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The charge distribution in a thin mesoscopic superconducting ring with enhanced surface superconductivity
�of a negative surface extrapolation length b� is investigated by the phenomenological Ginzburg-Landau
theory. The nature of charge distribution is considerably influenced by the extrapolation length b, the inner and
outer radius, and the applied magnetic field. We find a complete negative charge distribution besides the
conventional charge distributions of charging vortex states in the Meissner state and the giant vortex state. In
addition, one type of charge distribution that only exists in a giant vortex state can also be found in the
Meissner state for a ring with a small inner radius. For the multivortex state, we find that the stable multivortex
state can exist in small mesoscopic superconducting rings that we studied. The charge distributions for different
kinds of multivortex states are given.
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I. INTRODUCTION

The vortex charge in macroscopic type-II superconductors
has attracted a lot of attention. In general, it was recognized
that spatially inhomogeneous chemical potential can result in
a charge distribution, which makes the vortex core charged
up.1,2 In 2000, Kumagai et al. first reported the experimental
evidence for the presence of the vortex charge by the nuclear
magnetic resonance method.3 Since then, various methods,
such as the Ginzburg-Landau �GL� theory,4 the
Bogoliubov-de Gennes model,5–7 and coupled Bernoulli and
Poisson equations8 were presented to understand the experi-
mental results. Further investigation on this subject was sug-
gested by Yampolskii et al.9 in mesoscopic superconducting
disks and cylinders in the framework of the phenomenologi-
cal Ginzburg-Landau theory. It was shown that, even in the
Meissner state, the charge redistribution still exists, which is
in contrast to what happened in bulk superconductors, and
the charge redistribution is a consequence of the screening
currents near the sample edge which makes it behave like a
vortex which is turned inside out. A mesoscopic sample is
such that its size is comparable to the magnetic field penetra-
tion depth � or the coherence length �. Its physical properties
are considerably influenced by the size and the geometry of
the superconductor. We studied the charge distributions in
thin mesoscopic superconducting rings and found that the
charge near the inner radius of the ring may change its sign
from negative to positive in a giant vortex state with increas-
ing the applied field due to the competition between the para-
magnetic Meissner effect and the diamagnetic Meissner
effect.10

The vortex properties of a mesoscopic superconductor are
also strongly influenced by the boundary condition for the
order parameter. For a superconductor in contact with a me-
dium with surface enhancement or suppression of supercon-
ductivity we have the general boundary condition11,12

n� · �− i�� − A� ����s = i
b ���s, �1�

where n� is the unit vector normal to the sample surface, A� is
the vector potential, � is the order parameter, and b is the

surface extrapolation length which is the effective penetra-
tion depth of the order parameter into the surrounding me-
dium. For both the superconductor-vacuum and the
superconductor-insulator boundary one has b→�, and this
case was extensively studied in numerous papers.9,10,13–23

The case b�0 corresponds to surface suppression of the
superconducting order parameter, for example, the contact of
a superconductor with a normal metal because of the prox-
imity effect. In this case, b is a function of temperature and
behaviors of metal and interface.12,24 The opposite case b
�0 corresponds to surface enhancement of superconductiv-
ity. It can be realized by choosing the suitable material as a
surrounding medium, for example, a superconductor having
a higher transition temperature than the material of the me-
soscopic sample. Another possibility is to use a semiconduc-
tor as a surrounding medium, such that there is an overlap of
the band gap of the semiconductor with the superconducting
gap. The vortex structures of thin mesoscopic disks and cyl-
inders allowing for the enhanced surface superconductivity
were studied in Refs. 25 and 26, respectively. The authors
found that increasing the superconductivity near the surface
leads to higher critical fields and critical temperatures, and
the surface enhancement of superconductivity can stabilize
the multivortex state.

In the present paper we investigate the vortex structure
and the charge redistribution around vortices of thin mesos-
copic rings in a perpendicular magnetic field surrounded by a
medium with enhanced surface superconductivity. The ring
has more than one boundary in comparison with a disk
sample and its vortex properties can be strongly influenced
by the surface enhancement of superconductivity. More com-
plex and interesting features are expected. We extend the
approach in our previous studies10 and present a systematic
study of the charge distribution. We find that the surface
enhancement of superconductivity can increase the negative
charge of the sample and a complete negative charge distri-
bution will present for the Meissner state and the giant vor-
tex state besides conventional distributions of charging vor-
tex states. In addition, in the Meissner state one type charge
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distribution, that can only be found in giant vortex state, can
also exist in a ring with a small inner radius. These charge
distributions are considerably influenced by the surface ex-
trapolation length b, the inner radius Ri and the outer radius
Ro, and the applied magnetic field strength as well. It is also
found that the surface enhancement of superconductivity can
stabilize the multivortex state, and the stable multivortex
state can exist in small rings that we studied. The charge
distributions for the saddle-point state and the stable multi-
vortex state are given finally.

