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A systematic study of both classical and quantum geometric frustrated Ising models with a competing
ordering mechanism is reported in this paper. The ordering comes in the classical case from a coupling of
two-dimensional �2D� layers and in the quantum model from the quantum dynamics induced by a transverse
field. By mapping the Ising models on a triangular lattice to elastic lattices of noncrossing strings, we derive an
exact relation between the spin variables and the displacement field of the strings. Using this map for both the
classical �2+1�D stacked model and the quantum frustrated 2D system, we obtain a microscopic derivation of
an effective Hamiltonian which was proposed before on phenomenological grounds within a Landau-Ginzburg-
Wilson approach. In contrast to the latter approach, our derivation provides the coupling constants and hence
the entire transverse field-versus-temperature phase diagram can be deduced, including the universality classes
of both the quantum and the finite-temperature transitions. The structure of the ordered phase is obtained from
a detailed entropy argument. We compare our predictions to recent simulations of the quantum system and find
good agreement. We also analyze the connections to a dimer model on the hexagonal lattice and its height
profile representation, providing a simple derivation of the continuum free energy and a physical explanation
for the universality of the stiffness of the height profile for anisotropic couplings.
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I. INTRODUCTION

Frustrated two-dimensional magnetic systems exhibit a
rich variety of phases and critical points. The consequences
of quantum or thermal fluctuations about the highly degen-
erate ground states of frustrated magnets are important to
understand in the ongoing quest to find novel exotic quantum
states.1 The past decades have seen a resurgence of signifi-
cant interest in a systematic study of geometrically frustrated
antiferromagnets.2 Geometric frustration arises in materials
containing antiferromagnetically coupled moments that re-
side on geometrical units, which inhibit the formation of a
collinear magnetically ordered Néel state, and induces a
macroscopically large degeneracy of the classical ground
state.

For magnets with a discrete Ising symmetry, the complex-
ity of the ground-state manifold can endow the system with a
continuous symmetry. Such symmetry is of particular impor-
tance to two-dimensional �2D� quantum magnets at finite
temperatures since then the Mermin-Wagner theorem ap-
plies, precluding an ordered phase.3 Another possible but
contrary scenario is “order from disorder”4 where zero-point
fluctuations select a small class of states from the ground-
state manifold since those states are particularly susceptible
to fluctuations. This fundamental mechanism can produce an
ordered symmetry-broken state.5 Hence one expects weak
competing fluctuations about the classical ground states to be
able to generate new strongly correlated states and �quantum�
phase transitions of unexpected universality classes.

From a theoretical perspective, it is natural to try to un-
derstand the role of frustration from extremely simple inter-
actions and dynamics. The possibly simplest realization of
classical frustration is found in the antiferromagnetic Ising
model on a triangular lattice �TIAF�. Each elementary tri-
angle is frustrated, and the TIAF model is disordered even at
zero temperature with a finite entropy density and algebra-

ically decaying spin correlations.6 The effect of quantum
fluctuations about the highly degenerate ground states can be
studied in its simplest form by introducing quantum spin
dynamics from a magnetic field which is transverse to the
spin coupling. For this transverse field TIAF model, and its
companions on other 2D lattices, Moessner and Sondhi have
argued the existence of both ordered and spin-liquid phases.5

In the limit of a small field, the quantum ground state is
constructed as a linear superposition of classical ground
states that maximize the number of spins which can be
flipped to gain transversal field energy at no cost in exchange
energy. This yields a strong suppression of configurations
and, since the TIAF model is already critical at zero field,
order emerges. As a result, there will be a discontinuity in
entropy and correlations in the ground state �i.e., T=0� when
the transverse field is going to zero. It is separated from the
ordered state by a quantum critical point. The additional ef-
fect of thermal fluctuations has been studied quantitatively so
far only in simulations.7

Experimental realizations of these frustrated Ising systems
can be found either directly in magnets with strong aniso-
tropy, e.g., in LiHoF4,8 or indirectly �via the equivalent
�2+1�D classical model� in stacked triangular lattice
antiferromagnets9 with strong couplings along the stacking
direction as studied in recent experiments on CsCoBr3.10

However, transverse field Ising models can also provide in-
sight into some more complicated systems in certain limits.
They may describe the singlet sector below the spin gap of
frustrated antiferromagnetic quantum Heisenberg models,
e.g., on the Kagome lattice, since the latter model can then
be formulated as a Z2 gauge theory which in turn is related
by duality to the transverse field Ising system on the dual
lattice of the original Heisenberg model.11 An ordered Ising
phase describes then in the Heisenberg problem a paramag-
net with spin waves forming the gapped excitations. A re-
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lated approach to study Heisenberg antiferromagnets is via
quantum dimer models �QDMs� on the same lattice.12 De-
pending on the lattice symmetry, the QDM exhibits a disor-
dered state �on the triangular lattice�,13,14 corresponding to a
resonating valence bond or spin-liquid phase, or it is found
always in ordered valence-bond solid phases �on the hexago-
nal lattice�.13,14 Interestingly, the spin-liquid phase renders
the triangular QDM a promising candidate for quantum
computing.15 For Ising spins, there is also a direct correspon-
dence between QDM’s with just kinetic terms and fully frus-
trated Ising models in a small transverse field on the dual
lattice.5 In particular, the transverse field TIAF model maps
to the hexagonal QDM.

For comparison to the developments presented in this
work, we briefly review the salient achievements for the clas-
sical stacked and quantum TIAF models obtained in earlier
studies. Symmetry arguments have been used to guess a
Landau-Ginzburg-Wilson �LGW� theory for the �2+1�D
classical stacked system.16 After translation to the quantum
TIAF, this approach suggests a quantum critical point of 3D
XY universality at intermediate transverse field strength and
an extended critical phase at finite temperatures.5 However,
the Suzuki-Trotter mapping relating the 2D quantum and
�2+1�D classical systems involves a scaling limit with a di-
verging anisotropy of the classical exchange coupling which
may invalidate a LGW approach.17 Moreover, the latter ap-
proach has been put somewhat into question by Copper-
smith, mainly since it has been argued that it fails to describe
the �classical� system at low temperatures since it neglects
the restriction to classical spin values ±1 and thus geometri-
cal frustration.18 Coppersmith has shown also that mean-field
theory and a conventional low-temperature expansion are
both unreliable. Instead, she has formulated the problem of
the low-temperature behavior of the �2+1�D stacked system
in the spirit of chainlike excitations about the ground-state
configurations, resembling the concept of order from
disorder.4 But she concludes that none of the sublattice mag-
netizations can be 0 or 1 as temperature tends to zero. Very
recent Monte Carlo simulations support the LGW-based con-
jecture for the phase diagram but the actual computations
were performed for the �2+1�D classical problem.7 Recently,
the weak-field behavior has also been studied in terms of a
quantum kink crystal.19

In a recent Letter20 the present authors have presented a
string description of the transverse field TIAF model in order
to obtain a quantitative prediction for the phase diagram. In
the present paper, we will give a full account of the relation
between spins and noncrossing strings, including a more
complete presentation of the relation to dimer models and its
surface height representation. We exploit and extend the
quantum dimer analogy in order to map the TIAF model, at
arbitrary transverse field strength, to quantum strings which
result from the superposition of dimer configurations plus
defects and a fixed reference dimer state. Using the
Suzuki-Trotter theorem17 we obtain a stack of coupled 2D
layers of classical strings which in the Suzuki-Trotter limit of
infinitely many layers can be described by the Villain
model.21 We show that the LGW action,16 which was em-
ployed in the vicinity of the quantum critical point,5 can be
derived microscopically from the quantum string action if

the phase of the complex LGW order parameter is identified
with the displacement field of the string lattice. However, our
approach explicitly takes into account the frustration that is
encoded in the topological constraint on the phase field re-
sulting from the noncrossing property of the strings. This
constraint restricts the phase field configurations of the order
parameter and thus distinguishes our theory from the original
LGW approach. Our approach confirms explicitly the 3D XY
universality of the quantum critical point, and allows us to
predict the phase diagram at arbitrary transverse field
strength and finite temperature. Using an entropy argument
for the strings, we can determine the nature of the ordered
phase.

