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We show that rotonlike excitations are thermally induced in a two-dimensional dilute Bose gas as a conse-
quence of the strong phase fluctuations in two dimensions. At low momentum, the rotonlike excitations lead for
small enough temperatures to an anomalous phonon spectrum with a temperature-dependent exponent remi-
niscent of the Kosterlitz-Thouless transition. Despite the anomalous form of the energy spectrum, it is shown
that the corresponding effective theory of vortices describes the usual Kosterlitz-Thouless transition. The
possible existence of an anomalous normal state in a small temperature interval is also discussed.
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I. INTRODUCTION

Superfluidity in interacting Bose systems has been a fas-
cinating research topic for several decades. After the
achievement of Bose-Einstein condensation in dilute atomic
gases,1 many of the remarkable properties of superfluid 4He
were also observed in these weakly interacting systems, such
as vortices and Josephson oscillations.2 In order to under-
stand their superfluid properties, it is necessary to clarify the
role of elementary excitations in determining these proper-
ties. According to a celebrated criterion due to Landau, a
Bose gas without interactions cannot be a superfluid, since
its spectrum �p= p2 /2m makes it indifferent to Galilei trans-
formations. A superfluid, on the other hand, is resistant to a
slowdown of molecules due to the loss of Galilei invariance.
A Bose system with the relativistic looking excitation spec-
trum Ep=cp has this property, thus being a superfluid by
Landau’s argument. Thus, phononlike excitation spectra are
an essential part of a superfluid.

In superfluid helium, which is a strongly interacting Bose
system, the interatomic potential has an attractive short-
range part over a distance a0, the average interatomic dis-
tance. This sets the scale of a further important set of exci-
tations. Scattering experiments of neutrons show that around
a momentum p0�1/a0 the spectrum behaves like Ep=�
+ �p− p0�2 /2m*. These elementary excitations are called ro-
tons.

Feynman3 was the first to recognize the importance of
rotons for a superfluid. In modern language, Feynman’s
theory describes rotons as a result of large quantum phase
fluctuations at low temperatures. These produce small vortex
loops of size �a0. At higher temperatures where thermal
fluctuations take over, the vortex loops combine to larger
thermally excited vortex loops which profit from the high
configurational entropy of linelike excitations. At the critical
� point, these loops become infinitely long and destroy the
order of the superfluid.4

In two dimensions, phase fluctuations are so strong that
they destroy the long-range order at any temperature.5 As
noted first by Kosterlitz and Thouless �KT�,6 there still exists
a phase transition driven by phase fluctuations. At low tem-
perature, a film of superfluid 4He contains vortex-antivortex
pairs bound by a Coulomb attraction, whose unbinding

causes the KT transition. One of the most important predic-
tions of this theory is the universal jump to zero of the su-
perfluid stiffness at the critical temperature.7 This destroys
the excitations of energy E=cp and thus the superfluidity.

The increased relevance of phase fluctuations in two di-
mensions suggests that Feynman’s rotons are more abundant
than in three dimensions. We want to argue that this is indeed
the case: in spite of the weak interactions, a dilute Bose gas
possesses rotonlike excitations which are the precursors of
the high-temperature vortices that lead to a KT phase transi-
tion. This is quite remarkable since, contrary to superfluid
helium, the bare interaction does not contribute with an at-
tractive part to fix the size of p0.

The plan of the paper is as follows. In Sec. II we briefly
review the known results of the t-matrix formalism in d di-
mensions for dilute Bose gases. Section. III contains most of
the main results of the paper. There we apply the so-called
dielectric formalism8,9 to the two-dimensional dilute Bose
gas. We will essentially work out a random phase approxi-
mation �RPA� in two dimensions. Since the dielectric formal-
ism is well known in three-dimensional applications, we will
not discuss its derivation here, referring the reader instead to
the literature. The focus will be on the application of the
method to two dimensions. From our calculations a new,
temperature-dependent, excitation spectrum emerges:
namely,

Ep =��p
2 + 2g2n�p�1 −

Tm

�n
ln�pa�� . �1�

We will show that the above spectrum allows for thermally
excited rotonlike excitations and that its low-momentum be-
havior exhibits an anomalous power behavior with a
temperature-dependent exponent �0�T�. Remarkably, in the
two-dimensional dilute Bose gas at finite temperature, the
RPA analysis will lead to closed-form analytic results includ-
ing rotonlike excitations. In Sec. IV we discuss the effect of
phase fluctuations in the system. Our analysis in this section
will allow us to derive the approximate critical temperature
of the system as �0�Tc�=1/4. The actual critical temperature
is determined in the usual way following the Kosterlitz-
Thouless vortex unbinding mechanism.6 It will also be
shown that a crossover temperature T* exists, above which
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our anomalous spectrum becomes unstable. Section V con-
cludes the paper. The whole discussion is supplemented with
two appendixes containing calculational details.

