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We study the thermal and transverse-magnetic-field response of a vortex line array confined to a plane with
a single columnar pinning defect. By integrating out “bulk” degrees of freedom away from the columnar defect
we reduce this two-dimensional problem to a one-dimensional one, localized on the defect and exhibiting a
long-range elasticity along the defect. We show that as a function of temperature, for a magnetic field aligned
with the defect this system exhibits a one-dimensional analog of a roughening transition, with a low-
temperature “smooth” phase corresponding to a vortex array pinned by the defect, and a high-temperature
“rough” phase in which at long scales thermal fluctuations effectively average away pinning by the defect. We
also find that in the low-temperature pinned phase, the vortex lattice tilt response to a transverse magnetic field
proceeds via a soliton proliferation “transition,” governed by an integrable sine-Hilbert equation and analogous
to the well-known commensurate-incommensurate transition in sine-Gordon systems. The distinguishing fea-
ture here is the long-range nature of the one-dimensional elasticity, leading to a logarithmic soliton energy and
interaction. We predict the transverse-field—temperature phase diagram and discuss extension of our results to

a bulk vortex array in the presence of a dilute concentration of columnar defects.
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I. INTRODUCTION

A. Background and motivation

The discovery of high-temperature superconductors al-
most 20 years ago, among other things, has rekindled interest
in the magnetic field (H)-temperature (7) phase diagram of
type-II superconductors,' generating a vigorous scientific ac-
tivity. As a result, much has been clarified about the nature of
equilibrium and nonequilibrium properties of vortex states in
the presence of thermal fluctuations, pinning disorder, and
electrical (“super”)current,”® leading to a rich phase dia-
gram. In particular, in contrast to a mean-field phase dia-
gram, thermal fluctuations drive a first-order melting of a
vortex lattice over a large portion of the phase diagram into a
resistive (although with large conductivity and diamagnetic
response) vortex liquid,”~'? that, from the symmetry point of
view, is qualitatively identical to the normal state. Further-
more, as was first shown by Larkin,'"!? arbitrarily weak pin-
ning disorder, on sufficiently long Larkin scale (which di-
verges in the limit of vanishing disorder) always disrupts
translational order of the vortex lattice. It has been argued
theoretically,*!3 with a limited experimental support,'* that
in the resulting state, vortices are collectively pinned into a
vortex glass characterized by an Edwards-Anderson-like'
order parameter, exhibiting a vanishing linear mobility and
therefore a vanishing linear resistivity.

While the original proposal for the vortex glass state was
made in a context of intrinsic, short-range correlated (point)
disorder, it was soon appreciated that the beneficiary effects
of pinning can be enhanced by introducing artificial pinning
centers by, for example, electron and/or heavy ion irradia-
tion, with the latter resulting in a forest of columnar pinning
defects, which is a particularly effective pinning
mechanism.'® The resulting anisotropic vortex glass was
dubbed a Bose glass'”!® because of its mathematical connec-
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tion with interacting two-dimensional (2D) quantum bosons
pinned by a quenched (time-independent) random 2D
potential.' This connection allowed understanding many of
the properties of the anisotropic vortex glass from the corre-
sponding quantum Bose-glass phase."”

One key feature of the anisotropic vortex glass that dis-
tinguishes it from the corresponding (putative) isotropic one
is the existence of the “transverse” Meissner effect,'s
namely, a vanishing response to a field H, <H applied
transversely to columnar defects and vortex lines. This ex-
pulsion of the transverse flux density B |, which has received
considerable experimental®® and simulation?' support, corre-
sponds to an effectively divergent anisotropic vortex glass
tilt modulus,”? which in the quantum correspondence maps
onto a vanishing superfluid density in the Bose-glass phase.
The detailed theoretical description of the transverse Meiss-
ner effect (as well as other properties of the phase) has been
predominantly limited to noninteracting vortex lines.'323 Al-
though these are supported by scaling theories'®2!2324 (bor-
rowed from the variable-range hopping theory for electronic
systems?) that do incorporate effects of both disorder and
interactions (clearly essential for the very existence of the
Bose-glass phase), with the exception of functional
renormalization-group (RG) analysis,? a detailed interacting
description is limited to simulations.?!?® This is not surpris-
ing, as a description of strongly interacting random systems
is a notoriously difficult (with few exceptions) unsolved
problem, whose solution is at the heart of understanding
many of the interesting condensed matter phenomena.

One way to incorporate strong interactions is to approach
the problem from the vortex solid (rather than the vortex
liquid starting point) pinned by a random potential. Potential
difficulties with this approach are a proper incorporation of
topological defects (dislocations and disclinations) that tend
to proliferate in the presence of quenched disorder and ex-
ternal perturbations.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.104504

LEO RADZIHOVSKY

FIG. 1. The (1+1)-dimensional (planar) vortex lattice pinned by
a single columnar defect studied in this paper.

A recent analytical real-space renormalization-group
study?’ that demonstrated stability of a 3D weakly disordered
random-field XY model to a proliferation of topological de-
fects (vortices) provide a strong argument for the stability of
an elastically disordered but topologically ordered vortex
Bragg-glass phase postulated and studied in detail by
Giamarchi and Le Doussal.”® These studies therefore give
support to treatments of vortex solids'32°-3! that ignore the
notoriously difficult-to-treat topological defects. Further-
more, even if the Bragg glass is unstable to dislocations, for
weak disorder dislocations will be dilute, with physics on
scales smaller than their spacing expected to be well de-
scribed by the vortex Bragg-glass phenomenology.!28-31

A suppression of topological defects can furthermore be
facilitated by a planar confinement of vortices, realized in
layered high-T, superconductors® or by artificially prepared
multilayers,333* where for a magnetic field directed along the
planes, vortices are well localized to 2D. The resulting planar
(2D) vortex array pinned by point disorder, where disloca-
tions are excluded by construction is in fact the “toy”” model
studied by Fisher,'* which motivated his original proposal of
a vortex glass phase in bulk superconductors.

Motivated by these ingredients, in this paper we study a
(1+1)-dimensional vortex array confined to a planar slab of
thickness w in the presence of a single planar columnar de-
fect, illustrated in Fig. 1. This system was introduced and
first studied in great detail in Ref. 35.

As should be clear from the above discussion, such a toy
model may be relevant to the regime of far-separated (by d,
compared to vortex spacing \ ¢,/B) columnar defects, acces-
sible for flux density far exceeding the columnar-defect
matching field By=dy/d*,'3® where Py=hc/2e~2.1
X 1077 G cm? is a fundamental quantum of flux. As first in-
vestigated in Ref. 35, we study the response of such a (1
+1)-dimensional vortex array to a planar tilting magnetic
field H |, applied transversely to the columnar defect, as il-
lustrated in Fig. 2.

The rest of the paper is organized as follows. We conclude
the Introduction with a summary of our main results and
predictions, heuristically extended to a dilute concentration
of columnar defects. In Sec. I we derive the appropriate
(1+1)-dimensional continuum model for a single defect and
discuss its ingredients. By integrating out “bulk” (away from
the defect) degrees of freedom we reduce this model to a
(0+1)-dimensional model confined to a defect, and charac-
terized by a long-range elasticity along the defect. In Sec. III
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FIG. 2. A (1+1)-dimensional (planar) vortex array induced by a
magnetic field H applied in the plane of the slab, at an angle to a
single columnar pinning defect.

we study the effect of transverse magnetic field H, and dem-
onstrate that tilting of the vortex lattice away from a colum-
nar defect proceeds via a “‘commensurate-incommensurate
transition” controlled by a proliferation of solitons. In Sec.
IV we study effects of thermal fluctuations and demonstrate
that this system exhibits a 1D rougheninglike transition. We
explore its consequences for the vortex positional correla-
tions, and construct an H | -T phase diagram. We conclude in
Sec. V with an extension of these results to an experimen-
tally relevant case of a dilute concentration of columnar de-
fects (allowing for genuine transitions) and close in Sec. VI
with a summary of our study.

B. Summary of results

The body of the paper is primarily devoted to the study of
a planar (1+ 1)-dimensional vortex array at a 1D vortex den-
sity ny=1/a, in the presence of thermal fluctuations and in-
duced by an external planar magnetic field H=H z+H ap-
plied at an angle to a single columnar defect.>> As we will
show below, even this toy problem is quite rich, providing
insight into the bulk (2+1)-dimensional multidefect prob-
lem. It has the added benefit that it can be analyzed in detail
analytically. This is not surprising as such a planar classical
vortex array is a cousin of a one-dimensional quantum prob-
lem, a Luttinger liquid, that is known to be exactly solvable
and to exhibit rich phenomenology.?’ In fact our classical
analysis of the vortex problem has strong formal connections
to the work of Kane and Fisher’® who studied a Luttinger
liquid in the presence of a single localized impurity, a prob-
lem that admits exact analysis.>® This connection was first
emphasized and fruitfully utilized by Hoffstetter et al.’> and
Polkovnikov, et al.,** although we will not take advantage of
it. As is well known,” the Luttinger formalism is equivalent
to the classical theory of vortex lattice elasticity that we (and
Ref. 35) employ here.

Our work has a strong overlap with that of Ref. 35, par-
ticularly on the finite temperature analysis for a vanishing
transverse field in an infinite single-pin system, as well as a
large transverse field, where tilt response is analytic. Where
this overlap exists our predictions are in complete agreement
with those found in Ref. 35. However, our emphasis is on the
low-temperature, strong coupling regime, where tilt response
is highly nonlinear, and can only be understood in detail in
terms of vortex lattice solitons, which proliferate at a
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FIG. 3. H-T phase diagram illustrating the commensurate (C)
and incommensurate (I) phases separated by a continuous CI phase
transition at Hil(T) (full curve), where vortex lines in the vicinity of
far-separated columnar defects tilt via proliferation of solitons. As
the soliton density grows with increasing H; (dashed curve), the
solitons overlap near the upper critical transverse field H*(T), be-
yond which the system crosses over to a smoothly tilted vortex
lattice. The lower critical field, H;'(T) vanishes with increasing pin
separation d, eliminating the CI transition (but not the roughenning
transition at 7,) for a single columnar defect.

commensurate-incommensurate crossover, that, we argue,
turns into a genuine sharp phase transition for a dilute con-
centration of columnar defects.

Hence, as we describe in more detail below, in the pres-
ence of a dilute concentration of columnar defects the planar
vortex array exhibits two phases in the transverse field
H | —temperature T phase diagram: a low-7T,H | “commensu-
rate” pinned or aligned (C) phase and a high-T,H |, “incom-
mensurate” depinned or tilted (I) phase. As illustrated in Fig.
3, a finite temperature commensurate-incommensurate phase
transition separates the two phases.