In this paper we present first a thorough discussion of the
relations between Ising spins on the triangular lattice, dimers
on the hexagonal lattice and its height representation, and
elastic string lattices. After introduction of the spin models in
Sec. II, we explore the relations to dimers and strings in Sec.
III for the classical 2D Ising model on the triangular lattice in
order to set up the formalism for the following sections. In
Sec. IV we map the Ising model on a stacked triangular
lattice to a �2+1�D string lattice which is described by a 3D
XY model with a sixfold-symmetry-breaking term. Using the
results of the latter section, we perform a Suzuki-Trotter
mapping of the 2D quantum Ising system to the classical
stacked model which enables us to predict a quantitative
phase diagram for the quantum frustrated model in Sec. V.
Finally, we conclude with a summary and a discussion of
potential extensions of our work in Sec. VI.

II. MODELS

We are interested in two models which are both based on
the Ising antiferromagnet on a triangular lattice. First, we
study a classical three-dimensional Ising system which con-
sists of a stack of TIAF’s that are coupled ferromagnetically.
The Hamiltonian reads

H3D = J� �
�ij�,k

�ik� jk − J��
i,k

�ik�ik+1, �1�

with �ik= ±1 and where J� ,J��0 and �ij� indicates summa-
tion over nearest-neighbor pairs in each TIAF plane. This
system is fully frustrated in each layer, but has no competing
interaction along the stacking direction. This model has been
studied originally within a Landau-Ginzburg-Wilson ap-
proach by Blankschtein et al.16 In fact, much of the physics
of the stacked triangular lattice is similar to that of the two-
dimensional triangular lattice. However, the presence of the
third dimension has the tendency to stabilize ordered phases.
Indeed, for all well-characterized materials which have trian-
gular magnetic lattices, the long-range order at low tempera-
tures is three dimensional in nature. The stacked system is of
direct experimental relevance since it describes the low-
temperature physics of the Ising-like compounds CsCoCl3,
CsCoBr3, and related materials where transition metal atoms
form chains along the stacking direction which are coupled
through three equivalent halogen atoms. For a review on
these compounds see Ref. 9. Almost the entire existing body
of theory on this stacked system is based on the LGW ap-
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proach, mean-field theory, and numerical simulations with
sometimes conflicting results for the low-temperature or-
dered phase. We will briefly review previous developments
for this model in Sec. IV.

As will be demonstrated below, the previously introduced
model is also useful in describing the two-dimensional quan-
tum antiferromagnet which results from applying a trans-
verse magnetic field to the TIAF model. The latter system
has the Hamiltonian

H = J�
�i,j�

�i
z� j

z + ��
i

�i
x, �2�

where �x ,�z are Pauli operators, and � is the transverse field.
This model is of particular interest since it combines a stan-
dard realization of geometric frustration with simple quan-
tum dynamics. The transverse field induces tunneling be-
tween the exponentially large number of classical ground
states at zero temperature. One can argue that the quantum
fluctuations select a smaller susceptible class of the ground
states. This would lead then to a reduction of ground state
entropy, and an order from disorder4 phenomenon is ex-
pected.

Both the classical stacked magnet and the 2D quantum
TIAF are related to the quantum dimer model �QDM� on the
hexagonal lattice.

III. STRING PICTURE OF CLASSICAL FRUSTRATED 2D
MAGNETS

A. From spins to dimers

We start with the description of the antiferromagnetic
Ising model on the triangular lattice in order to explain its
relation to dimers and strings. The Hamiltonian is

HTIAF = �
�i,j�

Jij�i� j �3�

where the couplings Jij are equal to one of the three positive
constants J1, J2, or J3 depending on the orientation of the
bond �ij� relative to the three main lattice directions. It is
well known6 that the ground state of this system has expo-
nentially large degeneracy in the isotropic case J1=J2=J3,
leading to a finite entropy density and the absence of order
even at zero temperature. For all ground states of the general
model of Eq. �3� each triangle has exactly one frustrated
bond, and hence there is a one-to-one correspondence
�modulo a global spin flip� of all spin ground-state configu-
rations to complete dimer coverings of the dual hexagonal
lattice. This can be seen from Fig. 1: If one places a dimer
across every frustrated bond, one obtains the corresponding
dimer covering of the dual hexagonal lattice, where each
lattice site in the hexagonal lattice is touched by one and
only one dimer.22 If the two smallest couplings are equal,
J1=J3�J2, then dimers can occupy bonds in directions 1 and
3 only and there is still a huge ground-state degeneracy. But
the entropy at T=0 scales now 	
N with the number of
lattice sites N, due to the constraint that dimers cannot touch
each other. Thus the entropy density vanishes and the system
is ordered at T=0 but disordered at any finite temperature.

�At finite T topological defects have to be considered; see
below.� If one of the three coupling constants is the smallest,
then there is only one dimer ground-state configuration with
all dimers being perpendicular to the direction with smallest
coupling, and order survives at finite temperature.

The analogy to dimers can be expressed by the fact that
the Ising partition function in the limit of vanishing tempera-
ture is proportional to that of the dimers, which reads

ZD = �
�D�

z1
n1z2

n2, �4�

where the sum runs over all complete dimer coverings of the
hexagonal lattice, and n1 and n2 are the numbers of dimers
being perpendicular to directions 1 and 2, respectively. Here
we assumed that J3�J1 ,J2 so that the weights for the two
types of nonvertical bonds are given by

z1 = e−2�J1−J3�/T, z2 = e−2�J2−J3�/T, �5�

and all vertical bonds have a weight of unity. Of course, for
the TIAF the isotropic case with J1=J2=J3 is of most interest
but for the dimer model itself anisotropic weights provide
some interesting insight as will become clear below. We note
that even at finite temperature the analogy to dimers will turn
out to be useful but then defects �triangles with all three
bonds crossed by dimers� have to be included.

B. From dimers to strings

In this section we make use of another mapping which
relates dimer configurations to fluctuating strings that are
directed and noncrossing.23 This mapping applies to general
weights for the dimers but of primary interest is the TIAF at
T=0 where the dimer weights are either unity or zero, and
there is a one-to-one correspondence �modulo a global spin
flip� of Ising ground states to string configurations. The
string representation results from the superposition of a
given dimer covering and a fixed reference dimer covering

FIG. 1. �Color online� Mapping of a spin configuration to a
dimer covering on the dual hexagonal lattice.
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where all vertical bonds of the hexagonal lattice are occupied
by dimers �see Fig. 2�b��. The superposition is an “exclusive
or” operation, i.e., only if a given bond is covered by a dimer
either in the original covering or in the reference covering
will it be covered in the superposition. The resulting super-
position is no longer a dimer covering �since dimers touch
each other� but an array of strings which are directed �along
the reference direction� and noncrossing �due to the fact that
each site is touched by exactly one dimer in the original
dimer covering�.24 The mapping to strings has also been used
to study the effect of a staggered field conjugate to one of the
classical ground states of the TIAF.25 The fluctuations of the
lines result from the nonzero entropy density of the spin
system, or in other words, we map the zero-temperature
TIAF to a line lattice at a finite �virtual� temperature Tl.

