we consider the model in a number
of distinct cases. In each, we include three levels �1�, �2�, and
�3�, coupled by two microwave fields �fa and �fb making up
our � system �see Fig. 1�c��. We then selectively include
additional levels, such as the �4�, �5�, and �e�, to isolate the

contributions of each of them. Numerical results were ob-
tained with a fourth-order Runge-Kutta algorithm44 solving
Eq. �8�. In it we do not make any RWA assumptions a priori,
but instead introduce some cutoff frequency 
RWA. We ex-
amine the phase factors of each term in the evolution and set
to zero ones with phases rotating faster than 
RWA.

We compare our numerical results with approximate ana-
lytic solutions in many cases. When possible, we use the
Schrödinger equation �7� to obtain simpler analytic results,
though the full density matrix approach is used when dephas-
ing and interwell relaxation are considered �Secs.
IV A–IV C�. In the analytic results we normally make an

additional transformation ��̃�→ ���, H̃+H̃relax→H, defined
by transformations of each level frequency 
c̃i�→ 
ci�
= 
c̃ie

i�it�, where the �i are chosen to eliminate time-depend-
ent exponential phase factors in Eq. �6� �they are usually
detunings—that is, frequency mismatches between the mi-
crowave frequencies and the corresponding transitions�. De-
tuning from two-photon resonance, decoherence, and addi-
tional levels are all seen to destroy the perfect transparency
of EIT and cause slow exponential loss of the population. We
will obtain expressions for the loss rate RL in these cases.

III. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY IN A SQC

A. Ideal EIT in a � configuration

We first consider the “ideal” case in which the three levels
in the left well �see Fig. 1�c�� are well isolated from direct
tunneling to other levels, states �1� and �2� are perfectly
stable, and �3� quickly decays at some fast rate �3

�t�. This
decay is in reality due to resonant coupling of �4� ��34� and
subsequent SQUID measurement �4, but we will see in Sec.
III D how one can derive �3

�t� in terms of these underlying
processes.

We apply fields with nearly resonant frequencies 
a=
3
−
1+�13 and 
b=
3−
2+�23 �see Fig. 1�c��, where the �13
and �23 are small detunings. All other couplings are suffi-
ciently detuned to safely eliminate them under the RWA. In
this case the transformations to eliminate phase rotating
terms are given by �1=0, �2=�13−�23, and �3=�13. The
Hamiltonian, written in matrix notation in a basis

�1� , �2� , �3��, is

H =


2 � 0 0 	13
*

0 − 2�2 	23
*

	13 	23 − i�3
�t� − 2�13

� , �9�

where �2	�13−�23 is the detuning from two-photon reso-
nance. Here we have dropped the a and b labels, 	13

		13
�a� and 	23		23

�b� �see Eq. �6�� as there is no ambiguity.
The open system loss of �3� due to tunneling �3

�t� is assumed
to dominate incoherent population exchange due to intrawell
relaxation, allowing a Schrödinger evolution analysis �7�.

First consider the resonant case �13=�23=0. A qubit ini-
tially in the ground state �1� can be prepared in a superposi-
tion state ��init�=c1 �1�+c2 �2� by temporarily driving it with
a field resonant with the �1�↔ �2� transition. Applying only
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one field 	13 �	23� field then allows the population of a state
�1� ��2�� to be read out through a transition to state �3� fol-
lowed by a rapid escape to the right well. In this case, the
superposition is destroyed by the absorption of a photon.

However, from Eqs. �7� and �9� it follows that if we si-
multaneously apply both fields and the SQC is in the dark
state,

��D� =
	23

	
�1� −

	13

	
�2� �10�

�where 		��	13�2+ �	23�2�, then Eq. �7� predicts ċ1= ċ2
= ċ3=0. For this particular state, the two absorption processes
�1�↔ �2� and �1�↔ �3� have equal and opposite probability
amplitude and thus cancel by quantum interference. As a
result, no excitation into �3�, and thus no tunneling to the
right well, will be observed. Note that ��D� constrains both
the relative intensity and phase of the light fields. Any other
�nonzero� values for the relative amplitudes in the two states
�1� and �2� will lead to a coupling into �3� and subsequent
loss.

An alternative interpretation is obtained by examining the
eigensystem of the Hamiltonian �9�. The dark state ��D� has
eigenvalue zero. The other two eigenstates are linear combi-
nations of the excited state �3� and the combination of the
stable states orthogonal to ��D�, ��A�= �	13

* �1�+	23
* �2�� /	,

called the absorbing state �a “bright state”�. The system

��A� , �3�� acts effectively as a two-level system coupled by
	. The eigenvalues corresponding to the two eigenstates are

�−i�3
�t�±�4	2−�3

�t�2� /4, and the imaginary parts of these ei-
genvalues give the loss rates of these states. In the limit 	

��3
�t�, these rates are both �3

�t� /4, and one observes damped
Rabi oscillations. In the limit 	��3

�t�, there is an eigenstate
���A� with a slower damping rate 	2 /2�3

�t�.
Figure 2�a� shows an example of the lack of tunneling in

the presence of applied fields 	13=	23 for the corresponding
dark state ��init�= ��1�− �2�� /�2 �i.e., �11=�22=0.5, �12

=−0.5�. One sees only a barely perceptible population �33
and a very slow loss of the �11 and �22. This is due to a pure
dephasing of the state coherence, which we take to be �12
= �2�� 1 MHz. The effect of this dephasing is a small expo-
nential loss at a rate we label RL

��12�, which is discussed and
derived in Ref. 19 and reviewed in Sec. IV B. Otherwise the
populations remain �11=�22�0.5. EIT thus provides a means
to confirm, without disturbing the system, that one had in-
deed prepared the qubit in a particular desired state of the
SQC, preserving its quantum coherence.

By contrast, Fig. 2�b� shows the large loss induced when
one applies these same fields to the absorbing state—i.e., the
state with the same populations but � out of phase: ��init�
= ��1�+ �2�� /�2. In Fig. 2�b� we see that there is a large popu-
lation in the �3� and the entire population has tunneled to the
right well within about 10 ns. Note that here we are in the in-
termediate regime 	��3

�t� so we get oscillations with period
�	 strongly damped at ��3

�t� /2. This is completely analo-
gous to the tunneling which occurs with a single applied field
in a two-level scheme.