The paper is organized as follows. In Sec. II we present
our theoretical model and give the necessary formalism.
Computations are performed as the ring size and magnetic
field vary. The charge distributions in both the Meissner state
and the giant vortex states are presented in Sec. III, whereas
those in the multivortex states are discussed in Sec. IV, and
some conclusive remarks and discussions are given in
Sec. V.

II. THEORETICAL APPROACH

We consider mesoscopic superconducting rings with outer
radius Ro and inner radius Ri and thickness d surrounded by
a medium which enhances superconductivity at the sample
surface. We restrict ourselves to sufficiently thin rings such

that d�� ,�. In this case, the external magnetic field H� is
uniform and directed normal to the rings plane. The Cooper
pair density ���r���2 is determined from a solution of coupled
nonlinear GL equations for the superconducting order param-

eter ��r�� and the magnetic field h��r��=�� �A� �r��,

�− i�� − A� �2� = � − ����2, �2�

	2�� � �� � A� = j�, �3�

where the density of the superconducting current j� given by

j� =
1

2i
��*�� � − ��� �*� − ���2A� . �4�

We use the cylindrical coordinates r�= �
 ,� ,z� and choose the

gauge A� = �H
 /2�e�
� . 
 is the radial distance from the ring

center, � is the azimuthal angle, and the z axis is taken per-
pendicular to the ring plane, and the ring lies between z
=d /2 and z=−d /2. We measure the distance in units of the
coherence length �=� /�2m�
�, and the vector potential in
c� /2e�, the magnetic field in Hc2=c� /2e�2=	�2Hc, and the
superconducting current in j0=cHc /2��. Where Hc is the
thermodynamical critical field, and 	=� /� is the GL param-
eter.

In a type-II superconductor �	�1/�2�, the “vortex free”
Meissner state becomes energetically unfavorable in com-
parison with a triangle vortex lattice state when the magnetic
field H�Hc1. Khomskii and Freimuth showed that the vor-
tex core should be charged up due to the chemical potential
in the superconducting state breaking the particle-hole sym-
metry which is different from that in the vortex core �normal
region�.1 However, the charge accumulated in the core is

determined by the magnitude of �� /�F�2, where � is the
energy gap and �F the Fermi level, which is small for metal-
lic superconductors. On the other hand, Hayashi et al. sug-
gested that vortices were intrinsically charged up in super-
conductors having a small value of kF�, that is, a fast
variation of wave function.7 Koláček et al. showed that an

FIG. 1. The applied magnetic field H dependence of the radius

* for superconducting rings with outer radius R0 /�=2.0, � /b
=−0.1, d /�=0.1 and inner radius Ri /�=0.0 �a�, Ri /�=0.1 �b�,
Ri /�=0.6 �c� in the Meissner state. Hcncr denotes the critical mag-
netic field, where the complete negative charge region �i.e., the
region I� disappears and HIII denotes the critical magnetic field
where the region III disappears. The inset in �c� is for a supercon-
ducting ring with outer radius R0 /�=2.0, inner radius Ri /�=0.6, and
� /b=0.
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electrostatic potential � is induced by the inhomogeneous
order parameter via27

��
�� = �0„���
���2 − 1… , �5�

where �0= �
� /2e. The distribution of the charge density q�
��
is obtained from the Poisson equation

4�q�
�� = − �2��
�� . �6�

Using the Gauss theorem as well as the boundary condition
�1� and its complex conjugate, the total charge Q is given by:

FIG. 2. The radial dependence
of the Cooper pair density ���
��2,
the charge density q�
�, and the
supercurrent density j�
� when H
=0.48Hc2 and different b values in
L=0 state for rings with outer ra-
dius R0 /�=2.0 and inner radius
Ri /�=0.1 �a�, Ri /�=0.6 �b�.

FIG. 3. The radial dependence
of the Cooper pair density ���
��2,
the charge density q�
� and the su-
percurrent density j�
� when � /b
=−0.1 and different magnetic
fields in L=0 state for rings with
outer radius R0 /�=2.0 and inner
radius Ri /�=0.1 �a�, Ri /�=0.6 �b�.
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Q � −
�
�

8�e
�

v
�2���r���2dV =

�
�
4�eb

�
S

���r���2dS . �7�

So the sample should have a finite total charge whose sign is
determined by the sign of b.