Before we parametrize the string configurations, it is use-
ful to introduce a height profile h which can be associated
with a dimer covering. If the lattice covered by dimers is
bipartite, then there exists a well-defined �single-valued�
height profile which is defined on the sites of the original
�triangular� lattice. Starting at an arbitrary site with some
integer number, one follows a triangle pointing down clock-
wise and changes the height by +2 �−1� if a �no� dimer is
crossed. Repeating the latter process for all triangles pointing
downward, one obtains a consistent height on all sites �see
Fig. 2�a��. If one subtracts the height profile of the fixed
reference dimer covering from a given height profile, one
observes that the previously introduced strings separate do-
mains of equal height which is an integer multiple of 3 �see
Fig. 2�c��. It will turn out that the height profile measures the
roughness, i.e., the displacement of the strings from a per-
fectly straight configuration.

The array of strings is characterized only by its density
�=1/� and the elastic line tension g of the strings. The in-
teraction between the strings consists only of the noncrossing
constraint and thus introduces no additional energy scale.
The configurations of a single directed string are character-
ized by its position function xi�y� since overhangs are forbid-
den. The reduced elastic Hamiltonian for all strings is then26

Hl

Tl
= �

i
 dy

g

2Tl
�dxi

dy
�2

, �6�

where only those displacements xi�y� are allowed which are
consistent with the noncrossing condition. The free energy

will have a density-dependent entropic contribution which is
caused by the reduction of configurations due to the non-
crossing constraint �see Eq. �19� below�. First, we determine
the line tension g from a simple random walk argument. If x̄
denotes the mean string position, then the total mean squared
displacement of a string of length L=
3aM along the y di-
rection �after M steps�, with a the triangular lattice constant,
must be

�
i=1

M

��xi − x̄�2� = LTl/g �7�

in order to be consistent with the result of the continuum
model of Eq. �6�. Here xi=−a ,0 , +a are the three possible
transversal steps. The different kinds of steps correspond to
the paths OL, OC, and OR shown in Fig. 3. The correspond-
ing probabilities for the steps can be expressed in terms of
the weights of the occupied nonvertical bonds as

pL =
z2

2

�z1 + z2�2 , pC =
2z1z2

�z1 + z2�2 , pR =
z1

2

�z1 + z2�2 . �8�

The mean position after one step is

x̄ = �pR − pL�a =
z1 − z2

z1 + z2
a . �9�

Thus, after M steps, the variance of the transverse wandering
around the mean position is

�
i=1

M

��xi − x̄�2� = L
2


3�2 + � + �−1�
a , �10�

where �=z1 /z2, yielding the line tension

g

Tl
=


3�2 + � + �−1�
2a

. �11�

The mean density of strings depends also on the dimer
weights of the nonvertical bonds. It can be computed exactly
with the result22,23

FIG. 2. �Color online� Mapping a dimer covering �a� to a string
configuration �c� via the reference state �b�. The numbers denote the
height profiles associated with the dimer coverings. The displace-
ment of a string from its straight reference position is determined by
the height profile at the two plaquettes which are joined by the
displaced dimer in the original dimer covering �a�. FIG. 3. Different kinds of steps of the random walk of a

string.
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� =
2

	a
arcsin� �z1 + z2�2 − 1

4z1z2
�1/2

�12�

for z1+z2�1. For z1+z2�1 the density vanishes,27 corre-
sponding to a Kasteleyn or commensurate-incommensurate
transition. For the isotropic TIAF, one has z1=z2=1 and �
=2/ �3a�.

Before we introduce the relation between the string dis-
placement and the height profile, and a corresponding con-
tinuum description, it is instructive to focus on the free en-
ergy of the string array. This will allow for an independent
check of our random walk description. Moreover, from the
free energy one can determine the elastic constants on large
length scales which are needed for the proper continuum
model.

Actually, the density of strings is determined by the den-
sities �1 ,�2 of nonvertical dimers with weights z1 ,z2, respec-
tively. This can be seen from the fact that along a cut per-
pendicular to the string direction each nonvertical dimer
corresponds to one string. It follows from Eq. �4� that

�i =
zi

N

� logZD

�zi
, �13�

for i=1,2, where the number of triangular lattice sites, N,
equals the total number of dimers. The string density then
reads

� =
�1 + �2

a
. �14�

Now we change variables from z1 ,z2 to �=z1 /z2 and �̃=�a
�see Eq. �12��. Since z1�� /�z1+z2�� /�z2=0, and using Eq.
�12�, we have

z1
�

�z1
+ z2

�

�z2
=

1 + �2 + 2� cos�	�̃�
	� sin�	�̃�

�

� �̃
. �15�

This allows us to derive a differential equation for the free-
energy density of the dimers,

fD = −
2 logZD


3Na2
, �16�

as a function of the parameters � ,� of the string system. fD
satisfies the equation

� fD

��
= −

2	


3

�� sin�	a��
1 + �2 + 2� cos�	a��

. �17�

Integrating the latter expression yields the exact result for the
lattice string model. In the continuum limit a→0, the result
simplifies to

fD = −
	2

3

2a

3�2 + � + �−1�

�3. �18�

There is an alternative and simple approach to obtain the free
energy in the continuum limit. The strings can be regarded as
the world lines of free fermions in one dimension.28 The
noncrossing condition is then implemented automatically by
the Pauli principle. In the limit of infinitely long strings, the

ground-state energy density of the fermions equals the free-
energy density of the strings if the fermion mass is mapped
to the line tension g and 
 to the temperature Tl. From the
expression for the ground-state energy of one-dimensional
free fermions follows immediately the reduced free-energy
density of the strings,

f l = f1� +
	2

6

Tl

g
�3, �19�

where f1 is the reduced free energy �per length� of a single
string, and the last term is generated by the reduction of
entropy due to the noncrossing condition. A direct compari-
son of the free energies of Eqs. �18� and �19� is not possible
since the number of strings varies with the dimer coverings
although the number of dimers is fixed. Only the mean den-
sity of strings is fixed. Hence, one has to consider the grand
potential density j for the string system which follows easily
from the free-energy density,

j = f l − �� = −
	2

3

Tl

g
�3, �20�

where �=�f l /�� is the chemical potential �per string length�.
Comparing Eqs. �18� and �20�, we see that fD= j exactly for
the expression of the line tension which we obtained above
from an independent random walk argument �see Eq. �11��.
Thus in the continuum limit the ground states of the TIAF
and the dimer model can be described as free fermions with
their mass determined by our simple random walk argument
on the lattice.

Now we turn to the structural properties of the string lat-
tice. The most ordered state consists of straight �“flat”�
strings which do not wander transversally. Depending on the
string density there are different commensurate and incom-
mensurate states possible. For the discussion of the flat states
we focus on the state with a maximal density of �=2/ �3a�
which corresponds to the most interesting case of isotropic
couplings for the TIAF. In this case there are two nonequiva-
lent classes of flat strings which are not related by shifts by a
nearest-neighbor vector of the triangular lattice �see Fig. 4�.