II. EFFECTIVE INTERACTION AT ZERO TEMPERATURE

In general the effective interaction for any dimension d
�4 depends on a momentum scale p̄ associated with the
energy of the scattered particles. At zero temperature the
effective interaction in d dimensions reads

g�p̄� =
4�d/2ad−2/m

22−d��1 − d/2��p̄a�d−2 + ��d/2 − 1�
, �2�

where m is the reduced mass of the scattered particles and a
is the s-wave scattering length. The above result is essen-
tially exact at zero temperature and corresponds to a geomet-
ric sum of ladder diagrams which gives the only nonvanish-
ing contribution to the vertex function.10

From Eq. �2� we derive the exact renormalization group �
function for the dimensionless coupling g̃�p̄�=mp̄d−2g�p̄�:

��g̃� � p̄
�g̃

�p̄
= �d − 2�	g̃ +

d��− d/2�
2d+1�d/2 g̃2
 . �3�

For 2	d�4 the only fixed point is g̃*=0. On the other hand,
for d�2 a nontrivial fixed point located at

g̃* = −
2d+1�d/2

d��− d/2�
�4�

exists. Thus, d=2 is the upper critical dimension for the di-
lute Bose gas. Writing d=2−
 and expanding Eq. �4� for
small 
, we obtain

g̃* � 2�
 . �5�

In the dimension interval 2�d�4 we can easily take the
limit p̄a→0 in Eq. �2� to obtain

g0 =
4�d/2ad−2

��d/2 − 1�m
. �6�

For d=3 the above equation reproduces the familiar formula
g0=4�a /m. For d=2, however, we cannot set p̄a=0. In two
dimensions Eq. �2� becomes

g2D�p̄� =
2�/m

ln 2 − � − ln�p̄a�
, �7�

where � is the Euler constant. Equation �7� is in agreement
with previous work.11,12

The first theories for the two-dimensional dilute Bose gas
were developed by Popov13 and Schick.14 More recently, an
improved version of Popov’s theory was presented by Stoof
and collaborators.15,16 In Popov’s approach,13 the bare inter-
action g0��x� is replaced by an effective interaction g��x�
determined by a t matrix, leading in d dimensions with d
� �2,4� to17

gd =
4�d/2ad−2/m

22−d��1 − d/2��nad�d−2 + ��d/2 − 1�
, �8�

where n is the density and a the s-wave scattering length.
The above interaction corresponds precisely to the one given

in Eq. �2�, where we have set p̄a=nad. For d→2 we obtain
the two-dimensional coupling constant of the Popov-Schick
theory:13,14

g2 � lim
d→2

g = −
2�/m

ln�e�na2/2�
, �9�

where � is the Euler-Mascheroni constant. The logarithm in
the denominator implies that the effective repulsion de-
creases only very slowly with decreasing density.17 Fisher
and Hohenberg17 have shown within the Popov-Schick
theory that the dilute limit nad1 of the d�2 theory must
be replaced for d=2 by ln ln�1/na2��1.

III. DIELECTRIC FORMALISM IN d=2

The t-matrix result �2� incorporates, via a Lippmann-
Schwinger integral equation, the sum of all ladder diagrams.
In this section we take into account the sum of bubble dia-
grams of the plasmon type,18 which are nonvanishing at fi-
nite temperature. This corresponds to the random phase ap-
proximation, which sums geometrically the diagrams shown
in Fig. 1. This approximation has often been applied in d
=3 dimensions.8,9 In the RPA the vertex function containing
the effects of both resummations is given explicitly in d di-
mensions by

��i�,p� =
gd

1 − gd�̃�i�,p�
, �10�

where the polarization bubble is given by

�̃�i�,p� =
1

�
�

n
� ddq

�2��dG0�i� + i�n,p + q�G0�i�n,q� ,

�11�

with G0�i� ,p�=1/ �i�−�p�. The chemical potential is can-
celed by the Hartree contribution.17 The denominator of Eq.
�11� determines the regular part 
r�i� ,p� of the dielectric
function 
�i� ,p� renormalizing the density correlation
function—i.e.,