A general state can be decomposed into dark and absorb-
ing state components. Figure 2�c� shows a case where the
initial population is purely in �1� and the same fields are
applied. Here the initial state can be written ��init�= �1�
= ���D�+ ��A�� /�2. Half of the population �the component in
the absorbing state� is coupled out over the 10 ns time scale
while the dark-state component remains. In terms of level
populations �11 and �22, approximately 1/4 of the population
is coherently coupled from �1� to �2�.

B. EIT with imperfect state preparation

One of the useful aspects of EIT is the extremely sensitive
manner in which it can measure the amplitude and phase of
superpositions in the SQC. When the prepared state has a
slightly different phase or population ratio than the state we
intend to prepare, EIT could be used to measure these devia-
tions. Such imperfect preparation could arise, for example,
due to imperfections in the preparation pulse.

Figure 3�a� shows the population loss when preparing a
state with various initial-state population ratios and applying
fields 	13=	23. We again introduce a small dephasing �12
= �2�� 1 MHz. The inset shows the population at 200 ns,
well after the initial transient losses have occurred. These
data can be understood using the dark and absorbing basis
discussed above. The modulus square of the overlap of the
initial state and the dark state �D ��init� gives the population
remaining after the fast initial loss of the absorbing compo-
nent. Postulating that the slower loss �due to dephasing or
other effects� is exponential with some rate RL, the popula-
tion after the fast initial loss is

FIG. 2. �Color online� Suppression of tunneling due to EIT for
various ideal wavefunctions. �a� The populations of the states as a
function of time in the presence of applied fields 	13=	23

= �2�� 150 MHz and tunneling rate �3
�t�= �2�� 130 MHz=1/1.2 ns

for the initial state �11=�22=0.5, �12=−0.5 �the dark state�. The
dotted �red� curve shows �11, the dashed �blue� curve �22, and the
thin solid �green� curve �33. The total population �sum of the three�
is the thick solid �black� curve. There is a slow exponential decay of
the population due to the dephasing rate �12= �2�� 1 MHz. �b� The
population evolutions �same convention� for the initial state �11

=�22=0.5, �12=0.5 �the absorbing state�. �c� The population evolu-
tions for an initial state �1� �which is an equal superposition of the
dark and absorbing states�.
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��init��D��2e−RLt. �11�

Thus, detecting the fast initial decay of the population can
indicate the mismatch between the fields and the prepared
state population.

Phase mismatch, or unwanted z rotation, in the qubit
preparation shows similar behavior. Figure 3�b� shows the
population decay from the left well for the state ��1�
−ei� �2�� /�2. The uppermost line is decay due to the perfect
state, while the lower lines indicate the decay for varying
value of �. This example indicates that the dark state is more
sensitive to phase mismatch than population mismatch.

C. EIT detuned from resonance

Because EIT is a coherent effect, it only occurs in a nar-
row range of frequencies near the two-photon resonance. The
width of the EIT feature is generally determined by the field
intensities and can be made narrower than the broad reso-
nances of the individual one-photon transitions ��1�↔ �3� and
�2�↔ �3��, which are determined by the fast decay rate of �3�
�3

�t�.

Figure 4�a� shows the results of simulations with the same
parameters as Fig. 2�a�, but with the detuning �23 varied.
The curves show exponential loss occurring at various rates.
We can analyze the results with the Hamiltonian �9� and the
corresponding Schrödinger equation �7�. We first adiabati-
cally eliminate45 the excited level by setting ċ3=0 and obtain

c3 = �	13c1 + 	23c2�� 2�13 − i�3
�t�

4�13
2 + �3

�t�2� . �12�

This expression is valid for times long compared to the ini-
tial transient time Min
��3

�t��−1 ,�13
−1�. Note that for the dark

state �10� the amplitude c3 vanishes. Plugging this expression
back into the equations for ċ1 and ċ2 then gives a 2�2
matrix evolution equation, which can be easily solved by
finding for its eigenvalues and eigenvectors. For �2=0 the

FIG. 3. �Color online� Imperfect state preparation. �a� The time
evolution of the population in the left well as a function of initial
state of the form ��init�=�p1 �1�−��1− p1� �2�. The uppermost
curve is for the dark state p1=0.5. Successively lower curves are for
p1=0.6, 0.7, 0.8, 0.9, and 1.0. There is a sharp initial decay when
there are deviations from the dark state. Inset: the population in the
left well at 200 ns versus p1. �b� The population decay out of the
left well as a function of the initial phase of the prepared state,
��init�= ��1�−ei� �2�� /�2. �=0 �top curve� and the other curves are
� /5, 2� /5, 3� /5, 4� /5, and �. We see full decay for �=�, the
absorbing state ��A�= ��1�+ �2�� /�2. Inset: the population in the left
well at 200 ns as a function of �.

FIG. 4. �Color online� EIT in the presence of detuning. �a� Nu-
merical calculation of the total population in time when �13

=0 MHz and at various �23 �top to bottom curve� �2�� 0, 10, 20,
30, 40 MHz. For �23=0, the decay is due to pure dephasing, while
the decay is sharper when �23�0. Inset: the population in the left
well at 200 ns as a function of the two-photon detuning �2	�13

−�23, with �13=0 �circles�. The solid curve shows the prediction
�13�. The diamonds show the case �13= �2�� 1 GHz, varying �2

about the two-photon resonance. �b� The population decay as a
function one-photon detuning at two-photon resonance, �13=�23

=� for �top to bottom� �2�� 3, 2, 1, 0.5, 0 GHz. As the one-photon
detuning increases, the effective coupling of the fields to the tran-
sition reduces, hence reducing the rate of decay. Inset: the popula-
tion in the left well at 200 ns as a function of the detuning for the
dark state �circles�. For comparison we also show the population
remaining for the absorbing state ��init�= ��1�+ �2�� /�2 at the same
detunings �diamonds�.
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eigenvectors are simply the dark ��D� and absorbing ��A�
states of Sec. III A, with eigenvalues �D=0 and �A

=−	2��3
�t�−2i�13� /2�4�13

2 +�3
�t�2�, respectively. The absorb-

ing component population is damped out at −2 Re
�A�. In
many cases, we are interested in the regime close to the
one-photon resonance �13��3

�t� for which this reduces to
	2 /�3

�t� as in Sec. III A.
With a nonzero two-photon detuning �2, this process is

complicated by an additional phase evolution term. Plugging
Eq. �9� into Schrödinger equation �7� �in the frame defined
before Eq. �9�� gives a term ċ2= ¯ + i�2c2, which acts to
drive the phase of the SQC out of the dark state and com-
petes with damping of the absorbing component. Solving for
the eigensystem in this case we see that, in the limit of small
two-photon detuning ���2 � � �Re
�A � ��, the eigenvalue corre-
sponding to the dark component has a nonzero negative real
component, leading to a population loss rate:

− 2 Re
�D� 	 RL
��2� = 4

�	13�2�	23�2

	4

�2
2�3

�t�

	2 . �13�

The prediction P=exp�−�RL
��12�+RL

��2��t� is plotted in the in-
set of Fig. 4�a� and is seen to agree well with the numerical
results �where RL

��12� was determined by the numerically cal-
culated loss for �23=0�. Equation �13� shows how the field
strength, via 	2 in the denominator, determines the fre-
quency width of the EIT feature.