FIG. 4. Two different flat states, with the corresponding sublat-
tice magnetizations of the isotropic TIAF indicated below.
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These classes translate directly to different ordered spin
states which are characterized by their sublattice magnetiza-
tions. One state �+−0� is obtained by orienting two sublat-
tices uniformly but opposite while the third sublattice has the
same number of + and − spins, leading to zero magnetiza-
tion. This, on average, locks the straight strings on the sub-
lattice with zero magnetization. Since each of the three sub-
lattices can be chosen as the one with zero magnetization,
equivalent flat-string states are related by a shift of a /2. The
other state �++−� has up spins on two sublattices and down
spins on the other sublattice, which places the nonvertical
dimers on straight strings that are locked symmetrically be-
tween the two sublattices with equal magnetization.

The displacement u from flat strings is determined by the
original height profile h of the corresponding dimer covering.
Since only nonvertical dimers are conserved under the sub-
traction of the reference covering, we will defined u for each
nonvertical bond of the hexagonal lattice. If a bond is occu-
pied by a string segment, then u measures the normal dis-
tance between the corresponding flat string and the center of
the segment; cf. Fig. 2�c�. Since a shift of the height h by 3
corresponds to a string translation by the mean string dis-
tance �, the displacement on each nonvertical bond is given

by u= � h̄ /3+u0 where h̄ is the coincident �original� height of
the two hexagonal plaquettes which are joined by the non-
vertical bond �see Fig. 2�a��. u0 is a global offset of the
flat-string lattice. For u0=na /2, n�Z, the class �++−� is
chosen while u0=a /4+na /2 selects �+−0�. This definition of
u is equivalent to the height profile introduced by Zeng and
Henley29 by averaging over the three sites of every triangle
in order to obtain a coarse-grained height on the center of the
triangles.

After a coarse graining over length scales large compared
to the lattice constant, one obtains a continuous field u�r�
which allows one to write the effective free energy of long-
wavelength fluctuations of the string lattice in the form of a
continuum elastic energy,

Fel

Tl
= d2r� c11

2
��xu�2 +

c44

2
��yu�2 + VL�u�� �21�

with compression c11 and tilt c44 modulus. The tilt modulus
is fixed by the line tension g as c44= �g /Tl��. The compres-
sion modulus on asymptotically large length scales is af-
fected by the entropic repulsion between strings and has to
be determined in a macroscopic way. The compressibility of
the lattice is given by the second derivative of the free-
energy density with respect to the mean distance �=1/� be-
tween the strings,30 which leads to the result

c11 = �
�2

��2 �� f l���� = 	2Tl

g
�3, �22�

where we have used Eq. �19�. VL�u� is a periodic potential
which reflects the discreteness of the lattice and favors an
ordered phase with flat strings. Since equivalent flat states
are related by shifts of all straight strings by a /2 and since
u= �h /3+u0, the locking potential must have the form31

VL = − v cos�4	

a
�u − u0�� = − v cos�4	

3

�

a
h� �23�

with v�0. If 
c11c44�2	 /a2 the string lattice is sufficiently
stiff and the potential VL is relevant �under renormalization�
so that the strings lock into one of the flat states. Interest-
ingly, 
c11c44=	 /�2 is independent of the line tension, and
the locking potential is relevant for ��a /
2. However, the
minimal string separation is �=3a /2 �corresponding to iso-
tropic dimer weights�, and hence VL is irrelevant at all pos-
sible densities.

However, if there are additional interactions present
which increase the stiffness of the string lattice, the lock-in
potential might become relevant. In fact, we will see below
that a coupling of many TIAF’s can render the periodic pin-
ning relevant. Therefore, it is important to determine the con-
sequences of the lock-in potential for the spin configurations,
which depend on the sign of that potential. To do so, we
recall that the offset u0 selects the lattice positions of the
strings in the flat states. It has to be determined from addi-
tional information which is in the present case provided by
spin configurations which correspond to flat strings and
small fluctuations around the locked-in states. Thus, we fo-
cus now on the isotropic TIAF so that the possible classes of
flat states are those shown in Fig. 4. If one switches between
the two classes, u0 shifts by a /4 and thus the sign of VL
changes. The sign can be determined as follows.

The systems selects the class with the largest entropy, i.e.,
with the maximal number of configurations which yield at
arbitrary large r still a finite displacement ��u�r�−u�0��2�flat

	const, where the displacement is measured relative to the
respective flat state. For large systems, the entropy of such
macroscopically flat states can be estimated from the number
of string configurations on the hexagonal lattice for which
each string fluctuates in a tube of width � about its straight
reference position, i.e., �u � � � /2=3a /4 for each nonvertical
dimer.32 This puts a strong constraint on the spin states since
a flip of a single flippable spin �a spin with three up and three
down spins as neighbors� shifts a string by the hexagonal
plaquette on which the spin sits. In the class �+−0� the spins
on one sublattice �dark gray in Fig. 4� can assume any of the
2N/3 possible states where N is the number of triangular lat-
tice sites. The maximal displacement of u=3a /4 is obtained
if spins on the other two sublattices are also flipped with
respect to the perfectly ordered state �++−� which, however,
is possible only for 1 /23�2N /3 sites since the three neigh-
bors on the fully flippable sublattice must have the same
orientation as the spin to be flipped in order to have directed
and noncrossing strings. This yields 2N/3+N/12

=exp�0.2888N� configurations. For the fluctuations in class
�++−� all spins on one sublattice �white in Fig. 4� are frozen.
The sites of the other two sublattices can be divided into
N /12 “rings,” each of six plaquettes centered about a frozen
site, and N /6 extra plaquettes between the rings. Due to the
constraints on the strings, each ring permits only 18 spin
states. For a given spin state on all rings, the extra plaquettes
can flip only if its three neighboring spins located on rings
point up, which occurs with probability �13/18�3. Thus there
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are 18N/12�2�13/18�3N/6=exp�0.2844N� configurations. We
conclude that entropy favors flat states of the class �+−0� and
one has to set u0=−a /4 as shown in Fig. 2�c�, i.e., VL�u�
=v cos�4	u /a� with positive amplitude v.

C. Spin-spin correlations

In this section, we are going to apply the above frame-
work to the spin correlations of the TIAF model at zero
temperature. We concentrate on isotropic couplings since
otherwise the system is ordered. We have seen that the
ground-state manifold of the isotropic TIAF can be regarded
as the configuration space of a string lattice. Based on the
irrelevance of lattice pinning effects, one can expect from the
effective elastic description of Eq. �21� an algebraic decay of
correlations which is characteristic for this kind of two-
dimensional systems. In fact, this corresponds to the exact
result found by Stephenson.33

The displacement correlations of the string lattice can be
easily computed for large r from Eq. �21� with the result

��u�r� − u�0��2� =
1

	