For a vanishing transverse field, the phase transition is
akin to a thermal roughening transition,*!~#3 which is closely
related to a zero-temperature superfluid-insulator transition
in a resistively shunted Josephson junction,** the opaque-to-
transparent impurity transition in a Luttinger liquid,®® and
spin-boson and dissipative impurity models.*>-47

Before we discuss our results, a disclaimer is in order
here. Because a single columnar defect cannot possibly com-
pete with bulk degrees of freedom, with its effects vanishing
in the thermodynamic limit, we expect a two-dimensional
free energy that is analytic, and therefore no true phase tran-
sition can take place in a 2D thermodynamic limit. However,
as in, for example, the Kondo problem,47 where one consid-
ers the effect of an impurity on the bulk electron gas, bulk
effects are predicted only once a finite density of defects is
considered. Here too the transitions that we discuss are for
the elastic degrees of freedom localized on the columnar de-
fect, that is a boundary critical phenomenon. Although the
1D roughening transition is indeed a genuine one, the con-
tribution of the associated (nonanalytic) free energy to the
bulk two-dimensional system vanishes in the 2D thermody-
namic limit. Furthermore, the CI (vortex line tilting) transi-
tion takes place at a lower critical transverse field H”j (L),
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which, in the case of one pin is driven to zero in the thermo-
dynamic limit (L—o°). It only becomes a genuine sharp
phase transition for a finite density 1/d of columnar defects,
with the lower critical transverse field H<'(d) set by the
columnar-pin spacing d.*® Since this latter case is the one
most easily accessible experimentally, we heuristically ex-
tend our rigorous single-pin results to a finite dilute concen-
tration of independent columnar defects. This being a noto-
riously difficult unsolved problem, we expect this heuristic
extension to break down on sufficiently long scales, where
collective pinning effects become important.!7:18:21-24

Our results can be divided into two categories: thermal
effects at a vanishing transverse field, i.e., for the magnetic
field (and therefore induced planar vortex array) aligned with
columnar defects, and a low-temperature response of the vor-
tex array to a tilting (transverse) magnetic field.

For a magnetic field aligned with columnar defects we
show that a vortex array undergoes a rougheninglike transi-
tion at

kB
\
Tp = 2 (1)

™

between a low-temperature state in which each columnar de-
fect effectively pins the vortex lattice around the pin for T
<T, and a phase in which its pinning effects, even near a
columnar defect, vanish at long scales. In the above, K and B
are the vortex lattice tilt and compressional moduli, whose
vortex density and dependence on other parameters
(e.g., vortex interaction) can be computed from
microscopics.’>#3490 This rougheninglike transition is re-
lated to a one-dimensional long-range interacting (1/]i—j|?)
Ising model,*® which is well known from a number of other
physical contexts, most prominently the Kondo problem,*’
and more recently, in a dissipative Josephson junction** and
a Luttinger liquid in the presence of an impurity.?® In relation
to the latter work, we note that unlike the quantum case
where there is no simple way to tune the Luttinger
parameter,’! here it can be simply tuned by temperature and
vortex density.>

As is wusually the case for such transitions (e.g.,
roughening,*!=*3 Kosterlitz-Thouless,” and other topological
transitions), there is no local order parameter and phases are
distinguished by long-scale behavior of correlation functions.
The low-temperature, 7<<T),, pinned phase is characterized
by finite mean-squared vortex fluctuations at the location of
the defect (that we take to be x=0), with correlations away
from the defect given by

kT l{K(IJCI+I)C’I)Z+BZ2} @
ﬂ-\/ﬁ K(x —x")?+ BZ?

(u(z,x)u(0,x")) = .

On scales longer the pinning length ¢ [defined in Eq. (90),
below], the corresponding average density exhibits Friedel-
like oscillations® given by

a 72
(n(x,2))g = no+ 2nG<—) cos(2mngyx), (3)

2]

where a=max[a, £&YB/K] and
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[\®}
3

n=—5 -
a* KB

(4)

In contrast, at high temperature 7> Tp, vortex thermal
fluctuations effectively average away the effects of the pin,
leading to phonon correlations that diverge logarithmically
with sample size. The connected phonon correlation function
is finite and is given by

([u(x,2) — u(0,0)]*) = k% ln(a T\/x*+ gzz). (5)

Despite the irrelevance (in the RG sense of the term) of
the columnar defect for 7> T, the average density also dis-
plays perturbative Friedel oscillations®

nea a \™!
(n(x,2)) = no + kG; \/%(m) cos(2mmngx),  (6)
B

with a stronger power-law exponent than that for 7<<7), and
an amplitude that vanishes with the strength of the pinning
potential v.

The low-temperature, 7<7,, pinned (commensurate)
phase is distinguished from the rough (incommensurate)
phase by a transverse Meissner response to a magnetic field
H | applied transversely to the columnar pin; namely, we find
that for a field smaller than a lower critical transverse field

H

B

L\/i< d,
d) L & K
o B 1 K 27d B

— Il \/=], L\/=>4,
K 47d B & K

(7)

where L is the length of the sample along the columnar de-
fect (z), w is the slab thickness, and d is the columnar pin
spacing. At low temperature £= & is approximately given by

1 L
—In—,

gy o K (®)
O 2 v
For H* <H, vortex lines in the wide vicinity
B\'2L
M= (2] 9
h K - ( )

of a columnar pin remain aligned with it, therefore exhibiting
a bulk transverse Meissner effect for a d < )\2 spaced array of
pins. Of course (as for the thermally driven depinning tran-
sition discussed above, here too), because a single pin cannot
compete with the bulk magnetic energy, away from the de-
fect beyond this screening length )\2 the vortex lattice is al-
ways aligned along the applied magnetic field. Related to
this, for a single pin (d — ) the critical transverse field H},,
Eq. (7) clearly vanishes in the thermodynamic L— o limit.
For a transverse field stronger than H; a continuous vor-
tex lattice tilting transition takes place into a tilted (incom-
mensurate) state. It proceeds via a proliferation of solitons,
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with soliton density ny(H ) and the average vortex tilt at the
location of the columnar defect growing continuously be-
yond HY,

ns(HJ_) = a_]<ﬂzu>|x=0 (10)

ol (11)

0, H < H}
, H>H}.

|H* —H.,

In the incommensurate phase, the screening length out to
which the vortex lines are aligned along and pinned by the
columnar defect diminishes with increasing soliton density
and is given by

\ _(§>1/2; i

"“\k) 2mn/H),) (12)
!

13

TlH—HA =

As we show below, for finite transverse field H , Friedel
oscillations decay exponentially away from the columnar de-
fect with length also given by \,. We estimate the upper
critical transverse field H, for which the soliton lattice be-
comes dense, to be given by

%o
2mwé’

In the presence of fluctuations, the H,, field marks a cross-
over from a nonlinear soliton tilted regime to a uniformly
tilted state. For large H, exceeding Hclz, the vortex lattice
tilts smoothly and the screening length reduces to A,
~1/H*, in this limit coinciding with the Friedel oscillation
decay length found by Affleck et al.®

The finite temperature CI phase boundary in Fig. 3 is
given by

Hh~H:+ (14)

HanHmm@—%) (15)
P

The corresponding upper critical crossover field H, ) (1)
(dashed curve in Fig. 3) for weak pinning (&,>aVK/ B) can
be estimated by using H,,(T) and &(7) inside Eq. (14),

/ T/|T,-T|
HA(T) zH;(T)+Hj2(0)<“VK/B) . (16)
&
For strong pinning (&<a\K/B), H 5(7) is _given by the
above expression, but with &, set equal to ayVK/B.
In the remainder of the paper we demonstrate the results
summarized above.

II. MODEL

A. Vortex lattice elasticity with a transverse magnetic field

In a type-II superconductor, for fields above a lower criti-
cal field magnetic flux penetrates in the form of interacting
vortex flux tubes, with average density determined by the
applied magnetic field.! At low temperature and in the ab-
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sence of disorder, a periodic array (Abrikosov lattice) of re-
pulsive, elastic vortex lines forms, whose elastic
description®® can be derived from the Ginzburg-Landau
theory for the superconducting order parameter, which itself,
under certain conditions, is derivable from the microscopic
theory of superconductivity. As usual, transcending such a
detailed derivation, on sufficiently long length scales the
elastic vortex lattice energy functional can be deduced purely
on symmetry grounds. In d dimensions, it is formulated in
terms of a (d—1)-dimensional Eulerian phonon field (Gold-
stone mode of the spontaneously broken translational sym-
metry) u(x,z)=x-x; describing a transverse vortex lattice
distortion at a d-dimensional position (x,z) relative to a per-
fect vortex array characterized by (x;,z).

A planar vortex array, which we take to be confined to the
x-z plane, is characterized by a scalar phonon field u(x,z),
describing x-directed vortex distortion with a continuum
elastic Hamiltonian given by

Hel = % f dx dZ[K(azu - h)2 + B(axu)z]’ (17)

where K and B are the tilt and compressional elastic moduli,
respectively, that we take to be phenomenological
parameters.’ The parameter & encodes the effect of an addi-
tional magnetic field H |, applied transversely to the colum-
nar defect (z) axis, with h=H | /(¢yn3)=H , /H, in a sample
that (other than the pin) we take for simplicity to be
isotropic.”®

Vortex pinning, characterized by a weak potential
Viin(x,2), can be easily incorporated through its coupling to
the local vortex density n,(x,z) via

Hp = J dx dz Vpin(-xvz)nv(x9z) . (18)

As with any periodic elastic medium, the vortex density is
given by

ny(X,2) = ng = ngdu + 2 ”G,,eiGp L), (19)

G,

with vortex lattice distortion u(x,z) entering through the
variation of the long-scale density fluctuation —nyd,u and via
the variation of the phase G,u of the vortex density wave
given by the last term. In the above, G,=2mnop=2mp/a (a
the vortex lattice constant, p € Z) spans a one-dimensional
reciprocal (to x) lattice and ny=1/a the average x-projected
vortex 1D density. Above representation for n,(x,z) can be
derived in a standard way from its microscopic definition
n,(x,z)=2,;8(x—x;(z)) in terms of vortex line configurations
x{(z), by the use of the Poisson summation formula,?” with
the key periodic (last) term arising from vortex discreteness.

For the problem of a single z-directed columnar defect,
we can approximate the pinning potential by an attractive
zero-range form V;,=—V,cd(x), with V; and c its effective
strength and range, respectively. For simplicity, and without
loss of qualitative generality, we include only the lowest har-
monic, characterized by the minimal reciprocal lattice con-
stants G.; = +*G==x2m/a to model the periodic vortex den-
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sity. Furthermore, by minimizing the total energy, it is easy
to show that the long-range part of the density variation
—nod,u has the simple effect of a small shift in vortex posi-
tions, uy(x,z)=—(Vynge/B) sgn(x), that is constant and posi-
tive to the left of the defect and constant and negative to the
right of the defect. It thereby slightly increases the average
vortex density, but only at the location of the columnar de-
fect, x=0, which can be absorbed into the background den-
sity. Dropping an unimportant constant, the pinning Hamil-
tonian then reduces to

H,=-v f dz cos|Gu(0,z)], (20)

localized at the defect at x=0, with v=2n;V,c. The result-
ing total Hamiltonian H=H+H,,

= % f dx dz[K(d.u— h)* + B(d,u)*]

-v J dz cos[Gu(0,z)], (21)

is reminiscent of the well-known sine-Gordon model de-
scribing a broad spectrum of commensurability phenomena
in condensed matter physics, ranging from crystal surface
roughness to topological defects in ordered media.*!-+

There is, however, an essential difference in that the non-
linear pinning term is localized at x=0. As a result, away
from the defect, the system is harmonic and therefore solv-
able by elementary methods. Clearly, as illustrated in Fig. 2
away from the defect the vortex lattice must asymptote to
that of a columnar defect-free configuration, which simply
follows the transverse field

u(x,z) =hz forx— oo, (22)

obtained by minimizing H for v=0. As we will show below,
we can fruitfully take advantage of the locality of the pinning
potential by “integrating out” (eliminating) the bulk elastic
degrees of freedom away from the defect, thereby reducing
the two-dimensional problem to an effective one-
dimensional nonlinear one, that can be solved exactly. The
approach is quite similar to Kane and Fisher’s treatment of a
point impurity in a one-dimensional electron liquid.?®

B. Reduction to one-dimensional model

As noted above, because of the short-range nature of the
pinning potential in H, Eq. (21), vortex degrees of freedom
u(x,z) away from the columnar defect at x=0 are governed
by a harmonic Hamiltonian. As a result, they are simply
related to vortex distortion at the columnar defect, allowing
us to eliminate u(x,z) in favor of u(0,z). To automatically
satisfy the boundary conditions d,u(x,z)|,-o,=h, induced by
finite A, it is convenient to shift to a new phonon variable,
measuring vortex lattice distortion relative to u.,

i(x,z) = u(x,z) — hz, (23)

in terms of which the Hamiltonian becomes
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1 -2 -2
=5 dx dz[K(d.it)” + B(d,i1)"]

-v f dz cos{G[u(0,z) + hz]}. (24)

At zero temperature a reduction to an effectively one-
dimensional model can be most straightforwardly done by
solving the Euler-Lagrange equation for u(x,z) for a pre-
scribed (but arbitrary) distortion u(0,z) = u(z) on the colum-
nar defect (In Appendix A, we present a complementary con-
strained functional integral-based derivation of the above
result, that extends to finite temperature.)