FIG. 1. Feynman diagram representation of the vertex function,
Eq. �10�. The dashed line represents the bare interaction. The vertex
function is obtained as a geometric series of polarization bubbles.
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����i�,p� =
��i�,p�

�i�,p�

, �12�

where


�i�,p� = 1 − gd��0�i�,p� + �̃�i�,p�� , �13�

with

�0�i�,p� =
2n�p

�i��2 − �p
2 �14�

contributing to the singular part of the dielectric function.9

The regular contribution, being given by a particle-hole dia-

gram, vanishes at zero temperature. We will treat �̃�i� ,p� in
the so-called classical approximation, where the Bose-
Einstein distribution function nB�x��1/ �e�x−1� is replaced
by nB�x��T /x. Thus, the classical approximation is valid in
the limit p�T1, where �T= �2mT�−1/2 is the thermal wave-
length. Therefore, we obtain in the limit p�T1 the result

�̃�i�,p� = − Adm2Tpd−4�ei��d−2�/2�1 − i�/�p�d−3

+ e−i��d−2�/2�1 + i�/�p�d−3� , �15�

with Ad=22−d�−d/2��d /2−1���3−d�. A derivation of Eq.
�15� using Feynman parameters is given in the Appendix.
For d=3, this reduces to the well-known result8,9

�̃�i�,p� =
d=3

− i
Tm2

2�p
ln i� + �p

i� − �p
� . �16�

In d=2 dimensions Eq. �15� has a pole associated with a
logarithmic short-distance divergence. We will remove this
divergence using the s-wave scattering length as short-
distance cutoff. This leads to

�̃�i�,p� =
d=2

−
2mT

�

�p ln�pa�
�i��2 − �p

2 . �17�

The spectrum of elementary excitations is obtained from the
poles of ����i� ,p�.9,19,20 At zero temperature, only �0�i� ,p�
contributes, and we recover the usual Bogoliubov spectrum.

The excitation spectrum is obtained from the pole of the
density correlation function, which corresponds to the van-
ishing of the dielectric constant �13�. In this way we obtain
the excitation spectrum announced in the Introduction:

Ep =��p
2 + 2g2n�p�1 −

Tm

�n
ln�pa�� . �18�

The above energy spectrum possesses a thermally induced
rotonlike minimum. The excitation spectrum is shown in Fig.
2 for a suitable set of parameters.

The approximate position of the roton minimum can be
determined in the following way using the Landau criterion
for superfluidity. According to the Landau criterion, the criti-
cal velocity above which excitations appear in the fluid is
given by the minimal value of the ratio Ep / p. This minimum
value corresponds to the point p= p0 for which

dEp

dp
=

Ep

p
. �19�

On the other hand, the energy spectrum �18� satisfies the
equation

dEp

dp
=

Ep

p
+
�p

pEp
�p −

Tmg2

�
� . �20�

The point p0 for which Eqs. �19� and �20� coincide is deter-
mined by the vanishing of the second term on the right-hand
side of Eq. �20�—i.e.,

p0�T� =
1

aT
= m�2Tg2

�
. �21�

The above value of p corresponds approximately to the po-
sition of the rotonlike minimum of the excitation spectrum
�18�. The T-dependent length scale aT nearly replaces the a0
of bulk 4He.

The consistency of the calculation leading to the spectrum
�18� can be checked by computing the spectrum also from
the pole of the anomalous propagator. It is well known that
the pole of the propagator should be the same as the one
from the density correlation function,9,20 although most ap-
proximations fail to fulfill this requirement. After analyti-
cally continuing to real frequencies, we obtain that the pole
of the propagator is given by the solution of the equation8,9

�2 − �p
2 − 2n�p���,p� = 0. �22�

The above equation is a generalization of the Bogoliubov
result for the excitation spectrum. Indeed, it corresponds to
an improvement of the Bogoliubov result where the coupling
constant g2 is replaced by the vertex function �10�.8 Solution
of Eq. �22� with the polarization bubble �17� gives precisely
the energy spectrum �18�.