Note added: There exists the surface charge28 on the scale
of the Thomas-Fermi screening length due to the charge
screening effect, which then would influence the profile of
the charge induced by the superconducting state,29 e.g., the
Friedel oscillation in a charge profile,6 and the sign of the
total charge remains unchanged.6 Strictly speaking, the sur-
face charge due to the charge screening effect would contrib-
ute somewhat a net charge to the total charge for a finite
extrapolation length 1/b of nonzero. But, it will, in general,
not change the sign of the total �net� vortex charge, since the
charge distribution oscillates about the “body” charge level
over approximately the distance scale of the Thomas-Fermi
screening length.6,29 On the other hand, when the extrapola-
tion length 1/b tends to zero, the total surface charge, as the
total body charge, must be zero for the electric neutrality of
the sample.

The free energy of the superconducting state is deter-
mined by the expression

F =
2

V
�� dV�− ���2 +

1

2
���4 + �− i�� � − A� ��2

+ 	2	h��r�� − H� 
2� +
1

b
� dS���2
 . �8�

The last term in Eq. �8� is the surface contribution and it
provides continuity of the normal component of the super-
conducting current. One can see that in the b�0 case this
term reduces the free energy, implying the superconductivity
enhanced effect.

We assume ��
� ,z�=�k�k�
��	A exp�ikz�+B exp�−ikz�
,
where A and B are constants, and the wave number �or the
quantum number of z direction� k is determined from the
boundary condition �1� at z=d /2, and −d /2. For the symme-
try of the z axis, we choose A=B, resulting in

kb = i
exp�ikd/2� + exp�− ikd/2�
exp�ikd/2� − exp�− ikd/2�

=
cos�kd/2�
sin�kd/2�

. �9�

For a thin sample, that is d→0, the lowest k is given by:

k2 =
2

bd
, �10�

which is negative when b�0 �the surface superconductivity
enhanced case�. Denote k= i� with �2=−2/bd�0, the wave
function reduces to: ��
� ,z�=��
��cosh��z�.

Since � varies very slowly along the z direction for
�d /b��1, we can average the order parameter over the disk
thickness:

���r��� =
1

d
�

d/2

−d/2

��
��cosh��z�dz = ��
�� ·
sinh��d/2�

�d/2
→ ��
�� .

�11�

The same averaging of Eq. �2� yields for ��
��:

��− i�� − A� �2���
�� = �−
1




�

�




�

�

−

1


2

�2

��2 + iH
�

��
+ �H


2
�2

− �2
��
�� = ��
�� − ��
�����
���2. �12�

Now the boundary condition is given by

� ���
��
�


�

=Ri

= �1

b
��
���


=Ri

,

� ���
��
�


�

=Ro

= � −
1

b
��
���


=Ro

. �13�

III. CHARGES IN THE MEISSNER AND THE GIANT
VORTEX STATES

The giant vortex state has cylindrical symmetry and con-
sequently the order parameter can be written as ��
��
= f�
�exp�iL��. Define

L̂ = −
1




�

�




�

�

+ �L



−

H


2
�2

− 1 − �2, �14�

and

FIG. 4. The phase diagrams H−Ri for the superconducting rings
with outer radius R0 /�=2.0, d /�=0.1 and � /b=−0.1 �a�, � /b
=−0.2 �b� in the L=0 state. The insets are an enlargement of the
region III. The Hnuc denotes the nucleation field.
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FIG. 5. The applied magnetic field H-dependence of the radius 
� for superconducting rings with different inner radius Ri in the L=1
state. We choose R0 /�=2.0, � /b=−0.1, and d /�=0.1. HI and HIII denote the magnetic fields where the sign reversal for the inner charge and
the outer charge occur, respectively. Hcncr

1 and Hcncr
2 denote the critical magnetic fields where the CNCR occurs and disappears, respectively.
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L̂fL,n�
� = �fL,n�
� . �15�

Let x=H
2 /2, and fL,n�x�=xL/2e−x/2g�x�. We can prove that
g�x� can be any linear combination of the two confluent hy-
pergeometric functions �or first and second types of Kummer
functions� M�a ,c ,x� and U�a ,c ,x�. Then

fL,n�
� = �H
2

2
�L/2

exp�−
H
2

4
� � �AM�− �n,L + 1,

H
2

2
�

+ BU�− �n,L + 1,
H
2

2
�
 , �16�

where �n and constants A and B have to be solved numeri-
cally from the boundary condition �13�, and the number n
enumerates the states for the same L value. The eigenvalues

of L̂ are

� = �1 + 2�n�H − 1 − �2. �17�

The order parameter then is expressed as

��
�� = CfL,n�
�exp�iL�� , �18�

and a right multiple constant C will then lead to a minimum
free energy:

F = − �22�d

V

I2
2

I1
, �19�

where I1=�Ri

Ro
d
fL,n
4 �
�, I2=�Ri

Ro
d
fL,n
2 �
�, and the free en-

ergy is measured in units of F0=Hc
2V /8�.