(K& + BT )u(x,z) = Bug(2)d,8(x). (25)

The local stress term (source term on the right-hand side) is
chosen so as to produce a vortex lattice distortion at x=0 to
automatically satisfy the boundary condition u(0,z) = uy(z).
Standard Fourier analysis leads to a solution

ii(x,q,) = iip(q.)e KB el (26)

which, when substituted into the Hamiltonian H, Eq. (24),
and integrating over x reduces to

J dz cos{Glity(z) + hz]}.

(27)

d
Ho= KB j daz) |
2

The two-dimensional nature of the underlying vortex lattice
is captured by the nonanalytic form (|q.|) of the effective
one-dimensional elasticity in H,. As in other examples of a
low-dimensional system coupled to a bulk system (e.g., a
crack or a crystal surface in a bulk solid®®) it encodes long-
range interactions of one-dimensional deformations mediated
through bulk (away from the columnar defect) degrees of
freedom, as can be easily seen by reexpressing H, in terms

of iy(2),
’KB ffd dz (MO(Z)—MO(Z ))

-v f dz cos{Gluy(z) + hz]}. (28)

The long-range elasticity qualitatively distinguishes this
system from a one-dimensional sine-Gordon model charac-
terized by short-range and therefore analytic (¢?) long-scale
elasticity. As we will see in Sec. IV, the associated enhanced
stiffening of elastic distortions is what allows this one-
dimensional system to undergo a finite-temperature roughen-
ing phase transition, in contrast to a one-dimensional sine-
Gordon model. For reasons that will become clear below and
by the analogy with the sine-Gordon model, we refer to this
system as the sine-Hilbert model. In the next section we will
study the sine-Hilbert model at zero temperature but finite
tilting field A, in order to characterize a vortex lattice re-
sponse to a magnetic field H, applied transversely to the
columnar defect.
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III. ZERO-TEMPERATURE TRANSVERSE FIELD
RESPONSE

A. Bulk tilt response

For h=0 much is known about the sine-Hilbert model ),
Egs. (27) and (28), as it arises in many different physical
contexts including resistively shunted Josephson junctions**
and Luttinger liquid transport in the presence of an
impurity.®® In the present context, these findings relate to a
vortex lattice at finite temperature, a study that we will un-
dertake in Sec. IV. Furthermore, using the inverse scattering
transform Santini, Ablowitz, and Fokas*® have shown that
the classical sine-Hilbert model is integrable and admits soli-
ton solutions, a finding that we will make use of below.

Less is known about the finite-h phenomenology, the
study of which is facilitated by returning to the uy(z)
=i1y(z) + hz displacement field. In terms of uy(z), the Hamil-
tonian becomes

\KBffd iz (uo(z)—uo(z’),—h(z—z'))2
-z

-v f dz cos(Guy). (29)

For a finite transverse field, a good starting reference
point is two competing solutions

uc(z)=0, (30)

MI(Z) = hz, (3 1)

that minimize Hy[uy(z)] in the h—0 and h— oo limits, re-
spectively. By analogy with commensurate-incommensurate
phase transitions*>*3 we refer to the corresponding phases as
“commensurate” and “incommensurate,” respectively. In the
commensurate state uc(z), the vortex lattice aligns with the
columnar defect, minimizing the pinning energy, while rais-
ing the diamagnetic energy. In the incommensurate state
u,(z), instead, the vortex lattice aligns with the external field,
thereby ignoring the defect and sacrificing its attractive pin-
ning energy. For a sample of extent L along z, the corre-
sponding total energies in the two cases are given by

’BK
Ee= \2—th2 —uL, (32)
E;=0. (33)

The extensive scaling ~L* of the magnetic energy in E, is
expected from Eq. (26), which shows that elastic distortion
on scale L along z imposed at x=0 (in the commensurate
phase corresponding to misalignment with the applied field)
decays over a length L(B/K)"? into the bulk, leading to a
region of area ~L*(B/K)"? with a finite diamagnetic energy
cost. As discussed in the Introduction, in the thermodynamic
limit this bulk diamagnetic energy always dominates over the
linear-with-L pinning energy, and the vortex system is in the
incommensurate state for arbitrarily small transverse field .
However, for a finite L, we find from Egs. (32) and (33) that
for a single pin, the tilting transition between u and u; states
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E(h) ,

h

Incommensurate

Commensurate

—vi

FIG. 4. Oversimplified (ignoring solitons) expression for the
energy E(h) of a vortex lattice in the presence of a transverse field
h, indicating the aligned (C) to tilted (I) transition at &,.

takes place at the critical (“thermodynamic bulk™) tilting

field
210 172 1
hL.:(—\’E{) T (34)

which, as expected, vanishes in the thermodynamic limit L
— o0, For a finite density of columnar defects spaced by d, it
is clear that the bulk critical field saturates at a finite

d-dependent value given by
B
L \/j <d,
K

20\ 1
(\’ﬁ) L
B
L\/j>d.
K

<~ 27w\ % 1
( K ) "’
This oversimplified picture of the tilting transition, ignoring
solitons (see below), is summarized in Fig. 4.

(35)

B. Tilt solitons

The two states uc, u; are only appropriate in the 7 —0,
h— o0 limits, respectively. However, in analogy with other
systems, where there is competition between elastic and pin-
ning energies,*'~*3 we expect and find (see below), that the
tilting transition into an incommensurate state is driven by a
soliton proliferation transition above a lower critical field
h.,, which preempts the bulk transition at 4, found above.®!
The soliton state above &, then continuously approaches the
fully incommensurate u,(z) solution in the 2—  limit, when
solitons become dense.®’ The existence of a lower-energy
soliton solution can be seen by a simple inspection of the
Hamiltonian M, Eq. (29). It stems from the periodicity of
the pinning energy H ;,[uo]="H ps[119+a], which microscopi-
cally corresponds to its independence of which of the iden-
tical vortex lines in the array is pinned by the columnar de-
fect. A soliton at z, corresponds to a solution u(z) that
switches at z, between two adjacent minima of the periodic

PHYSICAL REVIEW B 73, 104504 (2006)

a

FIG. 5. A two-dimensional perspective of a 1D soliton along z,
corresponding to an exchange between two neighboring vortex lines
localized on the columnar defect.

potential. As illustrated in Fig. 5, from the 2D perspective
such a soliton describes a switching between two adjacent
vortex lines localized on the columnar defect.

At zero temperature the soliton shape is characterized by
a single length scale

a 22\/5(
§0= (2_) > (36)
o v

which can be read off from H, by balancing the elastic and
pinning energies, which scale like VKBa?* and v&, respec-
tively. This soliton width is set by the balance between the
pinning and elastic energies. The former (latter) is minimized
by the most (least) abrupt shift between the adjacent pinning
minima, with &, reflecting this through its dependence on
elastic moduli and pinning strength, increasing with B, K and
decreasing with v. We note that the effective 1D modulus is
a geometrical mean of the vortex compressional (B) and tilt
(K) moduli, as the 2D distortion corresponding to the soliton
configuration along the defect in Fig. 5 involves both tilt and
compression of the 2D vortex lattice.

It is convenient to express length scales along z in units of
the soliton width &, and trade in the displacement field u(z)
for a dimensionless phase field

2
B(2) = fuo@, (37)

where throughout the paper we will use careted symbols to
denote dimensionless quantities. The Hamiltonian H, then
reduces to a dimensionless form

104504-7



LEO RADZIHOVSKY

EzLffdfdf’(¢(2)_¢(A2,)_Ijl(2—2’))2
41 2

€ - 2,
- f dz cos(¢), (38)
where
a\* —
€= (—) 2VBK (39)
21
=& (40)
is the soliton energy scale and
A 2
j= 2", (41)
a

is a dimensionless measure of the transverse field.

These energy and length scales are sufficient to determine
all qualitative ingredients of the soliton-driven tilting (CI)
transition. However, integrability of the Euler-Lagrange
equation §H/ duy(z)=0,

1 [ g9 - ff’)(f')

+sin (2 =0, (42)
T (Z-2

found by Santini et al.>® allows for a quantitatively exact
analysis. In the above, the integral must be defined as the
principal value with the singular point z=z' excluded, and
we have used free boundary conditions on ¢(L) and ¢(0) in
deriving Eq. (42). These lead to a boundary condition

d:(2)

that supplements Eq. (42). It encodes the condition that at the
edge of the sample vortex lines tilt to slope % to follow the
external magnetic field.

A single-soliton solution to the above sine-Hilbert equa-
tion, Eq. (42), was discovered by Peierls®® in his seminal
study of an edge dislocation in a crystal, and later rediscov-
ered and considerably extended (to multisolitons, dynamics,
and proving integrability) using the inverse scattering
method by Santini et al.> It is illustrated in Fig. 6 and given
by

of=h (43)

¢4(2) =— 2 arctan (44)

Z— 20
This solution can be verified by a direct substitution of ¢(z)
into Eq. (42), using Hilbert transforms that we review in
Appendix D.

Substituting ¢,(2) into H,, Eq. (38), and using Hilbert
transforms (with details presented in Appendix E), we find
the energy of a single-soliton state

E;=Ho[¢,(2)] (45)

= E()EC + GOEA'S] (46)

where the dimensionless single soliton energy EJI computed
in Appendix E is given by
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0(2)

-30 -20 -1¢ 10 20

FIG. 6. Soliton solution ¢(z), Eq. (44), to the sine-Hilbert equa-
tion, Eq. (42). Inset shows d.¢(z).