1

c11c44

ln� r

a
� . �24�

So far, we have constructed the string displacement field and
the height profile from a given dimer covering of the hex-
agonal lattice. Although the dimer covering in turn is
uniquely determined by the corresponding spin state, we
have not yet established a direct relation between the spin
variables �i and the displacement field u. We will first ex-
press the spin variable in terms of the height profile. For a
given spin state, we chose one up spin and consider its site as
the point of origin with height h=0. The construction of the
dimer covering from the spin state means that the height on
all other sites is then fixed since parallel �antiparallel� spins
imply a height change by +2 �−1� from site to site if the
down pointing triangles are traversed clockwise. If a single
spin is flipped, the height on that site changes by ±3. From
this is it clear that the height profile can locally be changed
by 6 without affecting the spin state. However, a spin flip
with such a change in h leads out of the ground-state mani-
fold. Allowing for this excitation, the height profile is no
longer single valued. This induces topological defects which
are vortex-antivortex pairs in the form of two triangles, each
having three parallel spins �see Fig. 5�. Along a closed curve
around a single �anti�vortex the height changes by 6. One
easily proves that the above constraints are met by the spin-
height relation

�i = cos�q · ri +
	

3
hi� = ± 1, �25�

with q= (4	 / �3a� ,0) and the triangular lattice sites ri. The
relation to the string displacement field is then given by the

coarse-grained relation h̄=3�u−u0� /� with �=3a /2 in the
isotropic case considered here. Using these relations, the
spin-spin correlation function can be written as

��i� j� = cos�4	

3a
�xi − xj��e�−1/2��	2/�2���u�ri� − u�rj��

2�, �26�

where we have used the fact that u�r� is Gaussian and that
there are no topological defects at T=0. From Eq. �24� and

c11c44=	 /�2 it immediately follows that

��i� j� = cos�4	

3a
�xi − xj�� 1

�ri − r j��
�27�

with �=1/2 which is in agreement with the exact result.33

The anisotropy factor depends here only on the x coordinates
of the spins since the x axis was chosen to coincide with one
of the triangular lattice directions.

Finally, we consider the height correlations for general
anisotropic dimer weights. These correlations have been
studied in the context of the triangular solid-on-solid-model
some time ago.22,34 In those works, the correlations were
obtained from four-spin correlations of the TIAF in the iso-
tropic case, and in terms of the Pfaffian method for the an-
isotropic situation. In contrast, here we present a simple deri-

FIG. 5. �Color online� Vortex-antivortex pair connected by a
string loop. �b� Loop connected to a string so as to generate a
nondirected string. This configuration is obtained from the one in
�a� by flipping a single spin �encircled� which costs no energy.

ORDERING OF GEOMETRICALLY FRUSTRATED¼ PHYSICAL REVIEW B 73, 104452 �2006�

104452-7



vation of the correlations based on our effective elastic
description of the string lattice. The mean squared height
difference between two distant positions increases logarith-
mically as the string displacement does. The coefficient K
measures the large-scale stiffness of the height profile,

��h�r� − h�0��2� =
1

	K
ln� r

a
� . �28�

By making use of the relation between the height profile and
the string displacement field, one easily gets

K =
�2

9

c11c44 =

	

9
, �29�

which is independent of the dimer weights z1 and z2. This
remarkable universality �as well as the value of K� was found
already in the exact solution of the dimer model in Refs. 22
and 34, but the physical reason for that remained unclear.
Our interpretation of the stiffness K as the geometric mean of
the two elastic constants of the string lattice can explain the
universality. By changing the dimer weights, one tunes both
the string density and the string tension g. Naively, one
would expect that an increasing g would render the height
profile stiffer. However, there is also a reduction of the en-
tropic repulsion between the strings which accompanies the
reduction of string fluctuations. Interestingly, both effects act
together to generate universality since c44	g, c11	1/g, and
there is a density-dependent relation between h and u.

D. Finite temperature

For the TIAF at finite temperatures, the mapping from
spin states to string lattices can still be applied. The strings
remain noncrossing, since each triangle can have only one or
three frustrated bonds. However, the triangles with three
frustrated bonds are excitations that generate topological de-
fects �see Fig. 5�a��. Two defects form a pair that spans a
string loop which is confined between the strings, i.e., strings
cannot cross loops. However, loops can attach to strings re-
sulting in nondirected strings �see Fig. 5�b��. The fugacity for
the lowest-energy single-spin excitations is e−4J/T. The quasi-
long-range order of the T=0 phase is destroyed if the defect
pairs can unbind. This will happen at sufficiently weak string
lattice stiffness. Actually, the critical stiffness for that is

c11c44=2	 /�2 and hence by a factor of 2 larger than the
actual stiffness corresponding to the TIAF at T=0. Hence
topological defects are always a relevant perturbation but
they can occur only for T�0 where the fugacity is finite,
leading to exponentially decaying spin correlations. Thus the
system does not show a Kosterlitz-Thouless transition by
tuning the temperature.

IV. STACKED „2+1…D ISING MODEL

After we have introduced the description of the frustrated
2D TIAF in terms of fluctuating strings, we shall apply this
mapping now to study the �2+1�-dimensional stacked TIAF
which consists of ferromagnetically coupled TIAF layers
�see Eq. �1��. As in the 2D system, the in-plane frustration is

expected to have strong influence on the underlying physics
due to the Ising symmetry. Actually, the behavior is indepen-
dent of the interaction along the stacking direction, whether
it is ferro- or antiferromagnetic. Experimentally, the stacked
model is a reasonable description of triangular cobalt antifer-
romagnets of the type ACoX3 where A is an alkali metal and
X a halogen atom.9 For these magnets, a strong crystal-field
splitting leads to an effective spin-1 /2 state with the moment
oriented along the stacking direction. In these compounds the
in-plane exchange coupling J� is small compared to the in-
terplane coupling J�. The increased dimensionality of the
stacked system reduces the degeneracy of the ground state so
that the entropy per spin vanishes at T=0 and ordering even
at finite temperature might be possible. This is also suggested
by the following argument.16 Each ground state of the 2D
TIAF yields a ground state of the stacked system if all spins
are aligned along the stacking direction, i.e., the configura-
tion in each layer is identical. Hence, at T=0 the spin corre-
lation function cannot decay in plane faster than that of the
2D system. However, one might wonder if the system can
gain entropy by introducing domain walls parallel to the lay-
ers which would destroy the order along the stacking direc-
tion. The average energy cost for such a wall is at least

Edw 	 2J�
0

N1/3 2	r

r

dr 	 N1/2 �30�

where N is the total number of spins of the 3D system and
we used the power law of Eq. �27�. This has to be compared
to the entropy gain which grows only 	�1/3�ln N since the
wall can be placed at any of the N1/3 layers. This naive ar-
gument suggests the absence of domain walls at T=0, and
order along the stacking direction. Moreover, as we will see
more clearly below, the huge in-plane degeneracy can actu-
ally induce order even in-plane, a phenomenon known as
order from disorder.4

The stacked TIAF has been studied first by Blankschtein
et al.16 Their results based on the LGW approach and Monte
Carlo simulations suggested the existence of two different
ordered phases and an XY-like transition into the paramag-
netic phase. The LGW Hamiltonian was constructed for
large-scale fluctuations about the two minimal-energy modes
with wave vectors Q±= �±4	 /3 ,0�, leading to a 3D XY
model with a sixfold-symmetry-breaking term

HLGW�� = d3r�1

2
��0�2 +

r

2
�0�2 + u4�0�4+ u6�0�6

+ v6�0�6cos�6��� �31�

for the complex order parameter �r�=0ei�. Since for p
�3.4 the symmetry-breaking term is irrelevant in 3D,35 the
LGW theory predicts for the transition to the paramagnetic
phase XY universality.16,36 The sign of v6 is not fixed in this
approach, and hence two ordered phases with a relevant
symmetry-breaking term are possible in principle �see below
for the two types of ordering�. In fact, the two corresponding
phases were observed with increasing temperature in the
Monte Carlo simulations in Ref. 16. However, more recent
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simulations indicated the existence of only one ordered
phase, which corresponds to the one found in Ref. 16 at
higher temperatures only.14,37–40 This conclusion is also sup-
ported by a hard-spin mean-field theory.41 There is also a
controversy about the nature of the transition to the paramag-
netic state. While the simulations of Heinonen et al. indicate
tricritical behavior,42 a histogram Monte Carlo analysis sup-
ports XY-like behavior.43 These conflicting results have to be
viewed against the background of Coppersmith’s work.18 She
argued that the above-mentioned LGW approach is not reli-
able since it ignores the geometric frustration and hence does
not yield the correct low-temperature state. Hence she devel-
oped a description in terms of the entropy of chainlike exci-
tations above the ground states, which is conceptually close
to our approach.