The above analysis indicates that it is only the two-photon
detuning �2 which affects the relative phase of �1� and �2�
and therefore affects the dark state. EIT will occur in the
presence of a large one-photon detuning �13, and the inset of
Fig. 4�a� shows such a case with �13= �2�� 1 GHz and �23

varied about the two-photon resonance. The presence of a
transparency peak is still clear. The important difference is,
because of the large one-photon detuning �13��3

�t�, the
damping of the absorbing state −2 Re
�A� is substantially
reduced and so both the dephasing RL

��12� and detuning RL
��2�

loss are reduced. The analytic model �13� is not valid for
large one-photon detunings �13 where the strong damping
assumption −2 Re
�A�� ��2� does not hold. As a result, one
sees nonexponential decay in the large one-photon detuning
cases �upper curves of Fig. 4�b��.

Figure 4�b� shows simulations at two-photon resonance
�13=�23, varying the one-photon detuning �13. The popula-
tion decay is much slower as the detuning gets larger. For
comparison, we also plot the decay for initial state equal to
the absorbing state ��init�= ��1�+ �2�� /�2. We note that the
analytic model for loss of the dark state �13� is invalid for
large one-photon detunings, where the absorbing state is not
completely damped.

D. Effective � system via tunneling and measurement

Thus far we have considered the system to be a three-
level system with the excited level �3� subject to a fast popu-
lation decay �3

�t�. Underlying this decay are actually two pro-
cesses: the fast resonant tunneling to a near-degenerate level
in the right-hand well ��34� followed by interwell relaxation
and possibly a strong measurement of the population in �4�

��4�; see Fig. 1�c�. We show here how the picture of a three-
level system with a strong damping of �3� �the Hamiltonian
�9�� is most valid when �34��4 but actually has a larger
range of validity than one might expect. We derive an ex-
pression for �3

�t� and also see how the tunneling slightly shifts

3.

To do this we consider the Schrödinger evolution of the
full four-level system Hamiltonian �with the same frame
transformation as Eq. �9� and �4=�13+�34, where �34=
4
−
3�:

H =


2�
0 0 	13

* 0

0 − 2�2 	23
* 0

	13 	23 − 2�13
�0� 2�34

0 0 2�34 − i�4 − 2��13
�0� + �34�

� .

�14�

We have used the notation �13
�0� to distinguish it from �13

which includes the frequency shift of 
3 induced by �4�.
To recover our three-level picture, we note that when �4

��34 we can adiabatically eliminate level �4� to obtain c4

=−2c3�34/ �2��34+�13
�0��− i�4�. Plugging this result back into

the equation for ċ3 reveals that our system can be reduced to
a three-level system as in Eq. �9� with �3

�t�=4 ��34�2�4 /
��4

2+4��34+�13
�0��2� and �13=�13

�0�+4 ��34�2�34/ ��4
2+4��34

+�13
�0��2�. Alternatively, when �4��34 we would expect the

tunneling to induce a splitting of �3� and �4� into two super-
position eigenstates �split by 2�34�.

We carried out several numerical simulations of the four-
level density matrix equations �8� for this system, consider-
ing first the resonant case ��34=0�. In them we used �34

= �2�� 150 MHz= �1.2 ns�−1, fields 	13= �2�� 120 MHz,
	23= �2�� 150 MHz, the corresponding dark initial state
�11=0.61, �22=0.39, �12=−��11�22 �i.e., full coherence�,
and a dephasing rate �12= �2�� 2 MHz. Figure 5�a� shows
the populations �33, �44 versus time for cases �4

−1=1 ns
= ��2�� 159 MHz�−1 �thin, blue curves� and 25 ns
= ��2�� 6 MHz�−1 �thick, red curves�. Figure 5�b� shows the
total population remaining versus time. In the fast-
measurement case, 1 ns, �33 and �44 are seen to track each
other, and we see the exponential decay of the population as
in the previous examples. For the slower-measurement case,
25 ns, we see �33 and �44 still track each other, but here there
is a large excitation �33 �note the different scale�, no fast
transients in �33 to a quasi-steady-state value, and nonexpo-
nential population decay, all indications of the breakdown of
EIT.

To check the validity of the effective three-level model, in
Fig. 5�c� we compare its predictions for the populations re-
maining after 100 ns �solid curve� with predictions of the full
four-level model �dots�. The agreement is excellent for the
1/�4�5 ns and is still in rough agreement even up to 50 ns.
The adiabatic elimination procedure appears to be valid well
beyond the expected regime �4

−1��34
−1. The breakdown of

EIT in the 25-ns case is due to �3
�t� becoming too large �see

Sec. IV B�, rather than a breakdown of the effective three-
level model.
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In Fig. 5�d� we show the population remaining when �34
is varied �for both 1/�4=1 ns �black curves� and 10 ns �red
curves��. We have kept the microwave fields on bare reso-
nance �13

�0�=�23
�0�=0 and accounted for the predicted fre-

quency shifts of 
3 in the three-level model. As �34 becomes
comparable to �4 the tunneling rate �3

�t� goes down as pre-
dicted.

In summary, we find that as long as �4��34 the simple
three-level picture provides an excellent model and even
when �4��34 or somewhat larger, this model unexpectedly
gives very good predictions of the behavior. However, one
must be careful of the strong dependence of �3

�t� on �4, as
this may severely affect the necessary conditions for EIT
�which are discussed in Sec. IV B�. Through �4 the SQUID
measurement rate can thus have a large influence on the EIT.
When the detuning �34 becomes comparable to �4 the tun-
neling rate is reduced as expected and one must account for
the frequency shift of 
3. For the remainder of the paper, we
will not explicitly include �4� in the calculations, but assume
some �3

�t��1 ns and that the frequency shift is already in-
cluded in the definitions of �13 and �23.