The excitation spectrum �18� has another interesting prop-
erty in the low-momentum regime, which for mg2 /��1 is
defined by

p2  p0
2�T� =

2m2Tg2

�
�

1

�T
2 = 2mT 4�n . �23�

In the above low-momentum regime the logarithm gives rise
to an anomalous power behavior

FIG. 2. The RPA-corrected excitation spectrum of Popov-Schick
theory exhibiting a rotonlike minimum. The parameters in a system
of units such that kB=�=1 are m=0.5 cm−2 sec, n=0.01 cm−2, T
=1.2 sec−1, and a=2 cm.
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Ep ��g2n

m
a−Tm/2�np1−Tm/2�n. �24�

The exponent of p in �24� can be rewritten as

��T� � 1 −
Tm2

2��s�0�
= 1 − �0�T� , �25�

where �s�0�=mn is the superfluid mass density at zero tem-
perature and �0�T��Tm2 /2��s�0�. Interestingly, precisely
the same exponent arises in the spin-wave treatment of clas-
sical phase fluctuations in the study of the KT transition. We
will reexamine this analysis in the next section, where it will
also be shown that despite the anomalous scaling of the spec-
trum, the KT transition occurs as usual at higher tempera-
tures, in agreement with the discussion of Ref. 16. This is to
be expected, since the KT transition actually occurs through
a vortex-antivortex unbinding mechanism.

The elementary excitations described by Eq. �24� are
stable only for �0�T��1—i.e., for T�2��s�0� /m2�T*.
Note that the low-momentum inequality �23� already re-
quires TT*. But this condition can be softened to just T
�T*, in which case Eq. �24� is still approximately valid up to
logarithmic corrections. The role of the temperature T* will
be discussed later.

It is instructive to calculate the low-momentum contribu-
tion to the superfluid density following from �24�. Since vor-
tices are not included in the above calculation, the result will
show only the anomalous phonon contribution to the so-
called background superfluid density, �s0. The calculation is
based on the Landau prescription,2 according to which the
superfluid density is �s0

ph�T�=�−�n0
ph�T�, where �n0

ph�T� is the
anomalous phonon contribution to the normal fluid density.
From the Landau formula the normal background fluid den-
sity is given by

�n0 =
�

d
� ddp

�2��d

p2e�Ep

�e�Ep − 1�2 . �26�

Now we set d=2 and insert the anomalous phonon spectrum
�24� into Eq. �26� to obtain

�n0
ph�T� �

T�4−��T��/��T�

8�2

4 − ��T�
��T�c̃4/��T��	4 − ��T�

��T� 
�	4 − ��T�
��T� 
 ,

�27�

where c̃��g2n /m�1/2a−�0�T�. By expanding this in powers of
T, we obtain to leading order the usual phonon contribution,
which in two dimensions is proportional to T3. In deriving
Eq. �27� we have assumed the usual hydrodynamic limit
where the upper cutoff—here p0�T�—is taken to be infinity.

IV. PHASE FLUCTUATIONS

By integrating out small density fluctuations in the hydro-
dynamic limit, we obtain the following effective action for
the phase fluctuations,

Seff = �
0

�

d�	 1

2g2
� d2r�����2 + Heff
 , �28�

where the effective Hamiltonian contains a local and a non-
local interaction between the superfluid velocities vs�� ,r�
=���� ,r� /m:

Heff = Heff
local + Heff

nonlocal, �29�

where

Heff
local =

mn

2
� d2rvs

2��,r� �30�

and

Heff
nonlocal =

1

2
� d2r� d2r�M�r − r��vs��,r� · vs��,r�� ,

�31�

with

M�r − r�� =
mn�2a�−2�0�T���1 − �0�T��
����0�T���r − r��2�1−�0�T�� �32�

being a bilocal mass density, which is obtained from the
Fourier transform of M�p�=nm�pa�−2�0�T�. In the following
discussion we will show that at high temperatures the non-
local part contributes only in a small temperature interval
above Tc. Below Tc the usual effective Hamiltonian for the
phase fluctuations given by Eq. �30� dominates the critical
behavior and the KT transition obtains. The arguments to be
described below consider the scaling behavior of the spin-
wave theory for Heff

nonlocal and the field theory for the vortices,
which consists of a generalized sine-Gordon theory.

Let us consider first the case without the RPA
correction—i.e., in the absence of the nonlocal effective
Hamiltonian. This just corresponds to the usual phonon spec-
trum. In such a situation the effective Hamiltonian is given
simply by Eq. �30�. The spin-wave analysis is in this case
well known.6,21 However, it is useful to review it here in
order to compare with the nonlocal spin-wave regime.

