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We investigate the interplay between spin and orbital correlations in monolayer and bilayer manganites
using an effective spin-orbital t-J model which treats explicitly the eg orbital degrees of freedom coupled to
classical t2g spins. Using finite clusters with periodic boundary conditions, the orbital many-body problem is
solved by exact diagonalization, either by optimizing spin configuration at zero temperature or by using
classical Monte Carlo simulations for the spin subsystem at finite temperature. In undoped two-dimensional
clusters, a complementary behavior of orbital and spin correlations is found—the ferromagnetic spin order
coexists with alternating orbital order, while the antiferromagnetic spin order, triggered by t2g spin superex-
change, coexists with ferro orbital order. With a finite crystal-field term, we introduce a realistic model for
La1−xSr1+xMnO4, describing a gradual change from predominantly out-of-plane 3z2−r2 to in-plane x2−y2

orbital occupation under increasing doping. The present electronic model is sufficient to explain the stability of
the CE phase in monolayer manganites at doping x=0.5 and also yields the C-type antiferromagnetic phase
found in Nd1−xSr1+xMnO4 at high doping. Also in bilayer manganites magnetic phases and the accompanying
orbital order change with increasing doping. Here the model predicts C-AF and G-AF phases at high doping
x�0.75, as found experimentally in La2−2xSr1+2xMn2O7.
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I. INTRODUCTION

Colossal magnetoresistance �CMR� manganites are char-
acterized by a complex interplay of charge, spin, orbital, and
lattice degrees of freedom. Although manganese oxides have
been known for more than 50 years,1 their properties are still
not adequately understood. After the observation of the CMR
effect,2 the modeling of complex behavior in this class of
compounds has become the focus of intense research activity
in modern condensed-matter theory.3–5 These recent studies
demonstrate that one has to go beyond the simple double-
exchange �DE� model of Zener6 in order to investigate a
complex interplay between magnetic, orbital, charge, and lat-
tice degrees of freedom.

Similar to perovskite manganites, monolayer
La1−xSr1+xMnO4 and bilayer La2−2xSr1+2xMn2O7 manganites
have interesting and still poorly understood physical proper-
ties. The undoped monolayer LaSrMnO4 compound has the
same magnetic structure as K2NiF4; i.e., it exhibits an G-type
antiferromagnetic �G-AF� order within the layers.7,8 This
suggests a different orbital state than that realized in three-
dimensional �3D� LaMnO3 perovskite, where A-type antifer-
romagnetic �A-AF� order, with ferromagnetic �FM� ab planes
and AF order along the c direction, is observed. Furthermore,
unlike in La1−xSrxMnO3, in doped monolayer
La1−xSr1+xMnO4 compounds no FM metallic phase was ob-
served, but instead short-range magnetic correlations of vari-
ous types were reported,8–10 indicating frustrated magnetic

interactions. This behavior is puzzling and has not been ex-
plained by the theory so far.

Also in bilayer La2−2xSr1+2xMn2O7 manganites a compe-
tition between magnetic interactions of different origin was
observed, resulting in rather complex phase diagram,11,12

which is a challenge for the theoretical models. At higher
doping x�0.45 the magnetic order changes from FM to
A-AF phase. The observed phase transitions have been as-
cribed both experimentally13 and theoretically14,15 to the
varying crystal-field splitting between eg orbitals under in-
creasing doping.

In spite of certain similarities between monolayer and bi-
layer compounds,16 the magnetic correlations close to half
doping �x�0.5� are different. A metallic FM phase is ob-
served in bilayer manganites up to x�0.45,17 while it is
absent in monolayer compounds. While the CE-type AF or-
der is quite pronounced at x�0.5 in monolayer
manganites,18 the A-AF phase is instead more stable in bi-
layer systems,11,12 and the charge order and orbital bistripes
were also observed for higher doping 0.55�x�0.6.19

In the present paper, we intend to focus on the role of
orbital degrees of freedom in stabilizing various types of
magnetic order observed in monolayer and bilayer mangan-
ites. The behavior of eg electrons is dominated by a large
Coulomb interaction U. Therefore, we employ an effective
spin-orbital t-J model similar to that derived for the 1D
chain20 and generalize it to the present situations. Thereby,
we implement also Hund’s exchange interaction JH which
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enforces the spin s=1/2 of an eg electron to follow the t2g
spin S=3/2 at each site in the ground state. Unlike in the 1D
case, the orbital eg flavor is not conserved,21 which enhances
quantum fluctuations. They contribute to intersite correla-
tions, and we show that a close relationship between orbital
and spin correlations nevertheless persists in the ground state
and at low temperature.