IV. EIT IN THE PRESENCE OF DECOHERENCE,
INCOHERENT POPULATION EXCHANGE, AND

QUBIT TUNNELING

An outstanding, important issue in the eventual applica-
tion of SQC’s to quantum computing is the identification and
suppression of sources of decoherence and unwanted dynam-
ics of the qubit states ��1� and �2��. In particular, decoherence
from pure dephasing,46 intrawell relaxation, interwell reso-

nant tunneling,31 and coupling to microscopic degrees of
freedom in the junction27 have all been proposed as potential
hurdles in successfully isolating a coherent two-level system
for use as a qubit. Use of phase-sensitive methods such as
EIT could be a fruitful path for exploring and differentiating
the contributions of these various decoherence processes to
qubit dynamics. To learn how EIT is affected by decoher-
ence, we use the density matrix approach here to include
pure dephasing, population loss, incoherent population ex-
change, and resonant coupling to the right well. We find a
minimum microwave coupling strength necessary for the ob-
servation of EIT in the presence of decoherence and see that
it contributes small exponential loss �as seen in the numerical
results above�. We derive analytic expressions for the loss
rates, which are proportional to the decoherence processes,
but with coefficients which depend on the nature of the pro-
cess. These results are a generalization of the results for pure
dephasing previously published.19

EIT is a unique tool to probe decoherence which comple-
ments the previously explored techniques of spin echo26 and
Rabi oscillation decay,27 and this section will demonstrate
some of its advantages. First, in the limit of small decoher-
ence, the system is left completely undisturbed by the probe.
Second, the dependence of the loss rates on relative field
strengths can be used to determine the nature of the decoher-
ence process. Third, the populations of the qubit states �1� �2�
do not need to be manipulated in the process �with � pulses,
etc.�. Besides the advantage of simplicity, this latter point
also leaves open the possibility of decoherence rates which
have a nontrivial dependence on the relative state popula-
tions.

FIG. 5. �Color online� Consequences of the measurement state characteristics. �a� The thinner curves �blue� show populations �44 �solid
curves� and �33 �dashed curves� as a function of time for a fast readout �4

−1=1 ns��34
−1 �with scale on the right side�. After initial transient

period, the two values reach quasi-steady-state values, which undergo slow exponential decay. Conversely the thick �red online� curves show
a slow measurement case �4

−1=25 ns��34
−1 �scale on the left�. In this case the populations do not reach a quasi steady state over the time

scale plotted. �b� The total population remaining versus time for the same two cases. �c� The population remaining at 100 ns for varying
measurement rates �dots� and compared to the prediction of a three-level system with �3

�t�. As the measurement gets slower, this prediction
slightly and increasingly underestimates the actual population which should be observed. �d� Numerical results �dots� and three-level model
predictions �solid curves� now letting �34 vary, for the cases �4

−1=1 ns �black, lower curve� and 10 ns �upper, red curve�.
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A. Density matrix approach

To carry out this analysis, we must go beyond the
Schrödinger approach and introduce the corresponding den-
sity matrix evolution �8�, also referred to as the Bloch
equations.42 We work in the three-level case and transform to
the frame defined above Eq. �9� and obtain

�̇11 = − �1
�t��11 + �2→1�22 −

i

2
	13

* �31 +
i

2
	13�13,

�̇22 = − ��2
�t� + �2→1��22 −

i

2
	23

* �32 +
i

2
	23�23,

�̇33 = − �3
�t��33 +

i

2
	13

* �31 −
i

2
	13�13 +

i

2
	23

* �32 −
i

2
	23�23,

�̇12 = − ��12 +
�1

�t� + �2
�t� + �2→1

2
��12 −

i

2
	13

* �32 +
i

2
	23�13,

�̇13 = −
�3

�t� + �1
�t�

2
�13 +

i

2
	13

* ��11 − �33� +
i

2
	23

* �12,

�̇23 = −
�3

�t� + �2
�t� + �2→1

2
�23 +

i

2
	23

* ��22 − �33� +
i

2
	13

* �21.

�15�

For simplicity, we have supposed the resonant case �13
=�23=0 and ignored interwell relaxation of �3�, which is
dominated by �3

�t�. The remaining three element equations
are determined by �ij

* =� ji. The most important new piece
here is the decoherence rate of �12: �12+ ��1

�t�+�2
�t�+�2→1� /

2. This will decohere the dark state and lead to small losses
in the population.

To proceed, we adiabatically eliminate the excited-state
coherences �13 and �23 as they are strongly damped by �3

�t�.
In these equations we can ignore �1

�t� ,�2
�t���3

�t� as well as
�33��11,�22. We then plug the results back into the remain-
ing equations to obtain

�̇11 = − �1
�t��11 + �2→1�22 −

�	13�2

�3
�11 − �	13	23

*

2�3
�12 + c.c.� ,

�̇22 = − ��2
�t� + �2→1��22 −

�	23�2

�3
�22 − �	13	23

*

2�3
�12 + c.c.� ,

�̇12 = − ��12 +
�1

�t� + �2
�t� + �2→1

2
��12 −

	2

2�3
�t��12

−
	13

* 	23

2�3
�t� ��11 + �22� . �16�

We note here a strong damping of the coherence provided by
the fields 	2 /2�3

�t�. This damping acts to drive the system
into the dark state. In the limit that the decoherence terms
��12, �1

�t�, �2
�t�, �2→1� vanish, there is a steady-state solution

consisting of perfect coherence: �11= �	23�2 /	2, �22

= �	13�2 /	2, �12=−	13	23/	2. However, the decoherence
terms drive the system out of the dark state, causing excita-
tion �33. One sees that the ratio of the decoherence rate com-
pared with the EIT preparation rate 	2 /�3

�t� determines the
degree to which the coherence deviates from the perfect
dark-state value.

B. Measuring dephasing with EIT

We first show that this comes into play for pure dephas-
ing, which is expected to be the case in many practical
implementations and was analyzed previously in Ref. 19.
Figure 6�a� �solid, red curve� shows the excited-state popu-
lation �33 when �12= �2�� 1 MHz and we apply the fields
	13=	23= �2�� 150 MHz to the dark state ��init�= ��D�
= ��1�− �2�� /�2. One sees a small �note the scale in Fig. 6�a��
but finite excitation. In particular, there is an initial fast tran-
sient behavior to some plateau value �over a time scale de-
termined by Min
	2 /�3

�t� ,�3
�t���, followed by a slow expo-

nential decay. The general behavior of an initial transient
rise, Fig. 6�a�, was seen over a wide parameter regime. This
quasi-steady-state excitation of �3� is the origin of the expo-
nential losses at rate RL

��12� in the previous simulations. Fig-
ure 6�b� shows the exponential decay for several different
dephasing rates �12. The inset of Fig. 6�b� plots the popula-
tions remaining at 200 ns, which is seen to approach unity as
�12→0.