At higher temperatures we can neglect the higher Matsub-
ara modes so that ���=0 and the effective action becomes

Seff =
n

2mT
� d2r����r��2, �33�

and the problem is essentially a classical one. Let us recall
the computation of the correlation function ���r��*�r��� in
this regime and in the absence of vortices �spin-wave
theory�.6,21 In such a case we just have to compute the cor-
relation between the phases:

�ei���r�−��r���� =
1

Z
� D� exp−� d2r�� n

2mT
����r���2

+ iJ�r����r���� , �34�

where J�r��=�2�r�−r�−�2�r�−r��. The Gaussian integral is
straightforward and yields
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�ei���r�−��r���� = exp�mT

n
�G�r − r�� − G�0��� , �35�

where

G�r� =� d2p

�2��2

eip·r

p2 . �36�

In order to evaluate the above Green function we introduce
the regularized Green function

GM2�r� =� d2p

�2��2

eip·r

p2 + M2 , �37�

where M is a regularizing mass to be sent to zero at the end
of the calculations. Evaluating the integral explicitly, we ob-
tain

GM2�r� =
1

2�
K0�Mr� , �38�

where K0�y� is the modified Bessel function of the second
kind. On the other hand, we have

GM2�0� =
1

2�
ln�

M
� , �39�

where �=� /a is the ultraviolet cutoff. Now we can safely
take the limit M→0:

G�r� − G�0� = lim
M→0

�GM2�r� − GM2�0�� = −
1

2�
ln r

a
� + const.

�40�

Therefore,

�ei���r�−��r���� �
1

�r − r���0�T� . �41�

Note that precisely the exponent �0�T� that we have defined
in Eq. �25� arises in the above equation. However, the
mechanism that generates the anomalous behavior in the
above classical spin-wave theory is completely different
from the quantum case discussed in the previous section.
Indeed, there the anomalous scaling of the spectrum arises
due to interaction effects, while in the above calculation it
follows from the analytic properties of the Green function of
a Gaussian classical theory in two dimensions.

Let us now study the classical problem associated with
the effective Hamiltonian at large distances. In this case Eq.
�31� dominates, since the corresponding power of p is
smaller than 2. Once more we neglect the higher Matsubara
modes to obtain the effective action for the classical problem
as

Seff =
1

2T
� d2r� d2r�M�r − r��vs�r� · vs�r�� , �42�

where vs�r��vs�0,r�. The correlation function between the
phases has again the form �35�, except that the Green func-
tion is now given by

G�r� =� d2p

�2��2

eip·r

p2M�p�
. �43�

We have

G�r� =
a2�0�T�

�2��2 �
0

2�

d��
0

�

dp
eipr cos �

p1−2�0�T�

=
a2�0�T�

2�
�

0

�

dp
J0�pr�

p1−2�0�T� , �44�

where J0�y� is a Bessel function of the first kind. As before,
we use a ultraviolet cutoff �=� /a to evaluate G�0�:

G�0� =
�2�0�T�

4��0�T�
. �45�

We obtain finally

G�r� − G�0� =
1

4�
�2a

r
�2�0�T� ���0�T��

��1 − �0�T��
−
�2�0�T�

�0�T� � ,

�46�

which for small �0�T� can be rewritten as

G�r� − G�0� �
1

4��0�T�	2a

r
�2�0�T�

− 1
 , �47�

and in the �0�T�→0 limit Eq. �40� is obviously reproduced.
For arbitrary values of 0��0�T��1 it is not obvious to

see how the KT theory is recovered when the anomalous
phonon spectrum is taken into account. Recall that the loga-
rithmic behavior in Eq. �40� is crucial in the KT argument in
the presence of vortices. Indeed, a simple scaling argument
with free energy of the vortices combined with the results of
spin-wave theory allows us to determine the value of �0�T�
at the critical temperature Tc.