A. Meissner state

First, we study the L=0 state, i.e., the Meissner state. We
consider superconducting rings with the outer radius Ro
=2.0� surrounded by a medium with � /b=−0.1. All numeri-
cal calculations are done for a thickness d /�=0.1, whereas
�� /b��0.5, which are then within the thin ring approxima-
tion. The charge density is measured in units of q0
=�2 /32�me�4. Define 
� a distance from the ring center
where the sign reversal of the vortex charge occurs. Figure 1
plots the phase diagrams of H versus 
� for positive and
negative charge distributions for these rings with Ri=0.0�
�a�, Ri=0.1� �b�, and Ri=0.6� �c�. The inset in Fig. 1�c� is for
� /b=0, i.e., without the enhanced surface superconductivity
effect. From Fig. 1 we can find that for small field there is a
complete negative charge distribution �i.e., the region I�, that
is, the sample is completely negatively charged. However, it
will neither occur in a ring without the enhanced surface
superconductivity 	see the inset in Fig. 1�c�
 nor in a disk
immersed in an insulating medium.9 Interestingly, as the ap-
plied magnetic field is increased to the critical field Hcncr, the
complete negative charge region �i.e., the region I� disap-
pears and the region III, where the signs of the charge near
the inner boundary and the outer boundary are both negative
while the rest region is positive, will occur in a fat ring 	Fig.
1�b�
. This charge distribution can only be found in the giant
vortex state before.9,10 Further increasing the magnetic field,
the region III disappears at the critical field HIII and the
charge near the inner boundary changes to positive, while the
charge near the outer boundary still is negative �i.e., the re-
gion II�. We notice that there is no region III in Figs. 1�a�
and 1�c� and the region I changes to the region II directly
with increasing the field.

FIG. 6. The radial dependence
of the Cooper pair density ���
��2,
the charge density q�
� and the su-
percurrent density j�
� for a ring
with outer radius R0 /�=2.0, inner
radius Ri /�=0.7 in L=1 state
when in �a� fixed magnetic fields
but different b values, �b� fixed b
value but different magnetic
fields.
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These different charge redistributions can be explained as
follows. Figure 2 gives the radial dependence of the Cooper
pair density ���
��2, the charge density q�
�, and the super-
current density j�
� when H=0.48Hc2 in L=0 state corre-
sponding to the rings in Figs. 1�b� and 1�c� with different b
values. Due to the finite radial size of the sample, all distri-
butions are inhomogeneous along the radius of the sample.
In L=0 state, the superconductor expels the magnetic field
by inducing a supercurrent, which tries to compensate the
applied magnetic field in the superconductor and inside the

hole. When there presents no enhanced surface superconduc-
tivity effect, the Cooper pair density is maximum at the inner
boundary and decays towards the outer boundary. So there is
a region of positive charge near the inner boundary and the
negative “screening” charge is created near the outer bound-
ary. Due to the enhanced surface superconductivity, we find
that the Cooper pair density in whole sample increases, but
inside the sample the Cooper pair density is not increasing as
strong as the Cooper pair density near the boundary. Enhanc-
ing the surface superconductivity results in a stronger Meiss-
ner effect, i.e., the magnetic field expulsion becomes more
complete with increasing �� /b�. So the superconductor has to
induce more supercurrent to expel the magnetic field. From
Fig. 2 we get that the current densities in the two samples
both become more negative and the current density near the
outer boundary increases more quickly than the inner bound-
ary. As a result, the negative charge near the outer boundary
increases and is pulled towards the inner boundary with in-
creasing �� /b�. So the complete negative charge region
�CNCR� occurs. For a ring with fixed b value but different
magnetic fields, Fig. 3 gives the radial dependence of the
Cooper pair density ���
��2, the charge density q�
�, and the
supercurrent density j�
� corresponding to the rings in Figs.
1�b� and 1�c�. Because of the enhanced surface superconduc-
tivity, they are both in the CNCR at small field. Increasing
the magnetic field the induced supercurrent becomes more
negative and leads to a depression of the Cooper pair density.
So the negative charge near the inner boundary decreases
while the negative charge near the outer boundary increases
with increasing the field. For a ring with small inner radius,
the Cooper pair density near the outer boundary decreases
with increasing the magnetic field, while near the inner
boundary the Cooper pair density increases initially 	Fig.
3�a�
, i.e., the magnetic field inside the hole is considerably
suppressed due to the the enhanced surface superconductiv-
ity. As a result, the negative charge at the inner boundary
decreases slowly and then the region III will occur. Further

FIG. 7. The phase diagrams of Ri versus HI, HIII, Hnuc, and
Hcncr for superconducting rings with R0 /�=2.0, d /�=0.1, and �a�
� /b=−0.1, L=1, �b� � /b=−0.2, L=1, �c� � /b=−0.1, L=2. Hnuc de-
notes the nucleation field. The solid circles denote the critical inner
radii when the regions of different charge distributions occur or
disappear.