The loss rate can be quantified by considering the 3�3
evolution matrix for �11, �22, and �12 defined by Eqs. �16�.
Looking at the eigenvalue corresponding to the smallest loss
rate and expanding to first order in �12 gives

RL
��12� = 2�12

�	13�2�	23�2

	4 . �17�

By measuring this decay constant experimentally, one can
use Eq. �17� to extract �12. Note that the two rates are simply
related by a constant of order unity, determined by the rela-
tive strength of the two microwave field couplings �in the
example in Fig. 6, the constant is 2	13

2 	23
2 /	4=0.5�. A

glance at Fig. 6�b� reveals how choosing the observation
time t��12

−1 will give the best sensitivity in the measurement.
The inset of Fig. 6�b� shows the prediction �17� in com-

parison with the analytic results, and we see good agreement.
The adiabatic elimination and the expansion for small �12

require 2�12�3
�t� /	2�1 and �12��3

�t�. This ratio is 0.07 for
�12= �2�� 5 MHz. For higher dephasing rates, the dephasing
rate competes with the preparation rate and the first-order
expansion in �12 becomes less valid. Such a case is seen in
Fig. 6�a� �dashed, blue curve� where we plot �33 for a case
with �12= �2�� 20 MHz. The exponential decay occurs with
a time scale comparable to the transient time to reach the
quasi-steady-state plateau. In such cases, �12 can only be
estimated from the tunneling rate by a more detailed model-
ing of the underlying Bloch equations �15�. We note that the
microwave field intensity can be adjusted to control 	2 and
to bring us into a regime where Eq. �17� is valid. The break-
down of this inequality occurred in the slow measurement
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time �25 ns� case plotted in Figs. 5�a� and 5�b�, for which
�3

�t��4 ��34�2 /�4 became quite large ��GHz�.
When detuning and dephasing are both present but suffi-

ciently small, the two effects add linearly. In Fig. 6�c� we
show the population remaining versus detuning �13, with
�12= �2�� 1 MHz �with �23=0� both in a strong-field
�2�12�

�t� /	2=0.016� and in a weak-field �2�12�
�t� /	2

=0.18� case. The prediction P=exp�−�RL
��12�+RL

��2��t� holds

for the stronger field but overestimates the loss for the
weaker field.

We conclude from the above calculations that there are
two basic conditions that have to be satisfied for a reliable
measurement of the decoherence in the system. First, the
decoherence rate �12 should be much smaller than the loss
rate �3

�t�, which holds in the systems of interest. Second, we
must be able to apply sufficiently strong fields such that the
preparation rate 	2 /�3

�t� dominates �12.

C. EIT with incoherent population loss and exchange

When the decoherence of �12 occurs due to population
loss and exchange instead of dephasing, the effect on the EIT
is much the same, with the �12 simply replaced by the total
decoherence rate. However, because these processes involve
additional changes in the populations, the population loss
rate, which we use to diagnose the decoherence rate, will be
different.

Referring back to the evolution matrix �16�, we again find
the eigenvalues to determine the loss rate of the dark state.
Expanding to first order in �1

�t� , �2
�t� , �2→1, respectively, we

find

RL
��1

�t�� = �1
�t� �	23�2

	2 , RL
��2

�t�� = �2
�t� �	13�2

	2 ,

RL
��2→1� = �2→1

�	13�4

	4 . �18�

It is interesting to note that the coefficient will depend in
different ways on the relative intensities of the two fields
depending on the origin of the decoherence. Figure 7 shows
the population loss after 100 ns for different kinds of loss,
each plotted versus the total decoherence rate of �12. The
open-system loss �2

�t� is greater than the pure dephasing case
because there is direct population loss on top of the absorp-
tion into �33 due to decay out of the dark state. The closed-
system loss �intrawell relaxation �2←1� is seen to be smaller
than pure dephasing; however, Eqs. �18� show that this could
be greater or smaller depending on the relative values of 	13
and 	23.

FIG. 6. �Color online� EIT loss due to pure dephasing. �a� The
population �33 versus time in the presence of a pure dephasing
�12= �2�� 1 MHz �solid, red curve, scale on left� and �12= �2��
20 MHz �dashed, blue curve, scale on right�. In the slow dephasing
case �33 quickly reaches a plateau value �33

�max� and then undergoes a
slow exponential decay. For the faster dephasing, the exponential
decay time is similar to the time required to reach the maximum
value. In each case, the initial state is �11=�22=0.5 and �12=−0.5,
	13=	23= �2�� 150 MHz, and �3

�t�= �2�� 130 MHz. �b� The popu-
lation decay with varying dephasing rates �top curve to bottom
curve� �12= �2�� 1, 2, 3, 4, and 5 MHz. Inset: the population in the
left well at 200 ns versus �12 �dots�. The solid curve shows the
analytic prediction exp�−RL

��12�t� based on Eq. �17�, demonstrating
how the population loss can be used as a probe of �12. �c� Popula-
tion remaining at 100 ns versus detuning �13 �keeping �23=0� for
two different field intensities. In these simulations we used the ini-
tial conditions �11=0.61, �22=0.39, �12=−��11�22, the fields 	13

=0.8	23, �3
�t�= �2�� 159 MHz, �12= �2�� 1 MHz. The solid curves

are the analytic prediction described in the text for 	23= �2��
100 MHz �blue, upper curve�, and 30 MHz �black, lower curve�.
The dots show the numerical results.

FIG. 7. �Color online� EIT loss with dephasing, open loss, and
closed loss. The population loss after 100 ns for several types of
decoherence. The parameters are as in Fig. 6�c� but with 	23

= �2�� 150 MHz. The curves show the analytic predictions �17� and
�18�, and the dots show numerical results. The lowest curve is for
purely open loss �2

�t�, the middle curve for pure dephasing �12, and
the top curve shows pure population exchange �2→1. The horizontal
axis shows the corresponding decoherence rate for each case:
�2

�t� /2 , �12, �2→1 /2, respectively.
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While we assumed in this discussion that the intrawell
relaxation of �3� was negligible ��3→1+�3→2��3

�t��, the
present discussion is easily generalized when this cannot be
assumed. In this case the population loss rate is the same as
before, multiplied by a factor reflecting the proportion of
atoms in �3� which actually tunnels to the right well:
�3

�t� / ��3→1+�3→2�. This reflects the fact that excitation of �3�
due to decoherence will only be registered as population loss
upon tunneling to the right well.