A

. L) ~ =
E, = 277111(%> —h(2L-2m), (47)

L=L/ &y, and EC is the dimensionless energy of the com-
mensurate state [cf. Eq. (32)]

RS VUV
Ec=—h*L>-L. (48)
4ar

From Esl, Eq. (47), it is clear that the soliton energy becomes

negative for h> ﬁc 1, with
1 L
Byt = - ———In = (49)
S02L-2m 2
L
~L =, (50)
2L &

that, as expected (given that there is only a single pin) van-
ishes in the thermodynamic limit. As with other CI phase
transitions,*>* this leads to soliton proliferation at h,;,%!
which preempts the bulk transition at /., approaching the
fully tilted incommensurate state u;(z), only as h— h,,. The
latter tilt field is defined by when the solitons begin to over-
lap, namely, ny(h.,) =&, !. However, in contrast to the con-
ventional CI transition, where the ratio of the lower critical
field to the thermodynamic one is constant of order 1
[=4/ (\577)%0.90 for the CI transition in the sine-Gordon
model], here

h Y 2
ha 77 (&) £ (51)
h 2 \L &

Vanishing of this ratio for large L demonstrates the impor-
tance of solitons in driving the vortex lattice tilting transi-
tions.

c

C. Tilt-soliton proliferation transition

The vortex lattice tilting angle 6(h), related to the trans-
verse flux density B (H,) via b, =tan =B, /B,, is deter-
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mined by the soliton density n,(h) through the relation
b, (h) =an(h). (52)
The soliton density n,(h) for h>h,, in turn is determined by

the balance of the soliton chemical potential energy & (which
induces solitons) and the soliton repulsive interaction. In the

Ey(21,%)) = Holyy + by2)

¢sl(2) + ¢32(2) — ¢sl(2,) - ¢s2

PHYSICAL REVIEW B 73, 104504 (2006)

dilute soliton limit (for h., <h<h,), we can approximate
the latter by a sum of pairwise soliton interactions. This is
determined by the energy E,(2;,%,) = €yE+(2,,2,) of two one-
solitons, localized at Z; and Z,, separated by a large distance
Z21—2,>1, with

(53)

1
=— dz dz’'
47Jf ¢ Z( PR

A straightforward calculation along the lines of the compu-
tation of E; gives (with details presented in Appendix F)

Ey(21,2) = Ec+2E(h) + V(2 - %), (55)

where the soliton two-body repulsive interaction is given by

7 17\2
V(2)= 27T1n< (L12) ) + 4 (56)
+4

22

A

L .
+4m for 1 <|3| <L/2,

~4mln —
2/2|
(57)
and is illustrated in Fig. 7.
The energy of the Ng-soliton lattice is then given by
ENS=EC+NsésI +E Vs(fi_zj) (58)
i<j
. PN A 1 . ’
~Ec+2L(h, —h)N,+ EVS(L/2)NS (59)
V(z)
4rin(L/4)
~In(L/z)
4t L
0 ¢ <

FIG. 7. Soliton interaction potential V(z), illustrating a long-
range logarithmic repulsion.

¢ -hiz-2)\
)-h(Z-2 ) _fdﬁCOS[¢.y1(2)+(;[)Xz(f)]. (54)

PN 1.
~Ec+ L2(2(hc1 —h)i, + EVS(L/Z)ﬁi) , (60)

where, because of the long-range nature (logarithmic) of the
interaction V(2), the sum in the interaction energy is domi-
nated by the longest length scale L, leading to its Nf=nfL2
stronger-than-extensive growth. This is in qualitative contrast
to the standard CI 7=0 transitions,*>*>%! where the interac-
tion is short ranged and the corresponding sum is dominated
by the smallest term V (a/&,), leading to an extensive inter-
action energy.®?

Minimizing l:?NS(ﬁS) over the soliton density 7,=N,/ L, we
find the advertised CI soliton proliferation transition*® at ,.,,
with the soliton density

.o, h<h,,
fig(h) = T (61)
Agh="h.), h>h,,

growing linearly with the transverse field h. 7, is O(1) con-
stant given by

2
nAXO = A (62)
V,(L/2)
1
~—. 63
. (63)

The final numerical result Eq. (63) above is quite crude, pro-
viding only an order of magnitude estimate, as we have not
carefully treated the case of a soliton near the edge of the
system.

The dimensionless soliton density 7, (measured in units of
1/&,) increases to O(1) when h=h2m&y/a exceeds h,, by 1.
This corresponds to the physical soliton density n(k,,)
~1/§, of a dense lattice of overlapping solitons, with the
upper critical transverse field %, given by
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M(h) n(h)

dla

0 h ol h 2 h
Commensurate Incommensurate

FIG. 8. A sketch of soliton density ny(h) and the number of
vortex lines pinned per columnar defect M (k) as functions of the
transverse field A.

a
h('2 = hcl + ;&)’ (64)
consistent with the physical picture illustrated in Fig. 16 be-
low and summarized by Fig. 8.
Using the solution N,(h)=A,(h)L, Eq. (61) inside Ey, we
find the vortex lattice energy as a function of the transverse
field h:

W22 .
4— -L, h<h,.,

PN T

E(h) - 1272
h°L PR /TP A A PN
__L__so(h_hcl)sz’ hey <h<hg,
4ar 2

(65)

As expected the negative soliton energy (last term) cancels

the L2 misalignment-field energy (first term), as the incom-
mensurate state is approached with increasing soliton density

in the large 7> h,, 1limit.®* This energy and the correspond-
ing phase diagram are illustrated in Fig. 9.

D. Bulk vortex lattice distortions

Having established the existence and computed the details
of the T=0 vortex array tilting transition in terms of the
one-dimensional field u(z), illustrated in Fig. 10, we now
turn to the computation of the associated bulk vortex lattice
distortion ug(x,z). The connection between uy(z) and ug(x,z)
is established through a key relation Eq. (26) (here we use
the subscript 0 to denote 7=0 field configurations, obtained
by minimizing the energy)

iio(x,q.) = ip(g.)e MilaD) (66)

which shows quite clearly that a one-dimensional distortion
with a wave vector g, along the defect penetrates into the
bulk x# 0 over a screening length

PHYSICAL REVIEW B 73, 104504 (2006)
E(h)

0 h| cl h 4 h. c2 h
Commensurate Incommensur

—vl

FIG. 9. Vortex lattice energy E(h) as a function of transverse
field A, illustrating soliton-driven tilting CI transition at the lower
critical field h,.; preempting the bulk thermodynamic critical field
h.. At the high upper critical transverse field /., the system crosses
over to a fully discommensurated tilted state with a smooth tilt
response.

1/2
B) 1 6

(21

K
A real-space one-dimensional distortion in an N-soliton state
is given by

NS
iiy(2) = 2 uy(z-z,) — hz (68)
a=1
=iiy(z) — (h—n,a)z, (69)

with u (z)=(a/27)¢p,(z) the single-soliton solution from Eq.
(44). Physically d.iiy(z) is proportional to transverse magne-
tization. In Eq. (69) we defined a periodic part coming from
the soliton array (illustrated in Fig. 11)

N,

K

1'70(1) = E us(z - Za) —nsaz, (70)

a=1

which oscillates around 0 with period 1/ng, and the remain-
ing misalignment part % z, with an effective tilt field

heff: h_ns(h)a (71)

ufz)

T
0 ;! Z

FIG. 10. A sketch of the function uy(z) for an array of five
solitons.
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ufz)

/T VN 0 n;f\ [~
—~ —~ - —~ —~ Z

FIG. 11. A sketch of the function iy(z), Eq. (70), characterizing
the periodic part of the soliton train solution u.

Zh—zﬁﬁxo|h—hcl|. (72)

These respectively contribute to the oscillatory and uniform
part of the (negative) transverse magnetization.

To compute the Fourier transform #y(gq.), we extended the
hegr 7 part of i1y(z) beyond the system size L to a continuous
periodic function with period 2L illustrated in Fig. 12.

From this decomposition it is clear that the distortion
ity(z) appears on two characteristic wavelengths: the system
size L along z (we take the system to be infinite along x) and
the soliton spacing n;l. Hence we predict that the associated
bulk distortion ug(x,z) will display an average misalignment
with the applied field (i.e., on average align with the colum-
nar defect), which extends over a length

0 §>1/2£
\ _<K T (73)

along x and will exhibit soliton-induced oscillations with
wavelength ~n;1 that penetrate over a scale

_ (E)‘”;
M=k 27mn,(h) (74)

into the bulk, x # 0 away from the columnar defect.

PHYSICAL REVIEW B 73, 104504 (2006)

FIG. 13. Vortex lattice (T=0) configuration ug(x,z) for a sub-
critical tilt field 2 <h., showing expulsion of tilt over a region of
size L X (B/K)"?L around the pin, but with penetration of tilt on

~(B/K)"L.

The above qualitative discussion can be elevated to an
exact calculation. Using Eq. (66), the real-space bulk distor-
tion is given by

d )

Putting together the above ingredients, the Fourier transform
iig(g.) can be easily computed, and when inserted into Eq.
(75) gives

oo

Co(=1 — 1 =
o(x.2) = hz = LheffE A R sin(z(2m+1)2>+22 — e WRmI Gin(2mmps)  (76)
o 2m+1) L T p=1
ny(h)a —VKIB(wL)x] a4 _KIB2mnx|
~[1- I—T e WP hz 4 — e MBS gin(2ngz) (77)
T

Although no approximation is required to compute
uy(x,z), Eq. (75), in Eq. (76) we have considerably simpli-
fied the Fourier transform by approximating the soliton part
ity(z) by a function —n,az, periodically extended with period
ngl. This approximation is valid away from the dense soliton
limit, i.e., for h<<h,,, where n,a<<1. In going to Eq. (77) we
have furthermore simplified uy(x,z) by keeping only the first

~thy
| } Z
-2 0l 17)

FIG. 12. A sketch of a tilted component of uy(z), periodically
extended beyond the system size L.

harmonic in each of the two terms and approximated the first
sine by a line with a proper slope (determined by boundary
conditions) valid for z<<L away from the edges of the
sample. The corresponding configurations of the vortex lat-
tice in the commensurate state h<<h,;, slightly inside the
soliton state, h=h,, the intermediate regime h.; <h<h,,
and deep in the soliton state 7> h., are illustrated in Figs.
13, 14, 15, and 16, respectively.

As anticipated by the qualitative discussion above, the
influence of the columnar defect depends on the tilt field &
and ranges from the maximum value \°, Eq. (73), in the
commensurate state, down to \;, Eq. (74), in the soliton
state. Upon increasing & beyond the lower critical field A,
the soliton density increases and the penetration length de-
creases according to
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FIG. 14. Vortex lattice (7=0) configuration ug(x,z) for a just-
above-critical tilt field 27=h,, with a single soliton along the pin. It
shows the expulsion of tilt over a region L X (B/K)"2L/2 around
the pin, with the tilt penetration length \,,=(B/K)"?L/2 along |x|
reduced by a factor of 2 relative to the case of no solitons, illus-

trated in Fig. 13.

a (B\"* 1
Nh)=—-"V =) —— 78
i 4wzﬁxo<l<) |h = h| 78

. a [ B 1/21
_>)\h = ;T % Z for hcl <h< hCQ, (79)

saturating at the microscopic lattice scale a as h., is ap-
proached. The size of the pinned vortex “cloud” A, allows us
to define an important dimensionless number*>%* M (h)

|

FIG. 15. Vortex lattice (T=0) configuration uy(x,z) for tilt field
h. <h<<hg,, with three solitons along the pin. It shows the expul-
sion of tilt over a region L X (B/K)"?L/4 around the pin, with the
tilt penetration length \j4=(B/K)">L/4 along |x| reduced by a fac-
tor of 4 relative to the case of no solitons, illustrated in Fig. 13. As
discussed in the text, in general, the N-soliton penetration length is
given by \,y=(B/K)">L/N,~\,/N,=n;"(B/K)".
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FIG. 16. Vortex lattice (7=0) configuration ug(x,z) for tilt field
h—h,,, giving a dense soliton array and a vanishing tilt expulsion
length. The resulting vortex lattice tilt response is nearly that of a
pin-free system, with the distortion confined to the immediate vi-
cinity of the columnar defect.