FIG. 8. The nucleation field Hnuc as a function of the outer
radius of rings with Ri /�=0 and different � /b for the L=1 state. The
thin solid curve denotes the upper nucleation field and the thick
solid curve denotes the lower nucleation field.
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increasing the field, the charge near the inner boundary will
become a positive charge completely, but the sign of the
charge near the outer boundary remains �i.e., the region II
will occur�.

Figure 4 shows the phase diagram of Ri versus the critical
magnetic fields Hcncr, HIII and the nucleation field Hnuc for
superconducting rings with an outer radius R0 /�=2.0 and
� /b=−0.1 �a�, � /b=−0.2 �b� in the L=0 state. The Hnuc is the
critical field for the transition between the superconducting
state and the normal state. The insets are an enlargement of
the region III. We find that the critical field Hcncr becomes
larger with increasing �� /b� and changes quickly for a large
inner radius. The region III is very small and can only exist
in rings with a small inner radius. When the inner radius
becomes very large, the region II also disappears, that is to
say, the ring is negatively charged as long as it is in the
superconducting state. In addition, the nucleation field Hnuc
becomes very large when Ri�R0, which is a consequence of
the enhancement of surface conductivity for very small
samples.

B. Giant vortex state

Now, we investigate the giant vortex state. Figure 5 plots
the applied magnetic field H-dependence of the radius 
* for
different superconducting rings with the same outer radius
R0 /�=2.0 and � /b=−0.1 in the L=1 state. The charge distri-
butions become more complicated in comparison with those
shown in Fig. 1 for L=0 state. In Fig. 5�a� for a ring with an
inner radius Ri /�=0, i.e., a disk, there are only two regions:
�i� the region I, where the charge near the inner boundary is
negative and the charge near the outer boundary is positive,
and �ii� the region II, where the charge near the inner bound-
ary and the outer boundary are both negative and the inside
is positive. With increasing inner radius Ri, the region III,
i.e., the charge near the inner boundary is positive and the

charge near the outer boundary is negative, appears 	see Fig.
5�b�
. The same charge distribution can be found in Ref. 10,
but because of the enhanced surface superconductivity we
only need a smaller inner radius. Interestingly, we find that
the complete negative charge distribution �i.e., the region IV�
also can occur in the L=1 state, and the region I and the
region II decrease and disappear finally with increasing the
inner radius from �c� to �f�. In Fig. 5�f� there are only the
CNCR and the region III as happened for the L=0 state.

Figure 6 gives the radial dependence of the Cooper pair
density ���
��2, the charge density q�
�, and the supercurrent
density j�
� in L=1 state for the ring in Fig. 5�c�. Figure 6�a�
shows the case for a fixed magnetic field but different b
values. We find that negative charge increases in the whole
sample due to the enhanced surface superconductivity and
the complete negative charge region occurs. With increasing
�� /b� the negative charge in the whole sample increases. Fig-
ure 6�b� is the case for fixed b but different magnetic fields.
We can get that at a small field where there is a minimum of
the Cooper pair density near the inner boundary because
more flux is trapped in the hole in the L=1 state and the local
magnetic field inside the hole becomes larger than the exter-
nal magnetic field. So the sample near the inner boundary
and the outer boundary are negatively and positively
charged, respectively �i.e., the region I�. Notice that the sign
of the induced current is positive in the whole supercon-
ductor at the small field, that is to say, the magnetic field is
only expelled to the hole. With increasing the magnetic field
the sign of the current near the outer boundary changes to
negative, i.e., the magnetic field is expelled not only to the
outside of the system but also to the hole. So the sign of the
charge near the outer boundary will become negative, i.e.,
the region II occurs. If the inner radius of a ring is big
enough, the enhanced surface superconductivity effect will
influence not only the boundary but also the inside of the
sample. Then the sign of the charge in the whole sample will
become negative with increasing the field because of this
effect �i.e., the CNCR�. Further increasing the field, the Coo-
per pair density near the inner boundary increases and be-

FIG. 9. The phase diagram of Ri versus HI, HIII, Hnuc, and Hcncr

for superconducting rings with R0 /�=0.5, d /�=0.1, and � /b=−0.1
in the L=1 state. Hnuc

1 denotes the lower nucleation field �thick solid
curve� and Hnuc

2 denotes the upper nucleation field �thin solid
curve�. The solid circle denotes the critical inner radius when the
superconducting state can occur.

FIG. 10. The transition inner radii Ri,cr, Ri,cr
1 , and Ri,cr

2 depen-
dence of the outer radius Ro for superconducting rings with � /b
=−0.1 and d /�=0.1 in the L=1 state.
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comes larger than the Cooper pair density near the outer
boundary. The current density near the inner boundary be-
comes less positive. So the negative charge near the inner
boundary decreases and then the sign becomes positive. In
this case, we find that the positive charge is pulled towards
the inner boundary with increasing the magnetic field, but
the region of the positive charge expands. In addition, the
enhanced surface superconductivity effect for a very narrow
ring becomes stronger in whole sample comparing with a fat
ring. So the regions I and II will disappear 	Figs. 5�d�–5�f�
.