In the following, by making use of the string mapping
established in the preceding section, we provide a micro-
scopic derivation of the LGW action for the stacked TIAF.
This will allow us to discuss the nature of the ordered phase
and the transition to the paramagnetic state. In each layer, we
relate the spin variables �ik to a height profile hik as in the
preceding section so that the relation of Eq. �25� holds for
every layer. Then the intralayer coupling can be written as

�ik� jk = − cos�	

3
�hik − hjk + �ij�� �32�

with a shift �ij = +1 for the bond directions �a ,0� and �ij

=−1 for the directions �a /2 , ±
3a /2�. Next, we have to de-
fine how the height should change along the stacking direc-
tion. Since hik changes by ±3 for a spin flip, we set along the
column passing through the origin of each layer h0k=0 �3� if
�0k= +1 �−1�, where k numbers the layers. According to this
rule, the interlayer coupling reads

�ik�ik+1 = − cos�	

3
�hik − hik+1�� . �33�

Now, the height profile can again be interpreted as the dis-
placement field of strings, which now form a three-
dimensional lattice. Hence, it is expected to more stable
against fluctuations, and spin order will occur. However, the
periodic couplings of the displacement field allow for topo-
logical defects which eventually drive the system into the
paramagnetic state. Even in the presence of defects, the pic-
ture of noncrossing strings remains valid since a triangle can
have either one or three frustrated bonds. When introducing
continuous fields, the lock-in potential of Eq. �23� has to be
included so as to reflect the original discreteness of the
height which reads hik=3�uik−u0� /� in terms of the string
displacement uik. Hence, we obtain the reduced 3D string
Hamiltonian

HS = − K̃� �
�ij�,k

cos�	

�
�uik − ujk + �ija/2��

− K̃��
i,k

cos�	

�
�uik − uik+1�� + v�

i,k
cos�6	

�
uik�

�34�

with couplings K̃� =J� /T, K̃�=J� /T and mean string separa-

tion �=3a /2. Here v�0 due to the entropy argument at the
end of Sec. III B. The in-plane shift �ij reflects frustration
since ��ij =3, where the sum runs over the bonds of a down-
pointing triangle. Since in the discrete version the uik can
vary over the bonds only by +a or −a /2, the energy is mini-
mized for a nonuniform change of uik along the triangles.
This is distinct from the a priori continuous field of an anti-
ferromagnetic XY model on a triangular lattice whose ori-
ented uniform change defines a helicity, giving rise to an
additional Z2 symmetry.44 Hence, the latter XY model exhib-
its an Ising transition because of the Z2 symmetry breaking
of the ground states.44 However, in the present case, the non-
crossing restriction for the strings, originating from the geo-
metrical frustration, prohibits this extra symmetry breaking.

Thus the stacked Ising model of Eq. �1� maps to a stack of
planar lattices of noncrossing strings which is described by a
�2+1�D frustrated XY model with a sixfold clock term. In-
terestingly, this provides a microscopic derivation of the
LGW theory16 if the string displacement u is identified with
the phase � of the order parameter via �=	u /�. However,
our effective model differs from the LGW theory in two
important points: �i� the in-plane XY coupling is frustrated
and �ii� there is a topological constraint on � since u is
restricted by the noncrossing condition. The latter point will
lead to an entropically increased phase stiffness on large
length scales.

With the model of Eq. �34� at hand, we can analyze the
ordering mechanism and the transition to the paramagnetic
phase. The latter transition is driven by topological defects
which are generated by thermal fluctuations.45 It is well
known that the XY coupling allows for defect loops across
which � changes by 2	. These defects are superpositions of
two kinds of loops �cf. Fig. 6�: fully frustrated triangles with
all spins aligned form in-plane vortex-antivortex pairs, which
can be viewed as a string forming an in-plane loop. Together
with other pairs in the neighboring layers they form defect
loops oriented perpendicular to the planes �cf. Fig. 6�a��.
Another type of defect loops is oriented parallel to the layers.
They arise as the boundaries of 2D areas across which strings
in adjacent planes are shifted by 2� �cf. Fig. 6�b��. For the
universality class of the transition to the ordered state it is
important to take into account the stacked nature of the
�2+1�D XY model and the sixfold clock term. In turns out
that the stacking is irrelevant since the layers cannot de-
couple independently from the vortex unbinding transition
within the layers. This is due to the fact that unbinding of
defects oriented parallel to the layers can occur only at a
critical value for the effective coupling K� which is by a
factor of 1 /8 below that for the in-plane dissociation of
vortices.46 In addition, a p-fold clock term �in our case, p
=6� is known to be irrelevant at the XY critical point under
renormalization if p�3.4.35 Hence we conclude that the
transition from the paramagnetic phase to an ordered state
must be in the 3D XY universality class.

In the following, let us discuss the property of the ordered
phase. In the latter phase, the XY couplings of Eq. �34� can
be expanded in uik, and in the continuum limit each layer is
described by Eq. �21� with an additional harmonic interlayer
coupling. Moreover, the sixfold clock is relevant, and the
strings are locked into a flat state with spin order whose
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nature depends on the form of the locking potential. In order
to compare our approach with the LGW theory,16 we discuss
potential ordered states. As we have seen in Sec. III B, there
are two classes of flat strings. They differ by their value of
the shift u0 in the lock-in potential VL�u�. After going over
from the discrete field uik to a coarse-grained description
with a continuous field u�r�, the coarse-grained spin variable
can be written as

��R jk� = cos�Q · R jk +
2	

3a
�u�R jk� − u0�� , �35�

where R jk are the 3D lattice sites and Q= (4	 / �3a� ,0 ,0).
For flat strings, the coarse-grained field u�r� is zero on aver-
age, and the global shift u0 determines the sublattice magne-
tizations. For the first state �cf. the left part of Fig. 4� u0
=−a /4, and there is an additional shift of 	 /6 in Eq. �35�,
leading to the sublattice magnetizations ���= � 
3

2 ,−

3
2 ,0�. For

the second state �cf. the right part of Fig. 4� u0=0, one has
the sublattice magnetizations ���= �1,− 1

2 ,− 1
2

� since QRjk=0,
4	 /3, or −4	 /3 on the three sublattices. Hence all sublat-
tices are at least partially ordered. Since our entropy argu-
ment leads to u0=−a /4, the first state with one fully disor-
dered sublattice should set up the ordered phase at all

temperatures, which appears to be consistent with more re-
cent simulations.