M (1) = % (80)

that gives the number of vortex lines effectively pinned by a
single columnar defect. As illustrated in Fig. 8 it ranges from
My*™~=(B/K)"L/a (d/a for finite density of pins) in the
commensurate (h<<h,;) state down to its minimum value of
1 for h—h,,.

IV. FINITE-TEMPERATURE THERMODYNAMICS
AND CORRELATIONS

Having established the vortex lattice 7=0 tilt response to
a transverse magnetic field, we now turn to the study of
finite-temperature properties of the vortex lattice pinned by a
single columnar defect.’® As usual, the thermodynamics and
corresponding correlation functions can be computed by in-
tegrating the vortex phonon configurations weighted by a
Boltzmann factor e~"*87/Z, with Z the corresponding parti-
tion function Z= [[du]e~"*sT

A. Thermal depinning transition for vanishing tilt field 2=0

We first consider the case of a vanishing tilt field ~=0,
and show that the effective one-dimensional, long-range in-
teracting Hamiltonian H,), to which our 2D vortex problem
has been reduced, exhibits a thermal depinning transition,
qualitatively similar to a well-known roughening transition
in 2D systems.*1-43

The indication of the existence of the transition comes
from a computation of the thermodynamics perturbatively in
powers of the pinning potential strength v. As for the 2D
roughening (and related) transition, this perturbation theory
diverges (at long length scales) for low temperatures T<T,
even for an arbitrarily small v, but is convergent for high
temperatures 7> T, with the critical pinning temperature 7,
defined below. As usual to make sense of the associated in-
frared divergences near and below 7, we employ the
momentum-shell renormalization-group transformation® on
the 1D Hamiltonian H,,
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d
Hy= \ﬁf 2—3; q|liio(g) > v f dz cos|[Giiy(z)].

(81)

That is, in the partition function for the model, we integrate
out perturbatively in v short-scale phonon modes ug (¢g.)ina
narrow shell G.e % <|q,|]< G, around the short-scale cutoff
G.=G\B/K=(2m/a_), with 8¢ <1. This allows us to ex-
press the partition function in terms of integrals over the
remaining effective course-grained phonon modes u;(q.),
with |q.| <Gze‘5€. In order to massage the resulting Hamil-
tonian into the original form H,, i.e., to bring the reduced
ultraviolet (uv) cutoff back up to G, we rescale lengths and
wave vectors according to

q.=q.e, (82)

z=z7"e%. (83)

For convenience, to keep the vortex lattice reciprocal vector
G in the argument of the pinning potential fixed, we choose
not to rescale the real-space phonon field ug (z)=u(z'),
which implies a rescaling

ug (q) = e ui(q’) (84)

for its Fourier transform. With these transformations the ef-
fective coarse-grained Hamiltonian returns to its original H,,
form, but with effective, €-dependent elastic and pinning pa-
rameters. As can be easily checked, to lowest order in v, the
one-dimensional stiffness VBK remains unchanged,® and the
effective pinning strength transforms according to

0(80) = ve®( eicu(?(z>>0 = pe¥e=CXlug D)2 = 1) p(1-n2) 8t
(85)

where # is defined by the root-mean-squared phonon fluc-
tuations

Gt G?> kT (% dg,
n= 5€<[”0 ()] >o—2m% VKB oo 14,
G? kgT kT
=—— == (86)
21 \rKB TTE)

Because of the aforementioned relation of our model to a
variety of other problems in condensed matter physics, this
RG analysis is in fact quite familiar from those other
contexts. 33444647 Aq advertised it clearly predicts a phase
transition at =2, corresponding to

ksT,=47G KB (87)

=2me, (88)

between the pinned phase for 7<<T, and the depinned phase
for T>T,. The two phases are distinguished by the relevance
and irrelevance of the pinning potential v, respectively. More
physically, for 7> T, thermal fluctuations of the vortex lat-
tice at long scales effectively average away the effects of the
pinning potential (but see below), reducing it relative to the
elastic energy.
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In contrast for low temperatures 7<<T),, as indicated by
the RG flow Eq. (85), the strength of the pinning potential,
no matter how weak at the lattice scale a, grows relative to
and becomes stronger than the typical elastic energy. Quite
clearly, since the computation of the RG flow in Eq. (85) is
done perturbatively in v the flow terminates on scale &(7)
=a.e" when the elastic and pinning energies become com-
parable. On scales longer than &(7), the displacement field is
well localized at a minimum of the periodic pinning poten-
tial, which therefore can be safely Taylor expanded to qua-
dratic order and treated as a “mass” for uy(z). Hence & is
determined by the balance of the effective pinning and elas-
tic energies on scale &

Y% 2 -2
T e

with the effective pinning strength v g=v(£/a,)""*<v re-
duced by thermal fluctuations of modes in the range of scales
a,<z<¢. Solving Eq. (89) for & we find

>~

&0, é=an/7,

&) = /(2-7)
B 7 7,
gO(% \/;) s g() >a

which, for weak short-scale pinning is, as expected, expo-
nentially lengthened by thermal fluctuations

(90)

s

e

1) = &e "1 for &> a \/g , o1

with o=In(§,VB/K/a)>0.
We next turn to the computation of correlation functions
in each of these phases.

B. Depinned phase 7>T7),, h=0

Irrelevance of the pinning potential for 7> T, allows us to
compute correlation functions in the depinned phase pertur-
batively in v. To zeroth order, it is computed via a Gaussian
integral with Hamiltonian H,;, Eq. (17), at long scales giving

Cror (0.2) = ([u(x.2) - u(0,0)]) (92)

dq.dq. 1-e""
(27)? Bg* + K¢?

Z

kT ( [, B
=~ Inla '\ [x*+ =22 , (93)
Ww’ﬁ K

where we used the vortex lattice spacing a as a natural short-
scale cutoff on x. At the location of the defect at x=0,
Cy~7 (0,z) can be equivalently computed using the effective
1D Hamiltonian Ho, Eq. (27), to zeroth order (v=0) giving

~2k,T

CT>TP(O’Z) = ([ug(z) - Mo(o)]2> (94)
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kgl f " das )
=~ —C0S ¢.,2
m’/ﬁ 0o 4 )

kgT B
~ Lln(ﬂ\/j) (95)
m™KB a K

Vortex density correlations can be similarly computed us-
ing Eq. (19) and the phonon correlations above. To zeroth
order in v, the average density is given by

(n(x,2))0 = ng — no{duyy + 2ng Re (e>™olrutedly

a |K 72
=~ ny+ A 2ng cos(2mnyx)

=~ nyp, (96)

with fluctuations vanishing in the thermodynamic (L— )
limit. Physically we do not expect this to be the case, as the
pinning potential breaks translational invariance in x, even
when it is irrelevant. This reveals that for 7> T, the pinning
potential is in fact dangerously irrelevant, as dropping it
completely (as in the above calculation) restores translational
invariance and gives a result that is not even qualitatively
correct for (n(x,z)). Indeed, to correctly capture the behavior
of (n(x,z)), we need to compute it to at least first order in v.
The irrelevance of v for 7> T, guarantees the convergence

P
of such perturbation theory. We find*’

(n(x.2)) =ng =27 %" Re f dz' (@O cos[Gu(0,2') Dy
B

~ 16U s Gx J dz’ eGP Nux.2) = u(0.2) Py
kT

ngva |K{ a\7!

~c, k(; ; \/;(E> cos(27mngx) (97)
[c,=O(1) is a dimensionless constant] showing that even in
the phase where it is irrelevant, the pinning potential leads to
Friedel oscillations in the density, a result missed by simply
setting v=0. This illustrates the often underappreciated dis-
tinction between irrelevance in the RG sense and unimpor-

tance of an operator in the physical sense.
Density two-point correlations can also be straightfor-

wardly computed. Using the above phonon correlations and
Eq. (19), we find®

(n(x,2)n(x",0)) = (n(x,2))o(n(x",0))
n(z)kBT\/E Bz — K(x—x')?
Ly B[K(x-x")*+BZ*?

+2n2 ( @
n
9\ (x-x")*+ (B/K)z*

72
) cos(27ngx)
(98)

with the first term given by Eq. (97), and with the last term
approximated by its lowest-order (in v) translationally in-
variant expression.
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C. Pinned phase T<T,, h=0

In the low-temperature pinned phase, v is relevant, grow-
ing with increasing length scale relative to the elastic energy.
On scales longer than & we can therefore approximate its
strong pinning effects by replacing it by a Dirichlet boundary
condition on u(x,z) at the location of the pin away from its
ends (for a more systematic justification of this, see Appen-
dix B), namely, taking

u(0,7) = uy(z) =0. (99)

Bulk phonon and density correlations with this boundary
condition can still be computed exactly. As derived for a
general case in Appendix B, a pinned phonon correlation
function can be expressed in terms of a pin-free correlation
function, i.e., from a purely harmonic elastic theory with v
=0:

Grer (x.x"32) = (u(x,2)u(x",0)), (100)

=Go(|jx—x’

,2)s (101)

where Gy(x,z) is v=0 two-point phonon correlation func-
tion. As expected, because of the pin at x=0, Gr<7 (x,x';2)
is clearly not translationally invariant in x, depeﬁding on
both x and x’. It is easy to see that it vanishes identically for
x and x’ on opposite sides of the pin, e.g., x>0 and x’ <0,
showing that because of the pin such phonon fluctuations are
completely uncorrelated on length scales longer than & On
the other hand, for x and x" on the same side of the pin (e.g.,
x>0 and x' >0), the above expression is given by

,2) = Go(|x| + x’

GT<TP(X,X' ;2) = Go(lx —x'],2) = Golx +x',2)

forx>0, x'>0

= %([u(x,z) —u(=x",001)

1
= 5 {[ux.2) —ulx" .0 (102)
kT K(x+x")? + B
. n< ) Zz), (103)
4mVKB \K(x-x')"+Bz
and at the same point (x=x', z=z') reduces to
GT<TP(-X’X;O) = GO(O9O) - GO(ZX’ 0) 5 (104)
1 2
=5<[u(x,0) — u(=x,0)]%)0, (105)
kgT 2
~—b h(@). (106)
2m\KB a

In the above, we naturally cut off separation at short scales
by a= max[a,fv’ﬁ], since the Dirichlet boundary condi-
tion Eq. (99) is only valid on scales longer than a. Utilizing
this result, we can easily compute the average vortex density
at point x,z
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a 72
(n(x,z)) = ng+ 2nc<m> cos(mngx).  (107)

(n(x,z)) in the pinned phase also displays Friedel oscillations
similar to that of the depinned phase, Egs. (96) and (97), but
with an amplitude that is nonperturbative in v and power-law
falloff with exponent 7/2, rather than 7—1. The latter is
continuous at the roughening transition, where 7(7,)/2
=7(T,)-1=1. This is in agreement with the result first found
by Affleck et al. by utilizing an equivalent Luttinger liquid
phenomenology.®

D. Finite T and finite tilt field &

The calculations of previous sections have focused on ei-
ther thermal properties at a vanishing transverse field, or on
finite transverse field response at a vanishing temperature. As
we show below, these can be extended to a general point 7'
>0, h>0 on the phase diagram, Fig. 3.