Figure 7�a� plots the phase diagram, that is the boundaries
that separate different types of charge distribution HI, HIII,
Hnuc, and Hcncr as the inner radius Ri varies. From Fig. 7�a�,
we find that the region III does not exist if Ri�0.41�, which
is analogous to a disk case. When Ri /�=0.41, the magnetic
field H=HIII=Hnuc. Increasing Ri from 0.41� slowly, the re-
gion III occurs, while the region II and the region I are
getting less. Then when Ri=Ri,cr=0.652�, the CNCR occurs,
and the region II is separated into two parts �where the Ri,cr
denotes the critical inner radius when the CNCR occurs�. We
notice that the region II in a high magnetic field is larger
than the region II in a low magnetic field, i.e., the region I
changes to the CNCR directly when Ri�Ri,cr

1 =0.788� and
the CNCR changes to the region III directly when Ri
�Ri,cr

2 =1.23� �where the Ri,cr
1 and Ri,cr

2 denote the critical
inner radii when the region II is at low magnetic field and at
high magnetic field disappears, respectively�. When Ri
=0.99�, the region I disappears, and when Ri=1.23�, only

the CNCR and the region III exist. In the case of Ri
�1.75�, HIII=Hnuc, and only the CNCR exists, i.e., the
whole ring is negatively charged as long as the sample is in
the superconducting state. The nucleation field Hnuc also be-
comes very large when Ri�R0 because of the enhancement
of surface conductivity for very small samples. The case
given in Fig. 7�b� is for � /b=−0.2, and that in Fig. 7�c� is for
L=2. We find that a stronger surface superconductivity effect
will depress the regions I and II. Whereas, for the L=2 state,
the minimum inner radius needed increases in comparing
with the data shown in Fig. 7�a� for the occurrence of region
III and the CNCR as well as the region I disappearance.

Now we study the effect of a ring outer radius on the
charge distribution when � /b=−0.1. At first, Fig. 8 show the
nucleation fields Hnuc as a function of the outer radius of
rings with Ri /�=0.0 and different � /b for the L=1 state. We
find that the superconducting state can only exist in suffi-
ciently large samples and the region of existence of the su-
perconducting state increases with increasing �� /b� values.
For � /b=−0.1, the superconducting state occurs when Ro /�
=0.717, and there are two nucleation fields present, i.e., the
upper nucleation field �thin solid curve� and the lower nucle-
ation field �thick solid curve� with increasing outer radius.
When Ro /�=1.014, the lower nucleation field disappears and
the superconducting L=1 state can exist in a zero magnetic
field. As an example, we consider a ring with Ro /�=0.5 and
investigate the charge distribution. Figure 9 shows the phase
diagram. The thick solid curve denotes the lower nucleation
field �Hnuc

1 � and the thin solid curve denotes the upper nucle-
ation field �Hnuc

2 �. The solid circle denotes the critical inner
radius when the superconducting state can occur. We also
can find the region I, the region II, the CNCR �the region
IV�, and the region III seemed very much like those in Fig.
7, but there is no superconducting state of L=1 for the small
inner radius. When increasing the inner radius, the lower
nucleation field �Hnuc

1 � occurs and decreases to the zero mag-

FIG. 11. The applied magnetic field H-dependence of the radius

� for two superconducting disks Ro /�=4.7 �a�, Ro /�=5.2 �b� with
� /b=−0.1 and d /�=0.1 in the L=1 state.

FIG. 12. The free energy as function of the applied magnetic
field for a superconducting ring with R0 /�=2.0, Ri /�=0.5, � /b
=−0.2, and d /�=0.1. The different giant vortex states are shown by
the solid curves and the multivortex states by the dashed curves.
The transitions from the multivortex state to the giant vortex state
are indicated by the solid circles.
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netic field finally. It is believed that the giant vortex state will
not exist in a zero magnetic field when the ring becomes
smaller. In addition, we get that the upper nucleation field
�Hnuc

2 � becomes very large compared with larger rings be-
cause of the enhancement of surface conductivity for very
small samples.