The previous theoretical studies revealed a competition
between different types of magnetic order. Among them the
most spectacular ones are phases with coexisting FM and AF
bonds: �i� the E-type AF phase in undoped systems22,23 and
�ii� the CE phase at half doping �x=0.5�. The former one has
been experimentally observed for the very strongly Jahn-
Teller �JT� distorted case only, which is at variance with its
theoretical prediction for undistorted compounds. The
mechanism of stability of the CE phase is also still under
debate. While it has been shown that local JT distortions
induce the CE-type AF order,24,25 it remains unclear whether
it could follow from electronic interactions alone. It was ar-
gued before that this complex type of magnetic and orbital
order �OO� might either originate from conflicting phases26

or could be stabilized by intersite Coulomb interactions.24

Here we address these various mechanisms proposed before
by presenting the evidence obtained by numerical simula-
tions of finite clusters within a realistic electronic model in-
cluding Coulomb interaction. We also show that this model
gives a satisfactory description of magnetic correlations over
the entire doping range.

The paper is organized as follows: In Sec. II we present
the effective t-J orbital model in the regime of large U for eg
electrons, moving in 2D clusters simulating monolayer man-
ganites or in �8��8�2 clusters standing for bilayer man-
ganites. We also present shortly two numerical methods: the
exact diagonalization with Lanczos algorithm used to solve
the orbital model for fixed spin configurations at zero tem-
perature �T=0� and its combination with Monte Carlo simu-
lations of spin core �t2g� configurations,27 which leads to a
coupled spin-orbital problem at T�0. In Sec. III the model
for monolayer manganites is analyzed in different doping
regimes. We report the phase diagrams obtained for undoped
and half-doped systems and relate the obtained magnetic
phases to orbital occupations and intersite orbital correla-
tions. Thereby we highlight the interrelation between spin
and orbital order and their dependence on increasing doping.
The study of bilayer manganites in Sec. IV is limited by the
size of Hilbert space for the smallest relevant �8��8�2
clusters, so we discuss only undoped �x=0�, half-doped �x
=0.5�, and strongly doped �x�0.8� systems. Finally, in Sec.
V we summarize the numerical results and present general
conclusions deduced from the present study for the physical
mechanisms operating in layered manganites.

II. MODEL AND NUMERICAL METHODS

A. Orbital t-J model

The effective orbital t-J model described below follows
from the model of interacting eg electrons,

H0 = Ht
�0� + Hz

�0� + Hint. �1�

The form of the kinetic energy Ht
�0� depends on the selected

basis of orthogonal orbitals, as discussed in detail by Feiner

and Oleś.21 Here we use the conventional basis which con-
sists of

�z� �
1
�6

�3z2 − r2�, �x� �
1
�2

�x2 − y2� �2�

orbitals. In a 3D �or bilayer� manganite the kinetic energy
takes the form

Ht
�0� = −

1

4
t 	

ij��ab,�

�3cix�
† cjx� + ciz�

† cjz�

� �3�cix�
† cjz� + ciz�

† cjx��
 − t 	

ij��c,�

ciz�
† cjz�, �3�

and the last term is absent for a monolayer. The largest hop-
ping element t stands for an effective �dd�� element between
two �z� orbitals along the c axis and originates from two
consecutive d-p transitions over oxygen orbital between the
neighboring Mn ions. The same hopping element t couples
two equivalent directional orbitals along either the a or b
axis—i.e., 3x2−r2 or 3y2−r2 orbitals.21

By considering the structural data, a uniform crystal-field
splitting of eg orbitals is expected both for a monolayer8 and
for a bilayer system.13 Therefore, we introduce the term

Hz
�0� =

1

2
Ez	

i�

�nix� − niz�� , �4�

where ni��=ci��
† ci�� is the electron number operator in the

�=x ,z orbital with spin � at site i. This term describes the
crystal-field splitting of eg orbitals which follows from the
geometry of layered manganites and removes the orbital de-
generacy. If Ez�0, as in undoped LaSrMnO4,8 the �z� orbit-
als are favored.