1. Finite-T tilting transition

The zero-temperature results for the tilting transition of
Sec. III can be extended to a finite temperature by utilizing
RG analysis and matching from Sec. IV A. As in related
sine-Gordon commensurate-incommensurate transitions*>*3
the basic nature of the transition remains the same but with
thermally renormalized effective parameters. The extension
of the zero-temperature transverse-field boundary, Eq. (50) to
a finite-temperature phase boundary h,,(T) is determined by
the difference in free energies of the commensurate and
single-soliton states, computed for 7<<T,. The former is sim-
ply given by the sum of the energy of the commensurate
state E- and the entropic free-energy contribution F,=
—kpT 1In ), of the phonon modes.

The computation of a single-soliton free energy is more
complicated, since at a low temperature the pinning potential
is relevant and therefore requires a strong coupling analysis.
This can be done by matching free-energy calculations on
scales shorter and longer than the strong coupling correlation
length &(T). As is clear from the analysis leading to &(T), Eq.
(90), for &> a, (corresponding to weak pinning v) the pin-
ning potential is subdominant on scales a,<z<<&(T) and the
free energy is dominated by F u> due to Gaussian phonon
fluctuations. On scales longer than &(T), the pinning potential
dominates and free energy is determined by the sum of three
contributions: (i) a single-soliton energy E,(T), with short-
scale cutoff &(T) replacing &, in Eq. (47), (ii) the soliton’s
positional entropic contribution —kzT In[L/ &(T)], and (iii) the
free-energy contribution F,- due to phonon fluctuations about
a single-soliton configuration. Noting that phonon fluctua-
tions about the commensurate and single-soliton states are
approximately the same, i.e., F,~F, +F,, we find that the
free-energy difference between a single soliton and the com-
mensurate state is given by
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Fsl(T) sl(T) kBT In — §(T)
ze<2 ln——4 Lh) kpTIn ——
T ey ") T E(T)
~T2—L{i( T)1 L h} 108
CPal2\ T, Ve~ (108)

This leads to the prediction for 4., (T) quoted in the Introduc-
tion:

T L
hey(T) = 2L<1 TP>IH% (109)

T
zhc1(0)<1—7p>-

In going from the first to the second line we used a
temperature-independent approximation &, for &T), Eq. (90),
valid for large L.

(110)

2. Correlations at T>0, h>0

Correlation functions at a finite 4 and 7 can also be com-
puted. The nature of valid approximation and their resulting
form strongly depends on three possible regimes on the
phase diagram Fig. 3.

a. Incommensurate (fully tilted) state, h>h.(T). The
strongly incommensurate, high-tilt and -temperature regime
h>h.,(T), where the effects of the pin can be treated pertur-
batively, is simplest to analyze, as was first done in Ref. 35.
This can be done in close analogy to Sec. IV B, extending it
to a finite #. The governing Hamiltonian is given by

= % J dx dz[K(d.i)* + B(d,i1)*]

-v f dz cos{G[u(0,z) + hz]}, (111)

with 7(x,z) fluctuating around O and to zeroth order in the
pin strength v exhibiting translationally invariant correla-
tions:

([[@(x,z) — i1(0,0)]?)o = % ln(a‘1 \/x*+ gzz).

(112)

To the same zeroth order the average vortex density is uni-
form, ny. To compute it to the lowest nontrivial order in v,
we expand the Boltzmann weight to first order in the pinning
potential v and utilize the phonon correlations of #(x,z), Eq.
(112), about the tilted state. This leads to

<n(x,z)> — Ny

- % Re( iGx J dz’ (G2 lix.2) = (0.2 )y eiGh(z—z'))

. 7 . ’
~ ngv Re[eszfdz/< = a 2) eth(z—z )1
kgT Vx*+ (B/IK)(z-7)

104504-15



LEO RADZIHOVSKY

ngva |K w
~ - \/;gn(|x|/a)e_x|“h cos(2mnyx),

113
kT (113)

with the transverse field & giving an exponential falloff of
Friedel oscillations on the scale \;, Eq. (79),% and preexpo-
nential function g”(|x|/ a) approximated by a power law

a\"!
Cﬂm ,

gr](|x|/a) = a n/2—-1 a 72 .
d, 7\_;; — N <lx

a<|x| <\,

k)

2|x]
(114)

where cn,dn are O(1) dimensionless constants.

The exponential decay of density correlations, Eq. (113),
vindicates a perturbative treatment (in v) at large transverse
field and temperature, where the decay length \; is the short-
est scale in the problem.

b. Commensurate (pinned) transverse Meissner state h
<h,(T). Vortex correlations are also simple to analyze in
the low-tilt-field, low-temperature commensurate h<<h,
state, where, because of the commensurate-incommensurate
(tilting-roughening) transition we expect a behavior that is
qualitatively different from that of the incommensurate state.
We expand the Hamiltonian Eq. (111) in vortex lattice dis-
placements w(x,z) about the nontrivial zero-temperature dis-
tortion uy(x,z), Eq. (76), (with n,=0) characterizing this
state:

i(x,z) = io(x,z) + w(x,z). (115)
To quadratic order in w we find
K B
SH = f dx dz(—(&zw)2 + —(8Xw)2>
2 2
! 2 2
+ 51}(277110) dzw(0,2)", (116)

where we used the fact that in the commensurate state
1uy(0,z)=0. Clearly then, because the pinning nonlinearity is
localized at x=0, vortex correlations of w(x,z) on top of the
ground state background u(x,z) are identical to those of the
h=0 state; namely, on scales longer than the pinning length
& w(x,z) fluctuations are those of a field that is harmonic in
the bulk, but pinned at the x=0 boundary. This identification
allows us to take over results from Sec. IV C. Using the
simplified version for uy(x,z), Eq. (77), we therefore find the
average vortex density

(n(x,2)) = ng = ngd,ug(x,2) + 2ng Re(e ooty

(117)
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h<ha

| |
a {:'(B/K)m A

nonperturbative

FIG. 17. A schematic of the length-scale-dependent pinning
coupling 9(x), indicating its intermediate nonperturbative regime
for h<h.(T).

K IR
~ngy—ng \/gzhz sgn()c)e“‘K/B(’T/L)"‘|

— 2
+ 2nc<ﬁ) " cost2mmax +uge L (118)

which exhibits power-law decaying Friedel oscillations (non-
perturbative in v) as well as a smooth compression and dila-
tion of the vortex lattice around the pin for z# 0. Both fea-
tures can be clearly seen in the vortex configuration
displayed in Fig. 13.

¢. Incommensurate (soliton-tilted) state h.(T)<h
<h.(T). We now turn to the intermediate incommensurate
regime of i and T, with A>h,(T). Because there is only a
single CI transition (that across h,,, with &, simply a cross-
over), we do not expect any qualitative change in correla-
tions from those found above for large # and 7. However,
examining the expression for (n(x,z)), Egs. (113) and (114),
the prefactor (a/N;)”?7!, which is large for 7<2 and \;
>a, suggests a failure of the perturbative treatment for T
<T, and for a sufficiently low 4. Indeed, as illustrated in
Fig. 17, in such a regime N, will exceed the pinning length
&VB/K. Since for T< T,, on scales longer than §\e“’B/ K, even
a (bare) weak pinning potential becomes comparable to the
elastic energy and therefore cannot be treated perturbatively.
Consequently, for &B/K <\ there opens up an intermedi-
ate regime, 5\5'8/ K<x< )\Z’, where the above perturbative (in
v) analysis leading to exponential decay of Friedel oscilla-
tions, Egs. (113) and (114), fails. The crossover boundary
h+(T) separating the perturbative and nonperturbative re-
gimes is clearly given by f\f‘ﬁ:)\f, which (not surpris-
ingly, but reassuringly) is equivalent to &«(T)=h.(T)
~a/27&(T) found in Eq. (64).

As schematically illustrated in Fig. 17, in the parlance of
the RG, for T<T, the dimensionless pinning coupling 9(x)
at short scale x grows as x!~72. For h> h.,(T), before {(x)
reaches a nonperturbative regime [i.e., reaches O(1)], this
growth is “quenched” by the tilt field 4 on scale longer than
\;,, beyond which §(x) ~e™ Mi decreases exponentially, vali-
dating the fully perturbative treatment of Sec. IVD2a
above. In contrast, for h<<h,(T), 0(x) becomes large on
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scale §V’m< \,, requiring a nonperturbative analysis on
longer scales.

Above discussion clearly indicates a need for separate
treatments of three distinct regimes of length scales (i) a
<x<&B/K, (i) E&\B/K<x<\,, (iii) N\, <x. In the regime
(i) of shortest length scales, the pinning potential in H, Eq.
(111) can be treated perturbatively, with average density
given by the x<<\; limit of the result in Eq. (113), with
exponential factor approximately 1. On longer scales, in re-
gime (ii) the pinning potential is comparable to the elastic
energy and vortex configurations display a soliton array of
density n,(h), illustrated in Fig. 15. In this regime &/B/K
<x<\; <\, segments of vortex lines on the corresponding
scales shorter than n;I appear to be strongly pinned in the
vicinity of the columnar defect. Hence on these scales we
expect vortex correlations of the transverse Meissner state
computed in Eq. (118), with only small corrections from soli-
ton array fluctuations. Finally, on scales z>n;1 [correspond-
ing to x>\, of regime (iii)], it is clear from Fig. 15 that
vortex lattice displays an average tilt an(h),

u(x,z) = angz + w(x,z), (119)
with small fluctuations w(x,z) about the soliton state arising
from vibration of the soliton array. We expect the corre-

r

(n(x,2)) = ny ~ cos(27mx) ZnG( a

V. FINITE DENSITY OF INDEPENDENT COLUMNAR
DEFECTS

So far we have focused on an idealized problem of a
single columnar defect. As discussed in the Introduction, no
genuine tilting CI phase transition is possible in this case,
since pinning energy density and the associated lower critical
field &), Eq. (50), vanish in the 2D bulk thermodynamic
limit. In this section we extend our results to a physically
more interesting case of a finite dilute concentration 1/d of
columnar defects.

A full treatment of such a highly nontrivial problem is
beyond the scope of the present paper and has been a subject
of numerous studies.!”!%21-24 Here we will be content with
an approximate analysis of a dilute concentration of colum-
nar defects on intermediate length scales, where vortex lat-
tice response around each pin can be treated independently.
However, we expect that for a fixed defect concentration
(even if dilute), the system will cross over to the anisotropic
(Bose) vortex glass collective-pinning phenomenology and

nGva\/E(
kgT VB
)77/2

oN, (KN, \ 7!
w\/i<_h) W
. kBT B |)C|

a )’7"1
)

2l
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sponding effective Hamiltonian for w(x,z) to be given by
o1 T2 4 B )2
SH = > dx dz[K(3.w)” + B(9,%)"]

- l7f dz cos{G[w(0,z) + an,z]}, (120)

with K~K, B~B the effective moduli of the soliton-tilted
vortex lattice and o =~v(¢/a,)~"? a weak pinning potential,
reduced by thermal fluctuations from scales a, <z <<§ of re-
gime (ii). On longer scales z>ns_l [regime (iii)], the soliton
spacing n;l is the shortest scale in the problem (beyond the
lattice spacing), and analysis of w correlations using §SH can
be done perturbatively in v similar to that of the regime of
Sec. IV D 2 a, which led to Eq. (113). As can be seen from
comparing Hamiltonians in Egs. (111) and (120), the main
qualitative difference is the replacement of & by ang(h) inside
the pinning potential, that leads to the corresponding replace-
ment of \; (h) by the longer length \,(/) in the exponential
decay of Friedel oscillations of the average vortex density.
Putting these results together for 4., <h<h,, we predict

a<lx| < &VBIK,

&VBIK < |x| <\, (121)

our results will break down on sufficiently long scales. This
is in the spirit of other problems in physics, most notably the
Kondo effect,*” where for a sufficiently dilute concentration
of impurities, on intermediate scales local moments can be
treated independently, but may order magnetically at suffi-
ciently long scales and low temperatures.