How can this ordering be reconciled with the fact that
each ground state of the highly degenerate and hence disor-
dered 2D TIAF is also a ground state of the stacked model
when all spins are aligned along the stacking direction? This
is the point where the mechanism of order from disorder
comes into play. As we have seen at the beginning of this
section, the formation of domain walls parallel to the layers
is energetically not favorable. However, the system can gain
entropy by flipping single �so called flippable� spins in a
single layer which does not cost energy within the layer. Due
to the huge ground-state degeneracy there are many configu-
rations which just differ in their orientation of flippable
spins. Hence, a subset of all the 2D ground states is selected
which allows for those single spin flips. This explains the
existence of the found ordered state since it is composed
only of an appropriate subset of all 2D ground states which
on average has one sublattice disordered. The spins on this
disordered sublattice form chains along the stacking direc-
tions which are decoupled from each other at low tempera-
tures, and hence should behave as individual 1D Ising spin
chains. At sufficiently low temperatures, the stacked system
is thus expected to show excitations which are 1D Ising-like.
This conclusion is consistent with multispin Monte Carlo
simulations of the specific heat at low temperatures.37

V. QUANTUM FRUSTRATED MODEL

Having established the relation of the �2+1�-dimensional
TIAF to a lattice of fluctuating strings with topological de-
fects, we now will apply this relation to the two-dimensional
TIAF in a transverse magnetic field. The Hamiltonian of this
model is given in Eq. �2�. The transverse field introduces
simple quantum dynamics to the highly degenerate critical
state of the classical TIAF. Due to the general relation be-
tween 2D quantum spin systems and 3D classical Ising spin
models,17 one can expect from the results for the stacked
TIAF quantum order arising from the interplay of quantum
fluctuations and geometric frustration. The existence of a
quantum ordered state was suggested in recent works on the
basis of a LGW theory,5 a kink model,19 and simulations.7

The exact mapping from the 2D quantum TIAF to a clas-
sical stacked Ising system is provided by Suzuki’s theorem
which states that the partition function of the quantum sys-
tem can be written as17

Z = Tr exp�−
J

T
�
�i,j�

�i
z� j

z +
�

T
�

i

�i
x�

= lim
n→�

�1

2
sinh�2�

nT
��nN/2

�
��ik�

exp�−
J

nT
�

�i,j�,k
�ik� jk

+
1

2
ln coth� �

nT
��

i,k
�i,k�i,k+1� , �36�

where �ik= ±1 are classical Ising variables which are defined
on a stacked system of n antiferromagnetic triangular lat-
tices, and the second index k=1, . . . ,n refers to the layer

FIG. 6. �Color online� Different type of topological defects. �a�
Vortex-antivortex pairs in the layers form vortex loops perpendicu-
lar to the planes. �b� Vortex loop parallel to the planes borders the
mismatch regions in which the strings in two adjacent planes are
shifted by 2�.
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number. Hence, in the relevant limit of large n the quantum
system is described by the Hamiltonian of the stacked TIAF
of Eq. �1� with the couplings J� and J� replaced by a infini-

tesimal small in-plane coupling K̃� =J / �nT� and a strong fer-

romagnetic interlayer coupling K̃�= 1
2 ln�nT /�� which is

controlled by the strength of the quantum fluctuations, i.e.,
the transverse field �. In analogy with the preceding section,
the quantum system is hence described by a �2+1�D string
lattice with the Hamiltonian of Eq. �34�. This suggests that,
as for the classical 3D system, the transverse field Ising
model must have an ordered phase at small transverse field
and a quantum phase transition in the 3D XY universality
class to a disordered state. This scenario was previously pre-
dicted by the LGW approach. However, in contrast to the
latter approach, our mapping of the quantum frustrated spin
system to strings yields even the coupling constants of Eq.
�34� which is of utmost importance for the construction of
the phase diagram.

A. Quantum critical point

First, let us focus on the quantum phase transition to the
paramagnetic phase. The purpose of the following analysis is
to estimate the location of the critical point and to show that
the Trotter limit n→� can be carried out explicitly in our
approach. It is useful to separate the partition function asso-
ciated with the XY model of Eq. �34� into a spin-wave part
and a vortex part. This can be done by making use of the fact
that the planar model can be mapped to a simpler model
proposed by Villain.21 As was shown by Kleinert47 and in
Ref. 48, in the partition function one can make the substitu-
tion

eK̃ cos��� → c �
m=−�

�

e−K�� − 2	m�2/2, �37�

where the right-hand side is known as Villain coupling47,48

with a new K̃-dependent coupling K. Both expressions be-

come identical in the two limits of K̃→0 and K̃→� which
are fortunately precisely the two cases arising from the
Trotter limit n→�. Then the coupling constant K and the
coefficient c are given by

K = K̃, c = eK for K̃ → � , �38�

K =
1

2 ln�2/K̃�
, c = 
2	K for K̃ → 0.

�39�

Hence, after taking the Trotter limit, the coupling constants
of the equivalent Villain model both scale logarithmically
with nT,

K� =
1

2
ln�nT

�
�, K� =

1

2

1

ln�2nT/J�
. �40�

Only for T=0 can one set T	J /n so that for n→� the
coupling K� remains finite, and the system shows 3D behav-

ior. For any finite T, however, K� must diverge with n and
the system shows a 3D to 2D crossover with increasing
length scales.

Knowing the coupling constants of the Villain model with
decoupled spin-wave and vortex parts for large n, we can go
ahead and apply dimensional crossover scaling in order to
make quantitative predictions about the location and univer-
sality of the quantum critical point. We start by eliminating n
from Eq. �40�. From this we obtain the temperature-
independent relation

K� =
1

4K�

−
1

2
ln�2

�

J
� �41�

between K� and K� which makes the parameter space one
dimensional. The geometric mean of the coupling constants
controls the stiffness of the XY system. It can be expanded in
the relevant limit of small K� as


K�K� =
1

2
�1 − ln�2�/J�K� + O�K�

2�� , �42�

where we used the relation of Eq. �41�. The latter relation
will be compared to a crossover scaling result which pro-
vides a quantitative description of the increase of the transi-
tion temperature of a layered �2+1�D XY model under the
increase of the number of layers. Following closely the
analysis in Refs. 49 and 50, one obtains a relation between
the 3D critical value K�

c for the in-plane coupling and the
corresponding Kn

c for a system of n layers,

1

n

K�
c

Kn
c = �� K�

K�

�1/2�1 −
K�

c

Kn
c ��

�43�

with the critical exponent ��2/3 of the 3D XY model and a
numerical constant �. For n=1 this relation yields at the 3D
critical point with K� =K�

c the following expression for the
geometric mean of the coupling constants:


K�
c K� = �K1

c�1 −
K�

c

K1
c ��

= �K1
c�1 − �

K�
c

K1
c + ¯ � , �44�

where we have expanded for K�
c �K1

c. For consistency, the
latter expression should be of the same form as the expres-
sion in Eq. �42� at the quantum critical point with �=�c
corresponding to K� =K�

c . Indeed, both expressions are iden-
tical if one sets

� = 1/�2K1
c�, 2�c/J = e�/K1

c
. �45�

Hence, the location of the quantum critical point is deter-
mined by the critical value for the coupling of the 2D XY
model on a triangular lattice. The standard Kosterlitz-
Thouless argument for the vortex-unbinding transition
yields44 in that case K1

c =2/	�2/
3, leading to �c /J=1.24.
However, this scaling approach neglects renormalization ef-
fects due to the sixfold clock term and the noncrossing of
strings which should provide a net increase of �c. This is
consistent with recent Monte Carlo studies which suggest
�c /J�1.65.7
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B. Phase diagram