6 A more elaborate argument7,21

using the RG shows that the stiffness is renormalized and
�0�T� becomes ��T�=Tm2 /2��s�T�. However, the value of
��T� at Tc is the same as the value of �0�T� at Tc. Such an
RG analysis led to the celebrated prediction of a universal
jump of �s�T� as Tc is approached from below.7 At first sight
we may think that an anomalous phonon spectrum would
disrupt the whole argumentation due to the form of the cor-
responding nonlocal hydrodynamics �31�. In the following
we will show that this is not the case. To this end it is nec-
essary to proceed in two steps. First, we make an analysis
about the validity of the hydrodynamic description given by
�31�, which will provide us with a lower bound for �0�T�.
Second, we consider a careful analysis of the vortex field
theory associated with this problem. We will see that the
anomalous contribution to the vortex field theory becomes
irrelevant at large distances and that, effectively, the same
vortex field theory as in the KT case holds. This result will in
turn provide us with a physical interpretation of the lower
bound for �0�T�.

Let us then start by discussing in more detail the effective
Hamiltonian �31�. In order to define the mass density �32� we
have to be able to Fourier transform M�p�=nm�pa�−2�0�T�.
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Such a Fourier transformation is only possible if 1 /4
��0�T��1. To see this we consider the integral

I�r� =
1

�2��2�
0

2�

d��
0

�

dp
peipr cos �

p2�0�T� =
1

2�
�

0

�

dp
J0�pr�

p2�0�T�−1

=
1

2�r2�1−�0�T���
0

�

dy
J0�y�

y2�0�T�−1 . �48�

The power of r in the second line of Eq. �48� must be posi-
tive in order to make the above result well defined at large
distances. This gives us once more the upper bound for
�0�T�—i.e., �0�T��1. The lower bound for �0�T� follows
from the asymptotic behavior of the Bessel function for y
large,

J0�y� �� 2

�y
cos�y − �/4� . �49�

Thus, the integrand in Eq. �48� behaves for large y like
�1/y2�0�T�−1/2 and it follows that in order to avoid a power-
like ultraviolet divergence we must have 2�0�T�−1/2�0,
which leads to �0�T��1/4. Therefore, in order to have a
well-defined mass density M�r−r�� the inequality 1 /4
��0�T��1 has to be fulfilled. Note that the upper bound is
associated with a long-distance �infrared� divergence while
the lower bound is to short-distance �ultraviolet� divergence.
We have already seen that saturation of the upper bound
leads to the determination of the temperature T*. On the
other hand, we will give arguments below showing that satu-
ration of the lower bound determines the actual critical tem-
perature of the system.

At higher temperatures, near the phase transition, we are
allowed to keep only the zero Matsubara mode, such that the
field theory becomes two dimensional. The vortices are in-
troduced in the standard way,4,7 and a duality transformation
gives the following generalized sine-Gordon action for the
dual field theory of vortices:

Sdual =� d2r� d2r�	 T

8�2�
−1�r − r���r��r� · �r���r��

− z�2�r��cos ��r�
 , �50�

where ��r−r��=mn�2�r−r��+M�r−r�� and z is the fugac-
ity of the gas of point vortices. A derivation of the action �50�
is given in Appendix B. Nonlocal gradient terms in sine-
Gordon theory have recently been discussed in a different
context,22,23 where a renormalization group analysis shows
that a local gradient term ����2 with a positive coefficient is
generated.23 The nonlocal contributions can be rewritten as a
sum of higher-gradient terms which are all irrelevant at large
distances. Let us state this in more simple terms. In momen-
tum space the nonlocal gradient has the form

a2�0�T�T

8�2nm
� d2p

�2��2 p2�1+�0�T����p���− p� . �51�

Thus, as a local gradient term is generated, we have that for
small p �large distances� the p2 term dominates over the

p2�1+�0�T�� one and the anomalous contribution can be ne-
glected. This argument shows that the dual theory �50� actu-
ally has a KT transition, since the fluctuation-generated p2

term is dominant in the infrared, leading effectively to a
sine-Gordon theory of the usual type. Thus, our theory will
ultimately be in agreement with the analysis of Ref. 16
where no anomalous dimension arising from RPA corrections
is considered.

In the low-temperature phase, where 0��0�T�	1/4, the
hydrodynamic description via the effective Hamiltonian �31�
breaks down, since the inverse Fourier transform of M�p� is
no longer defined. This regime is equivalent to the one in the
dual theory where the nonlocal gradient term becomes irrel-
evant. This means that the effective Hamiltonian of the clas-
sical theory in this range of temperatures is actually given by
Eq. �30�. In other words, when the anomalous sine-Gordon
theory becomes at large distances effectively the usual sine-
Gordon theory �remember that a local gradient term is gen-
erated by fluctuations�, we can dualize it back to obtain the
effective original theory as given by Eq. �30�.