Figure 10 gives the critical inner radii Ri,cr, Ri,cr
1 , and Ri,cr

2

dependence of the outer radius Ro for superconducting rings
with � /b=−0.1 and d /�=0.1 in the L=1 state. We find that
the Ri,cr, Ri,cr

1 , and Ri,cr
2 all increase with increasing the outer

radius, and the Ri,cr and Ri,cr
1 reach maximums and then de-

crease to zero when the outer radius Ro /�=4.468 and Ro /�
=5.056, respectively. That is to say, the CNCR can also exist
in large rings with Ri /�=0, i.e., disks in the L=1 state. In this
case, the superconductivity is enhanced with increasing �� /b�
and the more magnetic field is expelled from the sample and
the giant vortex is more compressed in the center. Therefore
the superconductor has to induce a larger supercurrent and
the negative charge in the sample increases. When the sur-
face enhancement of superconductivity is strong enough, the
CNCR will occur. Figure 11 gives the applied magnetic field
H-dependence of the radius 
� for two superconducting
disks Ro /�=4.7 �a�, Ro /�=5.2 �b� in the L=1 state, and we
can find the CNCR �the region IV�. For disk �a�, because
Ro /�=4.7�5.056, there exist two region II. For disk �b�,
because Ro /�=5.2�5.056, the Ri,cr

1 disappears. On the other
hand, the region III that corresponds to the positive inner
charge and negative outer charge also cannot exist in large
disks.

IV. VORTEX CHARGE IN THE MULTIVORTEX STATES

For sufficiently large rings the giant vortex state can break
up into multivortices.14–18 The order parameter of the multi-
vortex state in general can be viewed as a superposition of
giant vortex states with different Lj

��
�� = �
Lj=0

L

CLj
fLj

�
�exp�iLj�� , �20�

where L is the value of the effective total angular momentum
now which equals the number of vortices in the ring. For the
small rings that we studied, we consider states which are
built up by only two components in Eq. �20�

��
�� = CL1
fL1

�
�exp�iL1�� + CL2
fL2

�
�exp�iL2�� , �21�

where

CL1
= �− �L1

AL2
BL1

+ 2�L2
AL1,L2

BL2

AL1
AL2

− 4AL1,L2

2 �1/2

, �22�

CL2
= �− �L2

AL1
BL2

+ 2�L1
AL1,L2

BL1

AL1
AL2

− 4AL1,L2

2 �1/2

, �23�

ALi
=

2�d

V
�

Ri

Ro


d
fLi

4 �
� , �24�

AL1,L2
=

2�d

V
�

Ri

Ro


d
fL1

2 �
�fL2

2 �
� , �25�

BLi
=

2�d

V
�

Ri

Ro


d
fLi

2 �
� , �26�

and fLi
�
� and �Li

are determined by Eqs. �16� and �17�,
respectively.

The energy of the multivortex state becomes25

FL1,L2
=

− �L1

2 AL2
BL1

2 − �L2

2 AL1
BL2

2 + 4�L1
�L2

AL1,L2
BL1

BL2

AL1
AL2

− 4AL1,L2

2 .

�27�

FIG. 13. The charge density distributions for
the �0:2� state at the field H=1.45Hc2, the �0:5�
state at the field H=2.45Hc2, the �1:4� state at the
field H=3.45Hc2, and the �1:5� state at the field
H=4.45Hc2 for a ring with R0 /�=2.0, Ri /�=0.5,
� /b=−0.2, and d /�=0.1.
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Earlier analyses have shown17,25,30 that there exist two
kinds of multivortex states: �i� the stable state which corre-
sponds to a minimum of the free energy and �ii� the saddle-
point state which correspond to the energy barrier state be-
tween states with different vorticity L. In small rings, the
confinement effect dominates and only the giant vortex states
are stable.31 But because of the enhanced surface supercon-
ductivity, the multivortices will become stable with increas-
ing �� /b�. As an example, we consider a thin ring with
R0 /�=2.0, Ri /�=0.5, and � /b=−0.2. In Fig. 12, the saddle-
point state and the stable multivortex state for the ring are
given, and we only consider the case of L�5. We find that
there also presents the stable multivortex state in the small
ring that we studied because of the enhanced surface super-
conductivity. We can get that the �0:2� state is a saddle-point
state and unstable, and the �0:5� state is only found in the
metastable state. When L�4, the �1:L� states can occur as
the metastable state and the ground state �this will not hap-
pen in a disk with same outer radius�.25 The charge density
distributions over the ring for the �0:2� state at the field H
=1.45Hc2, the �0:5� state at the field H=2.45Hc2, the �1:4�
state at the field H=3.45Hc2, and the �1:5� state at the field
H=4.45Hc2 are shown in Fig. 13, and their contour plots