The main qualitative effect of a finite pin spacing d should
be clear from the analysis of Sec. III D, in particular from
Eqgs. (26) and (76), and the vortex configuration illustrated in
Fig. 15. There we have shown that a vortex lattice distortion
of wavelength N, along the defect penetrates to length N
=N,VB/K/2 along x into the bulk, away from the defect.
For a finite concentration of columnar defects, we therefore
expect _long-wavelength elastic  distortions  with A,
>2md\K/B, corresponding to overlapping distortion clouds
of neighboring pins to be cut off at scale d along x.

To demonstrate this in detail, we need to generalize our
results in Egs. (26) and (76) to a nontrivial boundary condi-
tion on the elastic distortion u(x,z) at x=d, and use it to
recalculate predictions of previous sections, most impor-
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tantly the energies of the commensurate (aligned) and incom-
mensurate (soliton) states. The correct qualitative physics
that we are after here can be obtained by the use of periodic
boundary condition on u(x,z) with period d, or even more
simply (and a bit cruder) a boundary condition of simply
cutting off x integrals beyond length d/2 around each pin,
corresponding to the Dirichlet boundary condition on u(x,z).

To see this in more detail, we recalculate the energy per
columnar defect E=H[uy(x,z)], Eq. (21),

1 [t dan
= —f dzf A K(d,ug— h)* + B(d,u0)?]
2J)o —di2
L

- vf dz cos[Guy(0,2)], (122)
0

with the above boundary condition at |x|=d/2 and u(x,z)
given by Eq. (76). Since the Euler-Lagrange equation en-
sures that contributions from each of the three terms balance
each other, E approximately reduces to

L drn o
E= f dzf dx K[ 0,ity(x,2) — heffe_VK/B("/L)‘x|]2 -vulL.
0 0

(123)
Calculating the above expression we find that, for L

<2md\K/B, it reduces to the previously calculated single-
pin result given in Eq. (60). In the opposite regime L
>2md\K/B of interest to us, E crosses over to

1 .d
E(d) = E(d) + Kad(h,, — h)N, + EKaZZNf, (124)

with bulk energy per pin

Ec(d) = Kh*Ld - vL, (125)
leading to
v
h(d)=\— 126
()= (126)
and
B K2md
her(d) = \ﬁi 1n( \ﬁi) (127)
K4md B ¢

as quoted in the Introduction.

VI. CONCLUSIONS

In this paper we studied a finite-temperature response of a
planar vortex array to an in-plane tilting of an external mag-
netic field away from a dilute concentration of pinning co-
lumnar defects. We found that the vortex lattice tilting pro-
ceeds via an interesting finite-temperature, finite-transverse-
field commensurate-incommensurate transition at h.(7),
driven by a proliferation of solitons, as illustrated in the
phase diagram Fig. 3. A sensitive dependence of this lower
critical field (that vanishes for a single pin) on the columnar
defect spacing should be experimentally testable by varying
the heavy ion irradiation flux used to create pinning tracks.
We show that at low temperatures, for > h,;(T), the vortex
array exhibits a highly nontrivial solitonlike distortion as a
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compromise between intervortex interaction, and the pinning
and diamagnetic energies. We show that this nonlinear re-
sponse persists up to a large upper critical tilting angle,
tan 6., ~a/&T), beyond which the system recovers a full
linear transverse susceptibility with B, = H ;. We expect that
these and many other detailed predictions should be directly
testable in computer simulations. Although much more diffi-
cult, it is our hope that the theory presented here can be
furthermore tested in mesoscopic samples of artificially lay-
ered superconductors.

More importantly, we expect that a number of these fea-
tures will carry over to a transverse-field response in bulk
superconductors. Extending our two-dimensional planar re-
sults and exploring their impact on phenomenology of bulk
samples remains an important and challenging problem.
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APPENDIX A: BOUNDARY HAMILTONIAN
VIA A FUNCTIONAL INTEGRAL

Problems where it is possible and convenient to eliminate
bulk degrees of freedom, thereby reducing the problem to a
lower-dimensional one, are quite common in physics. In this
appendix, for completeness, we present a general functional
integral approach to such problems, and apply it to the prob-
lem of a planar vortex lattice pinned by a single columnar
defect treated by more pedestrian methods in the main text.

To this end, we consider a field ¢(x,z) defined on a co-
ordinate space r=(x,z) that we split into bulk x and bound-
ary z subspaces. The energetics is governed by a Hamil-
tonian H(¢) and the partition function is given by a standard
functional integral over the field ¢(r) (kgT=1)

Z= f [dp(r)]e 7. (A1)
Z can be equivalently expressed as an integral over field ¢(r)
constrained on the boundary x=0 to be ¢(0,z)=¢y(z), fol-
lowed by an integral over the boundary fields ¢y(z). Explic-
itly, the former is implemented by a functional & function,

o ¢(z)]=11,8¢(2)) giving

Z= f [do(2)dp(x,2)15[(0,2) — po(z)]e "¢ (A2)

= f [dgpy(z)]e Mol 4o, (A3)
The effective boundary Hamiltonian Hy[¢y(z)] defined

above can be expressed using the Fourier representation of
the functional & function, leading to
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e Moldo@] = J [d¢dx]exp(—H[¢]+i f Mz)[¢(0,z)—¢o(z)]).

For a general Hamiltonian H[ ¢], the above computation can
only be performed via a formal cumulant expansion. How-
ever, for the special case of a quadratic Hamiltonian

o= smee-ee. (9

defined by a correlation function G(r) [with G™!(r) its in-
verse], all cumulants reduce to a power of G(r), i.e., obey
Wick’s theorem, equivalent to the Gaussian integral identity

f de —a V@ _ (277) N2
e a

A Gaussian functional integrations over ¢(r) and \(z) (drop-
ping an inconsequential ¢-independent constant) then gives

(A6)

e Mol bo@] = f [dh]exp(— %f NMz)G(0,z—-z")\(z")

- iJ MZ)%(Z))

1
=exp(— Ej ) $0(2)G (0,2 - Z')d’o(Z'))-

(A7)

Applying this simple result to the (1+1)-dimensional
(planar) vortex lattice pinned by a columnar defect at x=0
leads to

Ml =3 [ w6 ), (a9

2,2
with
Gy'(2) =G710,2)

an inverse of the bulk propagator G(0,z) evaluated at x=0.
In g, Fourier space the latter is easily evaluated as

(A9)

-~ dCIx 1

G(x=0,q.) = —, Al0
(x=0.g.) ,f 2 qu + qu (410)

1 1
= —, (A1)

2\‘/B_I<|QZ

and leads to

Go'(¢.)=2\BK (A12)

thereby confirming the resulting for Hy[u(g,)], Eq. (28) ob-
tained in Sec. II B by a different method.
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(A4)

APPENDIX B: BULK CORRELATION FUNCTIONS
IN A “PINNED” STATE

In this appendix, as a model of phonon correlations in the
“pinned” vortex state, we study bulk correlation function of a
Gaussian field constrained at r=(0,z) by a “massive” bound-
ary Hamiltonian [ ¢(x,0)]. As argued in the main text, on
sufficiently long scales the boundary Hamiltonian can simply
be implemented as a hard constraint on the field to vanish at
r=(0,z). To this end we compute the asymptotic generating
function Z[j(r)]

Z[i(r)]=f[d¢(x,1)]5[¢(0,1)]e)<p(—H[¢]+Jj(r)¢(r)>,

(B1)

from which by differentiation with respect to j(r) all n-point
correlation functions of ¢(r) can be obtained. As in Appen-
dix A, we have implemented the Dirichlet boundary condi-
tion on ¢(r) via a functional S-function. Representing the
latter in its (functional) Fourier form as in Eq. (A4), using
the harmonic Hamiltonian Eq. (A5), and performing a
Gaussian integral over ¢(r), we find

1
Z[j(r]= eXp(EJ j(q)F[q,q'li(q’)>. (B2)
a.q'
The kernel I'[q,q’] is given by

Iq,q']= 2m%&(q. +q))G(q,q.) [ 2m)%=s'(q,+q))

-1
- é(q)/g’_ qz)(f . é(q;‘h)) :| 5 (B3)
q

and leads to the real-space ¢(r) two-point correlation func-
tion

Gpinned(X’X, ;Z) = <¢(X’Z)¢(X, ’O)>pinned’ (B4)

which in q, Fourier space is given by

G(x,q)G(x',— q,)

épinned(x7x, ;qz) = 6(X -x’ ;qz) - —
G(0.q,)

(B5)

In the special (1+1)-dimensional case of G™'(g,.q,)= qu
+Bg? of interest to us in the main text,

dg, €%
G(XCI) fsz +B 2’ (B6)
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o~(K1B)"|q.]x

== (B7)
2\r’BK|qz|
and leads to
172 ’
Gpinned(x’x, ;Z) =TT, e_(K/B) |qZHx—x |
2VBKlq|

— K1) Pl (xl+1x'])] (BS)
=G(lx=x'],2) = G(|x| + |x'].2) (B9)

utilized in Eq. (103) of the main text.

A simpler way to derive the above “pinned” correlation
function result is to note that the boundary condition
¢(0,z)=0 is automatically explicitly satisfied by the odd part
of ¢(x,z). It is also satisfied by a subset of (an independent)
even part of ¢(x,z) that vanishes at x=0. Naively, such
even-odd field decomposition does not represent a simplifi-
cation since a constraint on the even part must still be en-
forced. However, it is clear that for correlations on the same
side of the pin, a constrained even part of the field has iden-
tical correlations to that of the odd part of the field. Hence,
Gpinnea(X, X ;2) for xx’ >0 (i.e., on the same side of the pin)
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is simply given by twice the correlator of the unconstrained
odd part, ¢(x,2)— 3[$(x,2) - $(~x.2)]

Gpinned(XaX’ ;Z)

= S~ B x DA 0) - "0,

(B10)

=(p(x,2) p(x",0)) — (b(x,2) $(- x,0))o,

giving the result in Eq. (B9).

We conclude this appendix with a computation of the gen-
erating function Z[j(r)] that extends the above analysis to
scales shorter than the pinning length. To this end, we
supplement the harmonic bulk Hamiltonian with a pinning
one at the boundary, H,[ ¢(0,2)], with the full H given by

(B11)

M= [ oo s+ | om0

(B12)

The corresponding generating function is then given by

Zj(n]= f [depo(2) el f [d¢(x,z)]5[¢(0,z>—¢o(z)]exp(— % f G -1 (') + f j(r)d)(r)).