Having established the existence of an ordered phase for
���c at T=0, it is important to study the stability of this
phase against thermal fluctuations. For finite temperatures,
2D XY physics should dominate at large length scales, and
two Kosterlitz-Thouless transitions separating a critical
phase at intermediate temperatures from the ordered and the
paramagnetic state, respectively, are expected.48 In the fol-
lowing we will construct a quantitative phase diagram for the
transverse field TIAF in the �-T plane. The stability range of
the phase with bound defects can be estimated from the
crossover scaling formula of Eq. �43�. Setting in the latter
expression K� to its critical value Kn

c for an n-layer system,
and using the scaling formula also at n=1 in order to relate
K�

c to K1
c and the bare coupling ratio K� /K�, we can derive

an expression for the Kosterlitz-Thouless transition tempera-
ture Tc,2��� of the critical phase �C� which has only bound
defects �see the Appendix for details�,

Tc,2

J
= b

�

�c
ln���c

�
� , �46�

where b is a numerical constant which is fixed by the �un-
known� renormalization of K� and remains finite for n→�.
At large but finite n, for consistency, the renormalized effec-
tive coupling for the n-layer system must behave at as K�

eff

	�n /nc�3/5 with a characteristic number nc=bK1
c�J /T�

��� /�c� which is a measure for the strength of quantum
fluctuations and characterizes the effective system size along
the Trotter �“imaginary time”� axis. The spin correlation
function in the critical phase �C� decays according to Eq.
�27� with the exponent � varying continuously between �
=1/4 at Tc,2 and 1/9 at a lower critical temperature Tc,1
which marks the transition to the ordered phase �O�.48 The
correlation function exponent behaves discontinuously at �
=0 where it is �=1/2 and at the quantum critical point
where the 3D XY result ��0.040 holds.51

At the lower critical temperature Tc,1 there is a second
Kosterlitz-Thouless transition to an ordered state where the
clock term in Eq. �34� is relevant and locks the strings to the
lattice. For a single layer, this transition occurs at the critical
coupling K1

c =9/ �2	��2/
3 �see Ref. 48�. The boundary of
the ordered phase can be obtained analogously to that at Tc,2,
yielding

Tc,1 =
4

9
Tc,2. �47�

Close to the quantum critical point both Kosterlitz-Thouless
transition temperatures vanish 	��c−��� as expected from
scaling. Figure 7 compares our analytical results to recent
Monte Carlo data for the phase boundaries, showing very
good agreement across the entire range of � if we set b
=0.98 in Eq. �46�. According to our analysis of the ordered
phase for the stacked system in Sec. IV the quantum ordered
phase �O� is characterized by the finite sublattice magnetiza-
tions �
3/2 ,−
3/2 ,0�. This type of order is consistent with
recent simulations.7

VI. CONCLUSION AND EXTENSIONS

In this paper, we have studied for a 2D Ising system the
combined effect of classic geometric frustration and an or-
dering mechanism which results either from stacking many
2D system or by allowing for quantum dynamics from a
transverse field. We have presented an exact relation between
spin variables and the displacement field of a string lattice
which we used to derive an effective Hamiltonian that was
obtained previously only on the basis of a LGW approach.
This allowed us to determine the nature of the ordered phase,
the universality of the quantum phase transition to the para-
magnetic phase, and the quantitative phase diagram at finite
temperatures. To our knowledge, this is the first approach for
the analyzed models which explicitly performs the Trotter
limit n→� to obtain quantitative results for the transition
temperatures. We have compared the phase diagram so ob-
tained to predictions of recent simulations and found satisfy-
ing agreement. We related the spin model also to its dimer
model representation and the resulting height profile descrip-
tion. Implementing a simple random walk argument for the
strings, we could derive the exact free energy in the con-
tinuum limit which was known before only from a more
complicated Pfaffian method. Our approach could also ex-
plain the physical reason for the previously found universal-
ity of the large-scale stiffness of the height profile in the
presence of anisotropic bond weights.

For future extensions of our approach it is interesting to
note that the string analogy for the spin configurations ap-
plies independently of the form of the spin couplings. So it
might be interesting to probe if the mapping to strings could
also be useful in the presence of some form of quenched
disorder in the couplings. Of course, the model for the
strings would contain then also disorder, and the universality
class would be different from the one studied in the present
paper.52 This is also reflected by the fact that disorder will
induce topological defects in the 2D string lattice since the
degeneracy can be lifted by disorder. In the case of a ran-

FIG. 7. �Color online� Phase diagram with the phase boundaries
given by Eq. �46� with b=0.98 and Monte Carlo results of Fig. 1 in
Ref. 7. A critical phase �C� is separated by a boundary at Tc,2 from
the paramagnetic phase �PM� and at Tc,1=4/9Tc,2 from an ordered
phase �O�.
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domly diluted 2D TIAF, the dilution sites act as pinning cen-
ters for the strings since the couplings connecting the re-
moved spin to the adjacent spins can be set to zero so that the
spins can be parallel, hence forcing a string to wander though
the diluted site due to the construction of strings from spin
configurations. In fact, the mapping to height models has
been successfully applied already in discussing glassy inter-
faces in d=1+1 systems,53 and it would be interesting to
have another application of these concepts.
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APPENDIX: PHASE BOUNDARY

In this appendix we derive the boundary of the critical
phase �C�. We start from the scaling result of Eq. �43� with
n=1. This allows us to compute a relation between the criti-
cal couplings K1

c and K�
c . In the limit K�

c �K1
c we find

K�
c =

K1
c

� + �−1
K�/K�

, �A1�

where � is the critical exponent of the 3D XY model, and �
=1/ �2K1

c�. Using the latter result again in the scaling formula
of Eq. �43� for arbitrary n and with K� =Kn

c set to its critical
value, we obtain

1

Kn
c =

n

K1
c���
 Kn

c

K�

+ 1��1 −
K1

c

�Kn
c + �−1
K�Kn

c��

,

�A2�

which yields Kn
c as a function of the interlayer coupling K�

at large but finite n. We continue by introducing the bare
coupling constant �0=e2K� so that n=�0� /T. The renormal-

ized effective coupling constant will be denoted by �=e2K�
eff

.
This notation allows us to take into account the fact that the
renormalization of the couplings K� and K� is dependent due
to their relation by Eq. �41�. Then the effective couplings can
be written as

K�
eff =

1

2 ln�2��/J�
, K�

eff =
1

2
ln � . �A3�

Now we use Kn
c =K�

eff and K�=K�
eff in Eq. �A2�, and expand

the resulting equation for large � which gives

1 =
�0

�2 ln ��5/3K1
c

�

T
� �

K1
c − ln�2

�

J
���

. �A4�

Multiplying with T /J and using the relation 2�c=Je�/K1
c

for
the quantum critical point, we get the final result

Tc,2

J
=

�0e�/K1
c

2K1
c�2 ln ��5/3

�

�c
ln���c

�
� , �A5�

which corresponds to Eq. �46� if we denote by b the coeffi-
cient in the latter expression. For consistency, it follows from
K�

eff= 1
2 ln � and the definition of b that the effective inter-

layer coupling must diverge with n→� according to K�
eff

= �n /nc�3/5 with a characteristic nc=bK1
cJ� / �T�c� which it-

self diverges for T→0.
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