D. Resonant tunneling loss out of left well

Just as the decay of �3� is the result of tunneling followed
by decay of �4�, interwell tunneling of �2�, which is conceiv-
ably a leading-order effect in the decoherence, involves tun-
neling to a near-resonant level �5� �see Fig. 1�c��. Here we
consider this effect in detail to find the conditions where an
effective damping rate �2

�t� can be used and also explore con-
ditions where the dynamics is more complicated.

To explore this issue, we have performed numerical simu-
lations for the system 
�1� , �2� , �3� , �5�� where level �2� is de-
tuned from �5� by �25	
5−
2. The Hamiltonian �with the
transformation �5=�2+�25� is

H =


2�
0 0 	13

* 0

0 − 2�2 	23
* 2�25

	13 	23 − 2�13 − i�3
�t� 0

0 2�25 0 − i�5 − 2��2 + �25�
� .

�19�

Mathematically similar energy-level structures have been
considered in the context of atomic systems.47

In the following we take �25= �2�� 5 MHz and set the
pure dephasing �12=0 to isolate the contribution from the
presently considered effect. Analogous to Sec. III D, when
�5��25 one can easily reduce the system to an effective
three-level system with an additional loss rate �2

�t�

=4 ��25�2�5 / ��5
2+4�25

2 �. The small �black� dots in Fig. 8�a�
present the population as a function of the detuning �13
�keeping �23=0� after 100 ns of evolution for a case with
�5

−1=2 ns��15 �25�−1 �and �25=0�. The results are in good
agreement with the prediction one obtains from the loss rate
Eq. �18� with this predicted tunneling rate �2

�t� �solid curve�.
Figure 8�b� shows the computed loss �dots� for resonant
fields ��13=0� compared with the loss expected from the
calculated �2

�t� �solid curve� as a function of �5
−1, for two

different field strengths. One sees the estimate is good for
�5

−1�5 ns. The inset shows �55 versus time when �5
−1

FIG. 8. �Color online� Loss due to resonant tunneling to the right well. In the simulations we assume a �resonant� tunneling rate �25

= �2�� 5 MHz, with fields 	13=0.8	23 and the corresponding dark state �11=0.61, �22=0.39, �12=−��11�22. �a� The population remaining
at 100 ns of fields applied with strength 	23=50 MHz, versus the detuning �13 �keeping �23=0�, but varying the relaxation time �5

−1. For
the small solid dots �black� �5

−1=2 ns. The solid curve shows the analytic prediction based on the effective loss rate �2
�t� described in the text.

The open �blue� dots show a case �5
−1=15 ns, in which case a splitting appears in the resonance, contrary to the analytic prediction �dashed

curve�. The large �red� dots show the case �5
−1=80 ns, for which the splitting becomes more pronounced and the loss rate quite small, while

the �2
�t� model predicts complete loss of the population. �b� The population remaining at 100 ns at the two photon resonance ��13=�23

=0� versus �5
−1. The solid �black� dots show the case 	13= �2�� 150 MHz and the open �red� dots show 	13= �2�� 50 MHz. They roughly

agree with each other and the �2
�t� model �solid curve� for �5

−1��25
−1=32 ns. However, for larger �5

−1 the loss becomes slower. The inset
shows the population �55 for the fast �5 ns, solid curve� and slow �80 ns, dashed� relaxation times �5

−1 �note the different scales�. The fast
case looks analogous to decoherence �see Fig. 6�a��, while oscillations occur in the slow case. �c� The population remaining versus the level
detuning �25 in the case �5

−1=8 ns �solid, black dots� and 80 ns �open, red dots�. The solid and dashed curves show the �2
�t� model

predictions.
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=5 ns. One sees it quickly reaches a quasi-steady-state pla-
teau, then undergoes an exponential decay.

For larger �5
−1, Fig. 8�b� shows that the loss begins to

decrease in contrast to the analytic estimate. The large �red�
dotted curve in Fig. 8�a� shows the population remaining
versus detuning �13 in a case for �5

1=80 ns. Besides the �2
�t�

model incorrectly predicting a complete loss of the popula-
tion after 100 ns, in the numerical results there is the clear
appearance of double-peaked structure. This can be under-
stood from the coupling �25 giving rise to two eigenstates
��2�± �5�� /�2 split by 2�25, each of which gives rise to a
distinct EIT resonance. The initial state �no population in �5��
is a superposition of these eigenstates, and we get oscilla-
tions of the population between �2� and �5�. The inset in Fig.
8�b� �dashed curve� shows these oscillations in �55 for �5

−1

=80 ns. Because of the weak damping, the oscillations per-
sist and the quasi steady state is not reached during the time
scale plotted. The dotted curve and open dots in Fig. 8�b�
show an intermediate case �5

−1=15 ns where the double-peak
structure is just becoming apparent and the analytic estimate
has begun to break down.

In Fig. 8�c� we address the case where the tunneling lev-
els �2� and �5� can be slightly off resonant ��25�0�. The
solid circles show the population remaining for �5

−1=8 ns
versus �25. The solid curve shows the �2

�t� model estimate,
which correctly accounts for the slower tunneling rate as we
move off resonance. The red dots show the same for �5

−1

=80 ns. In this limit, the analytic estimate expression se-
verely overestimates the loss for �25��5, but as we move off
resonance, the coherent tunneling plays less of a role and the
effective tunneling decay rate model becomes more accurate.

In summary, tunneling of our lower states will be a source
of loss in EIT. The behavior will depend qualitatively on the
relative strength of the coherent coupling and the loss rate of
the additional quantum level and so can provide us with
information about these quantities. In the limit where the loss
rate dominates, we see how it reduces to an open system loss
of �2� where as in the other limit we see a qualitative signa-
ture �the splitting of the resonance� of coherent coupling to
another level.