(B13)

As in Appendix A, representing the functional & function in its Fourier form, integrating over the harmonic bulk and boundary

Fourier fields ¢(r),\(z), we find

Z[j(r)]= f [depy(z)]e™"V[Po@ ]

with

1

WL by.j1=H,[ dy(z)] - zj G =r)j(r')

r,r

+%f ,(¢o(l)_f Go(x1,z-12)j(x1,21)

Z1.X|

For j(r) and H,[ (z)]=-v] cos ¢o(z) . W (2),0] simply
reduces to the Hamiltonian Eq. (27) localized on the pin,
with the integrated out bulk degrees of freedom reflected in
its long-range elasticity. On the other hand, for a finite j(r),
but strong pinning, on sufficiently long scales e~ "[#0®] sim-
ply acts as a hard constraint ¢y(z)=0, reducing Z[j(r)] to the
previously found result given in Egs. (B2), (B3), and (B5).
In the pinned (commensurate) phase, a columnar defect
pins a single vortex line, corresponding to a “confinement”
of field ¢y(z) to a single minimum of the cosine and allow-
ing us to approximate H,[¢y(z)]=-v[, cos ¢(z)~const

(B14)

)G_I(O,Z—Z’)<¢o(l')—f Go(Xz’Z'—Zz)j(Xz,zz)) (B15)

2),X)

+ %v [2%0(2)* by a harmonic “spring.” We can therefore inte-
grate over ¢y(z) in Eq. (B14), obtaining (up to an unimpor-
tant multiplicative constant)

ZD(I‘)] = exp(%f ’j(r)rpinned[r’r,]j(r’)> (B 16)

with
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Fpinned[r’r,] = f L, G(x,z) - Z)G_I(O,Zl -z)[vd(z, - 2,) + G_I(O,Zl - Zz)]_lG(X',Zé - Z,)G_I(O,Zz ~15)
21,21,2).2,

+G(r-r')- J G(x,2-2,)G (0,2, - 2,)G(x",z' —2,).
71,2

In Fourier space, this becomes

1-‘pinned[q’q,] = (277)dzédz(qz + qé) [ (Zw)dxédx(qx + q;c)é(qx’ qz)

- G(q,.9.)G"'(x=0,-q,)G(q..~ q.)

For a system that is translationally invariant along z, G '(x
=0,q.) generically vanishes at long wavelengths q.— 0, and

the result reduces to that of a hard constraint, given in Eqs.
(B2) and (B3). In more detail for the (1+1)D vortex problem

at hand, G™'(x=0,q,)=(a/2m?2 \s“ﬁh]Z , showing that, as
asserted in the main text, the crossover to the hard constraint
happens on scales longer than the pinning length, qgl > ¢

APPENDIX C: HILBERT TRANSFORM BASICS

In this appendix, for completeness we summarize some of
the basics of Hilbert transforms necessary to derive results in
the main text and in the Appendixes.

The Hilbert transform ¢(y)=H[ ¢(x)] of a function ¢(x) is
defined by
I x
I c1)
T J e X=Y
where P stands for the principal value of the integral i.e.,
with the singular point x=y excluded.
Hilbert transforms of standard functions can be usually
computed by relating it to a contour integral in the complex
plane. For example, the Hilbert transform of sin x and cos x

can be computed as the real and imaginary parts of Hilbert
transform of e",

ix

H[e"]= P j "t (C2)

—o0 xX=y
=ie", (C3)

with the last expression obtained easily by contour integra-
tion, taking advantage of the analyticity of ¢ in the upper
half plane. The above result then leads to

H[sin x]=cos y, (C4)

H[cos x]=—sin y. (C5)

More importantly for the problem of the vortex lattice at
hand, we compute the Hilbert transform of a Lorentzian

(B17)
+} (B18)
v+Gl(x=0,q,)

I
1 1 * 1 1
5 =—Pf — (C6)
x +1 T ) x—-yx-+1
-y
= , C7
v +1 €7)

by noting that it is related to a semicircular contour integral
over C in the upper half plane. Equivalently, it can be com-
puted as (minus) the imaginary part of Hilbert transform of
(x—=i)/(x*+1)=1/(x+i), with the latter function analytic in
the upper half plane. As a side benefit the real part of

H[1/(x+i)] gives
H X a 1
2+1] v+l

APPENDIX D: SOLITON SOLUTION
OF THE SINE-HILBERT EQUATION

(C8)

In this appendix we verify that the soliton solution

¢,(z) =2 arctan % (D1)

indeed satisfies the Euler-Lagrange integral equation

l dZ, ¢5(Z) - ¢S(Z,)

— ) +sin ¢(z) =0,

(D2)
where from now on, all the integrals are understood in the
sense of a principal part, a physically dictated regularization.
To this end, using the regularization P [dz'/(z—z")*>=0 and

integrating by parts, we note that the sine-Hilbert equation
can be rewritten as

- dH[(z")]+5sin ¢(2) =0, (D3)

—H[d./¢,(z")] + sin ¢(2) =0. (D4)

Now using
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ﬂzd’s(z) = (DS)

241’

and the Hilbert transform relation from Appendix C, Eq.
(C7), we find

’ - 2’Z
H[d, ¢(z')]= 5—. (D6)
7+ 1
Then calculating
1
sin ¢(z) = - sin<2 arctan —) (D7)
z
-2z
= D8
2+1 (D8)

shows that indeed ¢,(z) satisfies the sine-Hilbert equation,
Eq. (D4).

APPENDIX E: SINGLE-SOLITON ENERGY

In this appendix we compute the energy E,(h)

=Hy[¢,(2)] of a single soliton,

1
—2arctan ——, (E1)
Z— 20

dy(2) =
for the sine-Hilbert model, defined by the Hamiltonian

A ~ ol A
H0=H8+HP,

__jjdd”(eé(z) ot ) i~ >)2

- J dz cos ¢(2), (E2)

where all integrals are implicitly understood to range over
the system size, with ~LI2<:<LI2. Expanding the square
of the elastic part, ETI:Hgl[qﬁx(zA)], we find [to accuracy of
O(1) for L— o]

2
Boo f f i dA,<¢3<z>( 30 (2)
-

)2
) e e
23 477'

1
- f i (5 H[0:6,(2)]

i f 2 H[G.G)] + ——iPD2, (E4)
41

These integrals can be computed utilizing Hilbert transforms

worked out in Appendix C. Using Eq. (C7), the first term Eild
can be integrated by parts,

A 1
== | a2 gm0 (ES)
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z 1
_2fdzgzz .
z27+1 Z

arctan — (E6)

A

L
=27rIn —. E7
7TI14 (E7)

Less formally, this elastic contribution can be computed by
going back to the expression

£ f J P dA,<¢s<z> (2 )), (E8)

and noting that because ¢,(Z) vanishes for =1 and equals
241 for Z=<-1, finite contributions to the elastic energy arise
only from the regions (<-1,Z'=1) and (= 1,2’ <-1). To
accuracy of O(1), this reduces the soliton elastic energy to

2
B~ = f dz f dz' 527)/)2 (E9)
-L2 <

A

~2min =, (E10)

4

in agreement with the more formal analysis above.

The second contribution to Efl in Eq. (E4) can also be
computed by integrating by parts and noting that H[ ¢(2)]
(which can be explicitly computed giving H[ ¢ (2)]=
~In{(£2+1)/[(L/2)*+1]}) vanishes at the boundaries of the
system, 2= +L/2,

Al L (Lr
E?b=—hf _ dZH[¢,(2)] (E11)
-L/2
. (L2
=h f _ dZZH[0:¢,(2)] (E12)
—L/2
=— h(2L-2m). (E13)

The single-soliton pinning contribution £7 =H{f[ ¢,(2)] is also
straightforward to calculate using the solution ¢,(Z), Eq.
(E1). We find

R 2 i
T=— | dicos ,2) (E14)
-L/2
L2
=— | di1-2sin*(¢y/2)] (E15)
-L/2
L2 2
=— dz| 1- - (E16)
) z7+1
=—L+2m. (E17)

Combining the above contributions inside Eq. (E2), we ob-
tain the expression for a single-soliton dimensionless energy
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2 APPENDIX F: TWO-SOLITON ENERGY: INTERACTION

A | PSR el . .

E = Ethz —L+2min 4 h(2L-2m)  (E18) In this appendix we give a few technical details for the
computation of the soliton interaction energy. For two far-
separated solitons (of interest in the dilute soliton approxi-
mation, valid for h<<h,,) with |Z,-2,/> 1, we can approxi-
mate the exact two-soliton solution by a sum of two one-

I ayny s P
~ 4—h2L2 —L+2mwInL-2hL (E19)  soliton solutions
K
¢2s(21»22) = ¢v(21) + ¢Y(22) (Fl)
The two-soliton interaction is then determined by the two-
used in the main text. soliton energy
|
éz(fl,fz) =~ 7:[0[¢sl + @] (F2)
A 2
1 | D1+ Pp(2) — b (27) — pp(2') —h(Z -2’ R . .
=—-ffdu&<¢“) Bol0)= (@)= dal2) =i ))—Jlkw4@¢A+¢da] )
4 -2
:EC + 2EA‘S1 + ‘/s(21 - Z\2)’ (F4)
|
which consists of the zero-soliton contribution EC, Eq. (48), L  I[(Z-2,)2+1]
two one-soliton contributions 13731, and the soliton interaction =4 In E -2 = dz (G-2)%+1 (F9)
Vi(Z1-25)= V?(fl -2+ Vf(z] —Z,) given by
A A 1 A gar 5(2) 5(2)_ s(f) s(ér) i
Vf(zl—zz)=;ffdzdz P ¢2(A f{))i bo : =47T1n5—2771n[(21—22)2+4], (F10)
-z

(F5)  with the simplifying approximation above valid for |21.]
<L/2— . Similarly, a straightforward contour integration

o R . . gives
Vf(Zl —Z)= f dZ[1 = cos ¢y (2)cos ¢(2) )
N (22-2,-2)
: o . VB2 -2 =2f dz : F11
+sin ¢ (E)sin pi(2)]. /e) VCR=2] e e-aren Y
Manipulations similar to those for the computation of a
single-soliton energy give =41, (F12)
o . R R which, together with Eq. (F10), gives the soliton interaction
Ve 20 = [ a2 duOHI0dte) F7)
L/2)?
Vi(2) = 277111({2 ) ) +4 (F13)
. i-% 1 Z+4
~—4 | di—— 5 — arctan (F8) . .
(Z-2)°+1 -2 used in the main text.
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tion is not complete. Although we have not shown this explicitly,
from experience with the analogous calculation for the sine-
Gordon model and physical considerations it is clear that if the
proper multisoliton solution is used, here too the total N-soliton
energy Ey, should approach O in the dense soliton limit, &
— hy, as the fully incommensurate state u-=hz is approached.

%4Qur definition of the pinning number M » should not be confused
with the related quantitity N, made in Ref. 35. Although the two
measures of the pinning influence of the columnar defect are
different, they nearly agree in the 7> h,; limit.

%K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).

66The absence of graphical corrections (renormalization) to VBK is
guaranteed by the long-range nature (nonanalytic form of |g|) of
the corresponding 1D vortex lattice elasticity. This property re-
sults in the exactly vertical renormalization group flows of v(€)
in the v-VBK plane, as for example found by Kane and Fisher
(Ref. 38).
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