The electron interactions between eg electrons are given
by

Hint = U 	
i,�=x,z

ni�↑ni�↓ + �U −
5

2
JH�	

i

nixniz

+ JH	
i

�cix↑
† cix↓

† ciz↓ciz↑ + ciz↑
† ciz↓

† cix↓cix↑� − 2JH	
i

s�ix · s�iz

+ V	

ij�

ninj . �5�

The spin operators s�i�= �si�
+ ,si�

− ,si�
z � are defined by fermion

operators in a standard way,

si�
+ = ci�↑

† ci�↓, si�
− = ci�↓

† ci�↑, si�
z =

1

2
�ni�↑ − ni�↓� . �6�

The on-site interactions in Hint are rotationally invariant in
the orbital space and are thus described with only two
parameters28 the Coulomb element U and a Hund’s exchange
element JH. The intersite interactions �V, where each bond

ij� is included only once, do not depend on the orbital type
and thus involve total electron density operators ni
=	��ni��.

The Hamiltonian �1� does not include yet the t2g electrons
which could in principle be described again by a similar
multiband Hamiltonian.29 However, in reality t2g electrons
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localize due to large Coulomb interaction U	 t, so it suffices
to consider local spins S=3/2 built by three t2g electron spins
of either a Mn3+ or Mn4+ ion. In both cases each t2g orbital is
singly occupied and virtual intersite hopping processes con-
tribute to the superexchange �J�. In this parameter regime,
we also find hopping processes of eg electrons between two
Mn3+ ions, di

4dj
4�di

5dj
3, which lead to eg

2 configurations at
site i �with eg

2 electrons either in one or at two different
orbitals� and generate the eg part of the superexchange �J
=4t2 /U. When the system is doped, direct hopping processes
are also possible for Mn3+-Mn4+ pairs, so one finds an effec-
tive t-J model, similar in spirit to the spin t-J model derived
almost three decades ago from the Hubbard model.30

An important difference from the Hubbard model, how-

ever, arises due to Hund’s exchange −2JHS� i ·s�i, which favors
high-spin states at each site. Hund’s exchange is close31 to
the atomic value of JH�0.9 eV, so is sufficiently larger than
the hopping, estimated for the bilayer15 to be t�0.48 eV, to
assume that spins of eg electrons are aligned with the S
=3/2 core spin formed by the t2g electrons. Therefore, core
spin determines a local spin quantization axis at each site i,
the spins of eg electrons can be integrated out,27 and the
effective orbital t-J model takes the form

H�S� = Ht + HJ + HJ� + Hz + HV. �7�

This Hamiltonian may be also obtained by generalizing the
effective 1D model of Ref. 20 to doped layered manganites.
It depends not only on the microscopic parameters intro-
duced above, but also on the actual configuration S of t2g
spins on the lattice which determine the hopping term Ht by
the double exchange mechanism.

The first term Ht in Eq. �7� stands for the hopping of eg
electrons in the limit of large on-site Coulomb interaction
U	 t. Its form is given below for the monolayer and bilayer
systems separately. We emphasize that by performing a rig-
orous projection onto the U→
 limit21 the orbital degree of
freedom of eg electrons survives, but in agreement with the
basic idea of the spin t-J model30 and in contrast to Eq. �3�,
the hopping processes are now limited to the subspace with-
out �intraorbital and interorbital� double occupancies. The
double occupancies generated in virtual charge excitations
by either eg or t2g electrons contribute in second order of the
perturbation theory and give the superexchange interactions
�J or �J�, respectively, contained in HJ and HJ� terms.31

Similar to LaMnO3,32 the superexchange in undoped
LaSrMnO4 and in La2−2xSr1+2xMn2O7 is given by a superpo-
sition of several terms. The eg term HJ favors either FM or
AF spin order on a bond 
ij�, depending on the pair of oc-
cupied eg orbitals at neighboring sites i and j. This makes the
form of the superexchange term HJ depend both on the ac-
tual geometry in layered manganites and on the used orbital
basis. As the hopping term Ht, its form depends on the sys-
tem and is given below.