V. EIT WITH RADIATION CROSSTALK

To now, we have considered how EIT is affected by de-
coherence and tunneling to other levels. Another important
consideration to include is that all levels are dipole coupled
and so in principle coupled by the microwave fields. The
RWA allows us to neglect the majority of the couplings as
the dynamics is dominated by couplings which are near reso-
nant. For example, one need not consider the coupling of
field b on the �1�↔ �3� transition or field a on �2�↔ �3�. How-
ever, in SQC’s, the relative scale of the Rabi frequencies
��100 MHz� to the level spacings �� GHz� is somewhat
larger than in typical atomic systems. Thus, it is important to
know the magnitude and type of effects that these “cross”
couplings can have. Here we consider, separately, a case with
cross coupling within the three-level system and a case
where fields couple to an additional excited level. In general,
we find that these effects can be characterized analytically in

terms of additional loss rates and ac Stark shifts. If one ne-
glected these effects, there are configurations where one may
mistakenly attribute a loss rate to a dephasing when in fact it
is due to off-resonant field coupling. While we found it was
beneficial to turn the microwave coupling strengths 	2 up to
overcome decoherence and detuning, we will see how this
can increase the importance of these crosstalk effects. We
will also see how proper understanding of the effects can
allow us to mitigate against them by properly compensating
for the Stark shifts. To isolate these crosstalk effects, we will
set other losses and dephasings to zero in the following.

A. Radiation crosstalk in a three-level system

In the configuration proposed here and in Ref. 19, the
qubit states �1� and �2� are the first two levels of a slightly
anharmonic potential �the left well�, while the excited level
�3� is the third such level. Therefore, the level spacing 
3
−
2 is only slightly different from 
2−
1 �with the param-
eters proposed the spacings are �30 GHz and the difference
is 0.7 GHz�. As a result, the field 	23 is only 0.7 GHz de-
tuned from �1�↔ �2� �see Fig. 9�a��. A rough estimate of this
effect was noted in Ref. 19. Here we present an analytic
treatment which shows it causes an ac Stark shift which de-
pends on the relative dipole-coupling strengths, field intensi-
ties, and level spacings. Thus the EIT resonance position can
be a function of field amplitudes used, which can be com-
pensated by adjusting the field frequencies.

FIG. 9. �Color online� Crosstalk in a ladder system. �a� Sche-
matic of the dominant crosstalk term: field b �resonant with
�2�↔ �3�� also couples �1�↔ �2�, detuned by 0.7 GHz. �b� This in-
duces fast oscillations of the ground-state populations �11 and �22

�and a slow overall drift� as shown here for the initial state �11

=0.61, �22=0.39 with full coherence and 	13=0.8	23= �2��
120 MHz and �3

�t�= �2�� 159 MHz. �c� Population remaining at
50 ns for 	23= �2�� 50 MHz �small, blue dots�, 100 MHz �open,
green dots�, and 150 MHz �large, red dots�, with the curves show-
ing the analytic predictions based on the ac Stark shifts described in
the text.
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We consider the Hamiltonian �9� but do not invoke the
RWA with respect to terms rotating by the mismatch fre-
quency between the �2�↔ �3� and �1�↔ �2� transitions �
	�
2−
1�− �
3−
2�:

H =


2 � 0 �*	23
* ei�t 	13

*

�	23e
−i�t − 2�2 	23

*

	13 	23 − 2�13 − i�3
�t� � , �20�

where �	x12/x23 is the ratio of dipole moments between the
additional off-resonant transition and the intended resonant
transition for the field b. In the case we are considering �
=−2.55, though it should be emphasized that these ratios are
strong functions of the parameters and can vary by an order
of magnitude.

We performed a numerical propagation of the density ma-
trix equations �8� for this Hamiltonian for the resonant case
�13=�23=0 and plot the evolution of �11 and �22 in Fig. 9�b�.
We see that the extra coupling gives rise to small-amplitude,
rapid oscillations of both quantities. Considering a toy two-
level model with only the off-resonant coupling present pre-
dicts population oscillations of period �2�� /� and amplitude
���	23 � /2�, in agreement with the numerical results. The
small deviations of �11 and �22 from their dark-state values
give rise to absorption into �3� and thus loss. In the toy
model, an off-resonant coupling can be accounted for as an
ac Stark shift. In particular, 
1 and 
2 are predicted to shift
by ±���	23�2 /4�, respectively. This results in an effective
shift of the two-photon detuning �2 which can be compen-
sated.

Stated in terms of our exponential loss language, the loss
rate RL

��2�, Eq. �13�, is still valid but the two-photon detuning
�2 should be replaced by �2+�ac

�12�, where

�ac
�12� =

��	23�2

2�
. �21�

In Fig. 9�c� we plot the population remaining versus �13
�keeping �23=0� for three different values of field intensities.
The solid curves show the theoretical prediction based on the
predicted ac Stark shift. They are in good agreement �the
overestimate of loss at the lowest intensities with some de-
tuning is due to the damping of the absorbing, that being too
weak to efficiently keep the SQC in the dark state�. Impor-
tantly, if one adjusts the field frequencies, one can com-
pletely avoid loss due to the crosstalk coupling. Strictly
speaking, there is a small loss if �2� decays at some small rate
�2

�t�; however, this loss is much smaller than the loss already
predicted from the associated decoherence �18�.

B. Effect of off-resonant radiation coupling to an additional
excited level

The last important situation we consider is that of cou-
pling to an additional excited level �e�, coupled off-
resonantly to states �1� and �2� via the two applied fields a
and b, thus forming a “double-�” system,48 as diagrammed
in Fig. 10�a�. As we will see, the extra coupling gives rise to
ac Stark shifts in much the same way as we saw in Sec. V A.
In addition, because �e� �unlike �2�� is quickly decaying, the

coupling gives rise to some population loss even when the ac
Stark shift is compensated.

Dropping the RWA with respect to terms coupling to level
�e� and defining �3e	
e−
3, the Hamiltonian �using a frame
�e=�13+�3e� is

H =


2�
0 0 	13

* �1
*	13

*

0 − 2�2 	23
* �2

*	23
*

	13 	23 − 2�13 − i�3
�t� 0

�1	13 �2	23 0 − 2��13 + �3e� − i�e

� ,

�22�

with �i	xi4 /xi3. We have assumed some large open loss
channel �e.