together with the Cooper pair density are given in Fig. 14.
The light regions on the contour plots of the Cooper pair
density distribution correspond to low Cooper pair density
and the dark regions on the contour plots of the charge den-
sity distribution correspond to the region of negative charge
location. So we get that the negative charge located around
the vortex cores and the positive charge near the edge of the
sample. Figure 15 gives the contour plots of the Cooper pair
density distribution and the charge density distribution for
the �1:4� state at different magnetic fields. With increasing
the magnetic field the single vortices in the multivortex state
will move towards each other. When H=3.7Hc2, the �1:4�
multivortex state is the ground state and most stable. Further
increasing the magnetic field, the transition between the mul-
tivortex state and the giant vortex state will take place �H
=4.16Hc2�. From the contour plots of the charge density dis-
tribution, we can get that the negative charge is pulled to-
wards the inner boundary and the positive charge is pulled
towards the outer boundary when the multivortex state be-
comes more stable with increasing the field. Finally, at the
transition field between the multivortex state and the giant
vortex state, the negative charge and the positive charge
merge together, respectively. We also notice that the negative
charge at the outer boundary appears and then increases with
increasing the magnetic field.

FIG. 14. The contour plots of the charge density distribution and
the Cooper pair density distribution for the �0:2� state at the field
H=1.45Hc2, the �0:5� state at the field H=2.45Hc2, the �1:4� state at
the field H=3.45Hc2, and the �1:5� state at the field H=4.45Hc2 for
a ring with R0 /�=2.0, Ri /�=0.5, � /b=−0.2, and d /�=0.1.

FIG. 15. The contour plots of the Cooper pair density distribu-
tion and the charge density distribution for the �1:4� state at the field
H=2.74Hc2, H=3.1Hc2, H=3.7Hc2, and H=4.16Hc2 for a ring with
R0 /�=2.0, Ri /�=0.5, � /b=−0.2, and d /�=0.1.
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V. CONCLUSIONS

In conclusion, we study the charge distribution in thin
mesoscopic superconducting rings with enhanced surface su-
perconductivity by using the phenomenological Ginzburg-
Landau theory. We find that the surface enhancement of the
superconductivity effect can increase the negative charge of
the sample. A complete negative charge distribution, besides
conventional distributions, in the Meissner and the giant vor-
tex states is found. In the Meissner state for a ring with a
small inner radius we also find one type charge distribution
that can only be found in the giant vortex state before there is
any enhanced surface superconductivity. For a different inner
radii and outer radii, different types charge distributions
present. When fixing the outer radius the critical inner radii
of different states occurring just needs to be smaller for
larger �� /b� values. We also investigated the effect of rings
outer radius on the charge distributions and find that the up-
per nucleation field and the lower nucleation field present in
rings with smaller outer radius as well as the complete nega-
tive charge distribution which can exist in disks with a larger
radius. As for the L�1 state, for example L=2 state, we also
find the similar charge distributions which occur in the L
=1 state, but a larger critical inner radius is needed. For the
charge distribution in a multivortex state, we find that the
surface enhancement of superconductivity can stabilize the
multivortex state as the ground state �i.e., with minimal en-
ergy� in mesoscopic superconducting rings and the stable
multivortex state is found in small rings with the enhanced
surface superconductivity that we studied. The charge den-
sity q�x ,y� distributions as well as the contour plots of the
charge density distribution and the Cooper pair density dis-
tribution of different multivortex states are given. We find
that the negative charge located around the vortex cores and
positive charge are near the edge of the sample. When a
multivortex state becomes more stable, the negative charge

and the positive charge are pulled towards the inner bound-
ary and the outer boundary of the sample, respectively.

Finally, we discuss briefly the feasibility of the experi-
mental observations of the charging effect. The detection of
the vortex charge in type-II superconductors by scanning
tunneling microscopy has been discussed by Blatter et al.2

The vortex charge in the high-temperature superconductor
�HTSC� YBa2Cu3O7 was detected by the nuclear magnetic
resonance method.3 It has been shown that the vortex charge
due to the opening of the energy gap or the transition to
superconducting is of the order1 � /EF– 	�m /2�2��2��2
−1.
	We have used the expression: EF= �m /2�2��2�2�2, for a
metallic superconductor in the clean limit �cf. Ref. 11�.
 This
ratio for type-I metallic superconductors is then orders
smaller than that of HTSC, for which the vortex charge is of
the order of 10−3 e when �0=5 Å.1 Consequently, the above
mentioned techniques could be challenged because of limited
accuracy. Recently, Geim et al.32,33 developed the ballistic
Hall magnetometry, and vortex charge associated with abnor-
malities in mesoscopic disks of the metallic superconductor
�aluminum� have been signaled by using this technique,34

which sheds lights on experimental detection on the vortex
charge in mesoscopic metallic superconductors. In addition,
this technique will be useful to detect the vortex charge in
type-II metallic superconductors, e.g., the niobium-alloy ma-
terial, Nb3Sn, where the coherence length is �4 nm, and the
critical temperature Tc=18 K, or ��0��4 meV,35 from
which a value of � /EF is estimated in the order of 3.5
�10−2 that is comparable to the value of 10−1 for the typical
HTSCs.
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