In a KT transition the critical temperature Tc is deter-
mined from the equation ��Tc�=1/4 or, equivalently, Tc

=��s�Tc� / �2m2�.7 Note that �0�T� corresponds to a low-
temperature approximation to ��T�. Thus, we can interpret
that saturating the lower bound in the spin-wave inequality
1 /4��0�T��1 leads to an approximate value of the actual
critical temperature for the KT transition. Therefore, we have
that

Tc �
��s�0�

2m2 . �52�

We want to emphasize that the agreement of the value of
�0�T� at the lower bound of the inequality 1 /4��0�T��1
with the value ��Tc�=1/4 obtained from the KT theory is
not a simple coincidence. It follows from the fact that the
temperature at which �0�T�=1/4 corresponds to the onset of
the regime where the nonlocal term of the generalized sine-
Gordon theory becomes irrelevant.

We have obtained �0�T� as a correction to the power of
the excitation spectrum at finite temperature by using a clas-
sical approximation to evaluate the density correlation func-
tion. Thus, we have simply accounted for a classical effect in
a quantum calculation; i.e., our calculation of the spectrum at
finite temperature is actually a semiclassical one. In the KT
theory the value ��T�=1/4 follows due to a conspiracy be-
tween spin-wave theory and the statistical mechanics of
vortices.6 In our case, a similar result obtains: our bound for
�0�T� is derived by analyzing the nonlocal spin-wave theory,
while the conclusion that �0�T�=1/4 determines the critical
temperature needs additional analysis involving the vortex
field theory �50�. A more technical explanation follows by
recalling that density and longitudinal phase fluctuations are
related through the Ward identities.20 More precisely, in Ref.
20 it is shown that the density correlation function is related
through an exact identity to the longitudinal component of
the current correlation function, which corresponds to the
response of the system to the longitudinal phase fluctuations
or, in other words, spin waves. Since �0�T� is determined by
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the density correlation function, by taking the classical limit
of this identity we obtain a relation between �0�T� and the
spin-wave response. The vortices, on the other hand, are re-
lated to the transverse phase fluctuations. It can be shown20

that the transverse component of the current correlation func-
tion decouples from all other correlation functions. This re-
sult holds also in the classical limit, and that is the reason
why the classical statistical mechanics of vortices alone can
determine the phase transition.

From the lower and upper bounds to �0�T� we obtain that
the actual Tc obtained from the KT theory is smaller than T*.
Indeed, we have that

Tc =
��s�Tc�

2m2 �
��s�0�

2m2 �
2��s�0�

m2 = T*. �53�

Since Tc�T*, it seems to exist a region Tc�T�T* where
the system is not a superfluid, while not being a normal fluid
either, due to the anomalous exponent. This region would be
actually very small: from the inequality �23� we see that a
more correct statement would be to claim the existence of a
temperature region Tc�TT* where an anomalous normal
state occurs. This state can be thought of as a quasiconden-
sate without phase coherence. In this respect, it bears some
resemblance to the pseudogap state in high-Tc
superconductors,24 in which the phase fluctuations above the
superconducting critical temperature play a similar role.25,26

In the pseudogap phase the spectrum is not like the one of a
normal metal, although the system is not in a superconduct-
ing phase. However, we should warn the reader that the ac-
tual physics of the pseudogap state is likely much more com-
plex and that such an analogy must be considered with
utmost caution.

V. CONCLUSION

In this paper we have shown that temperature effects in-
duce rotonlike excitations in a dilute two-dimensional Bose
gas. From this result it followed that for nonzero low tem-
peratures the spectrum is not of the phonon type and has an
anomalous scaling with temperature-dependent exponent.
Thus, we have obtained in the quantum regime a situation
which is reminiscent of the Kosterlitz-Thouless transition:
namely, a continuously varying exponent.