In the case where only one of the couplings is present
��1=0 or �2=0�, the effect is simple to calculate. When �1
=0, one can consider the Schrödinger evolution ċe from Eq.
�22� and adiabatically eliminate ce to obtain

ce = − i
�2	23c2

2i�3e − �e
, �23�

where we have assumed �3e��13. Substituting this back into
the equation for ċ2 yields

FIG. 10. �Color online� Coupling to an additional excited level.
�a� Schematic of off-resonant microwave coupling of each of states
�1� and �2� to an additional level �e� above the barrier. �b� The
population remaining at 100 ns for the same initial state and relative
field strengths as in Fig. 9. We show the cases 	23= �2�� 60 MHz
�small solid, blue�, 100 MHz �open, green�, and 150 MHz �large
solid, red�. The solid curves show the loss and ac Stark shift pre-
dicted in the text, Eqs. �25�. To isolate and clearly show the effect
we have set �=0 �from Eq. �20�� and used �3e= �2�� 1.5 GHz,
instead of the �2�� 10 GHz we predict for our proposed parameters.
We use x14=0.0054 and x24=−0.0437 and �e=�3

�t�= �2�� 159 MHz.

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN¼ PHYSICAL REVIEW B 73, 104516 �2006�

104516-13



ċ2 = −
i

2
	23c3 − i�2c2 − ��2	23�2� 2i�3e + �e

8�3e
2 + 2�e

2�c2, �24�

revealing that the extra coupling gives rise to a Stark shift
and population decay of �2�. In the large detuning limit
��3e��e�, the Stark shift is ��2	23�2 /4�3e and we have an
effective loss rate from �2�, �2

�e�= ��2	23�2�e /4�3e
2 . Analogous

results occur when �2=0, leading to a Stark shift of the
two-photon resonance of opposite sign. The population loss
rates will in turn contribute to the decoherence and cause
exponential loss from the EIT as discussed in Sec. IV.

When both are present, the shifts and loss rates are not
simply the sum of the two separate contributions, due to
interferences between them. A case where summing the two
contributions clearly does not work is �1=�2 �equal dipole
ratios�. In this case �and only in this case� the dark state
c2 /c1=−	13/	23 is also completely decoupled from �4�.
Thus no population loss or Stark shift is induced in this case.
To obtain an expression in the general case, we use the fol-
lowing procedure. We adiabatically eliminate c3 and ce from
the Schrödinger equation �22�, obtain the 2�2 evolution ma-
trix for c1 and c2, and then solve for the eigenvalues of this
matrix. One of the values has a large imaginary part �which
reduced to 	2 /�3

�t� in the limit �1=�2=0� and corresponds to
the absorbing state. The other has a small imaginary part
which vanishes when �1=�2=0 and corresponds to the dark
state. We investigated the imaginary part of this eigenvalue
in the limit that 	2 /�3

�t���13,�23 and �i�e /�3e�1 and then
minimized this expression with respect to the two-photon
detuning �2 �when �23=0� to obtain the Stark shift. The loss
rate and shift of the resonance obtained were

RL
�e� =

�	13�2�	23�2

	4

	2�e

4�3e
2 + �e

2 ��1 − �2�2,

�ac
�e� = −

�3e

4�3e
2 + �e

2 ��1 − �2���1�	13�2 + �2�	23�2� . �25�

These expressions reduce to the simpler cases above ��1=0
or �2=0� and also disappear when �1=�2. Interestingly, the
relative sign of the dipole moments plays an important role.
For example, if �1=−�2, the loss rate is actually twice what
one would expect from the sum of the individual couplings.
In this case, the dark state �D for �3� is actually the absorb-
ing state for �4�.

In Fig. 10�b� we plot the population remaining versus
detuning �13 for three different field intensities in the system
we have been considering, but now considering the coupling
to the additional level �e�. The dots show numerical propa-
gation of the density matrix equations corresponding to Eq.
�22�. Note that to isolate the effect studied at present, we
have ignored the crosstalk considered in Sec. V A �by setting
x12=0� and set the pure dephasing �12=0. The solid curves
then show the analytic estimate based on the Stark shifts and
loss rates �25�. One sees excellent agreement.

It should be noted that this analysis should be able to
account for the effect of multiply excited levels ej by simply
summing their contributions � jRL

�ej� and � j�ac
�ej�. Because of

the large frequency differences between each successive

level, coherent interference between contributions from dif-
ferent �ej� will not occur.

VI. CONCLUSION

We have described in detail a proposal for demonstrating
a quantum optical effect, EIT, in a SQC. In this context, EIT
will manifest itself as the suppression of photon-induced tun-
neling from stable states �1� , �2� through some readout state
�3�, due to quantum-mechanical interference for two paths of
excitation. This provides a method of unambiguously dem-
onstrating phase coherence in these systems. We have pro-
vided a thorough and mostly analytic treatment of EIT in the
presence of complicating effects due to decoherence and
multiple levels in SQC’s, which will be important in guiding
experimental implementation and observation of EIT and
other quantum interference effects.

We analyzed in detail first the basic considerations of EIT,
such as imperfect dark-state preparation and one- and two-
photon detuning, and determined the expected experimental
signatures. Under appropriate conditions, we obtained an ex-
pression for the total population as a function of time, Eq.
�11�, which describes a fast loss of the absorbing component,
followed by a small exponential loss of the system. Over
shorter times, EIT thus provides a method to confirm the
successful preparation �and coherence� of the particular dark
state defined by the microwave fields applied. For longer
times, the observed loss rate will be a function of both the
detuning from two-photon resonance and decoherence ef-
fects. We also discussed the important issue of how the mea-
surement state �4� plays a role in the decay of the readout
state �3� and saw how the biasing condition of these levels
and the SQUID measurement rate can have a large effect on
the parameters of the effective three-level system.

We then discussed in detail how decoherence due to
dephasing of the qubit coherence, incoherent population loss
or exchange, and tunneling of levels through the barrier af-
fects the loss rate. Measuring these loss rates can then be a
powerful tool which sensitively probes these various pro-
cesses. We obtained the coefficients for the loss rates, which
depend differently on the field strengths, depending on the
underlying decoherence processes. For the case of primarily
coherent resonant tunneling, we found that the EIT will ex-
hibit a qualitatively different double-peaked structure. Prob-
ing these effects with EIT can aid in understanding and mini-
mizing decoherence and give information about the full
multilevel structure of the SQC. A potentially interesting fu-
ture investigation is to learn the signature from coupling to
other quantum degrees of freedom, such as the microresona-
tors postulated in Ref. 27.

Finally we have found that the microwave fields them-
selves can cause additional loss rates and ac Stark shifts of
the EIT resonance which must be accounted for when one
uses stronger field strengths. Importantly, we found that these
effects can become more pronounced with 	2, meaning that
there will be some intermediate field strength which balances
these considerations with the decoherence and detuning ef-
fects. Also, we showed how these effects could be mitigated
by proper compensation of the Stark shifts.
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