It would be interesting to extend this analysis to strongly
coupled two-dimensional Bose systems such as films of 4He,
where experimental data have so far been fitted by a super-
fluid density whose vortex-independent background contri-
bution is calculated from the Bogoliubov spectrum.27 It was
found that the phonon contribution alone with its T3 behavior
�recall that for a phonon spectrum we find in general a con-
tribution behaving like Td+1 in d dimensions� is not consis-
tent with the temperature dependence of the data, thus call-
ing for an improvement of the theory. In order to apply our
approach to 4He films we must derive the t matrix for the
actual atomic interaction in helium beyond the dilute limit.
Preliminary work was done some time ago,28 and phonon as
well as roton excitations of the spectrum were obtained.
However, these works concentrate only on the low-

temperature properties. We believe that thermally induced
rotonlike excitations should also occur in this case, though in
a more complicate manner. Certainly, such strong-coupling
problems require more powerful calculation methods—for
example, field-theoretic variational perturbation theory as de-
veloped in Ref. 29, which has led to the most accurate pre-
dictions of critical exponents so far.31
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APPENDIX A: CLASSICAL LIMIT OF THE
POLARIZATION BUBBLE

Equation. �11� can be rewritten as

�̃�i�,p� = 4m2� ddq

�2��dnB q2

2m
� 1

2mi� − p2 − 2p · q

−
1

2mi� + p2 − 2p · q
� . �A1�

In the classical approximation we write nb�x��T /x and the
polarization bubble can be rewritten as

�̃�i�,p� = 4m2T�I+ − I−� , �A2�

where

I± = − i� ddq

�2��d

1

2m� + i�2p · q ± p2�
1

q2 . �A3�

The integrals I± can be evaluated using the Feynman
parameters,30

I± = − i�
0

�

d�1�
0

�

d�2
ddq

�2��de−�1�2m�±ip2+2ip·q�e−�2q2
.

�A4�

After evaluating the Gaussian integral over q we obtain

I± = −
i

�2��d�
0

�

d�1�
0

�

d�2 �
�2
�d/2

e−�1�2m�±ip2�e−p2�1
2/�2

= �
�±i�d−2

2d�d/2 ��d/2 − 1���3 − d�pd−41�
2mi�

p2 �d−3

.

�A5�

Substituting the above expression back into Eq. �A2� we ob-
tain Eq. �15�.

APPENDIX B: DERIVATION OF THE ANOMALOUS SINE-
GORDON ACTION

At sufficiently high temperatures the Matsubara time de-
pendence of the phase ��� ,r� can be neglected and the effec-
tive action �28� can be written simply as
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Seff �
1

2T
� d2r� d2r�M�r − r��vs�r� · vs�r�� . �B1�

Although the duality transformation can also be performed in
the continuum, a more technically correct analysis is ob-
tained in the lattice formalism.4 The lattice version of the
above action suitable for a duality transformation is given by
the Villain form

SL =
1

2m2T
�
i,j

Mij���i − 2�ni� · ��� j − 2�n j� , �B2�

where we have set the lattice spacing to unit and the compo-
nents of ��i are understood as lattice derivatives. The field ni
is an integer field defined on the lattice. The partition func-
tion is then given by

Z = �
�ni�
�

−�

�

�
i

d�i

2�
exp�− SL� . �B3�

The first step in the duality transformation is the introduction
of an auxiliary field through a Gaussian completion—i.e.,

exp	−
1

2m2T
�
i,j

Mij���i − 2�ni� · ��� j − 2�n j�

� �

−�

�

�
k, 

dbk exp	m2T

2 �
i,j

bi�M−1�ijb j − i�
j

b j · ��� j

− 2�n j�
 . �B4�

Next we apply the Poisson formula

�
n=−�

� �
−�

�

dxf�x�ei2�nx = �
m=−�

�

f�m� �B5�

in order to convert the integral over the real auxiliary bi field
into a sum over an integer field Ni. After this manipulation
the periodic field �i can be easily integrated out after a sum-
mation by parts. This leads to the constraint � ·Ni=0. Up to
unimportant overall factors the partition function becomes

Z = �
�Ni�

��·Ni,0
exp	−

m2T

2 �
i,j

Ni�M−1�ijN j
 . �B6�

In two dimensions the constraint is solved through

Ni = � !�!li. �B7�

The resulting partition function will be the one of a neutral
Coulomb gas in the lattice. By applying the Poisson formula
once more, we obtain

Z = �
�si�
�

−�

�

�
k

d�k exp	−
m2T

2 �
i,j

� �i�M−1�ij� � j

− i�
j

2�sj� j
 . �B8�

The integer fields sj represent the point vortices of the theory.
We can now introduce the vortex fugacity z to build a grand-
canonical ensemble of vortices.21 The most relevant vortex
configurations correspond to sj = ±1. After the rescaling � j
→� j /2� and taking the continuum limit of the grand-
canonical ensemble theory, we obtain Eq. �50�.
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