In contrast, the superexchange interactions induced by
charge excitations of t2g electrons HJ� are identical for planar
and bilayer manganites. They are frequently treated as an
effective AF superexchange between S=3/2 core spins, al-
though they couple de facto two manganese ions in high-spin

configurations and thus depend on the actual total number of
d electrons at both ions.34 We have verified, however, that
the t2g superexchange terms derived for these different con-
figurations are of the same order of magnitude, so in a good
approximation one may indeed simulate their effect by the
Heisenberg Hamiltonian with an average exchange constant
J��0 between S=3/2 core spins which favors AF spin or-
der; this interaction is described by the term

HJ� = J�	

ij�

�S� i · S� j − S2� . �8�

For convenience, we use classical core spins S� i of unit length
�compensating their physical value S=3/2 by a proper in-
crease of J��; i.e., we replace the scalar products of spin
operators on each bond by their average values. The classi-

cally treated S� i are represented by polar angles ��i ,�i�—then
the spin product on a bond 
ij� is given by


S� i · S� j� = S2�2�uij�2 − 1� , �9�

where the spin orientation enters via

uij = cos��i

2
�cos�� j

2
� + sin��i

2
�sin�� j

2
�ei��j−�i�

= cos�
ij

2
�ei�ij , �10�

depending on the angle 
ij between the two involved spins
and on the complex phase �ij.

The remaining terms in Eq. �7�, Hz and HV, stand for the
crystal-field splitting of two eg orbitals caused by geometry
and for the nearest-neighbor Coulomb interaction. The first
term

Hz =
1

2
Ez	

i

�ñix − ñiz� �11�

involves projected density operators ñix and ñix that act in the
restricted Hilbert space without �interorbital and intraorbital�
double occupancies. The latter term

HV = V	

ij�

ñiñj �12�

is the intersite Coulomb repulsion which survives as the only
term from Eq. �5�. It plays a role at finite doping where it can
induce charge order. Here ñi is the total eg electron density
operator at site i which acts in the restricted Hilbert space:

ñi = ñix + ñiz. �13�

By construction 
ñi��1. We include this term in half-doped
manganites and investigate in Secs. III C and III D whether it
helps to stabilize the CE phase with coexisting charge order.

B. Monolayer manganites

We start with the general form of the hopping term Ht
which follows from Eq. �3� for planar �monolayer� mangan-
ites in the limit of U	 t,
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Ht
2D = − 	


ij��ab

ti�,j��c̃i�
† c̃j� + c̃j�

† c̃i�� , �14�

where an operator c̃i�
† creates an electron in ��� state at site i

when it is unoccupied by any other �� or �� electron—i.e.,
implements rigorously the restriction of the Hilbert space to
the subspace with no double occupancies. Furthermore,
Hund’s exchange between the itinerant eg electrons to the t2g
core spins is large enough to justify the restriction to the
subspace of eg electrons parallel to the local t2g spin; i.e., we
treat spinless fermions with an orbital flavor �=x ,z �see Eq.
�2�
. Electrons with antiparallel spins and double occupan-
cies are treated in second-order perturbation theory �see be-
low�.

In agreement with the double-exchange mechanism,6,35

the effective hopping strength is modulated by the scalar
product of the core spins at the respective sites—it is maxi-
mal for parallel spins and vanishes when spins are antiparal-
lel. Accepting the classical treatment of intersite correlations
between core spins, we use

ti�,j� = t��uij , �15�

with uij given by Eq. �10�. The first factor t�� is the orbital-
dependent hopping strength. Its form depends on the used
orbital basis and for a given pair of orbitals �� ,�� depends
on the direction of the bond 
ij�, as explained below.

While a representation using three directional orbitals ���
along each cubic direction gives the simplest expression for
the hopping of eg electrons,21 it is more convenient to con-
sider here the fixed orthogonal orbital basis given by Eq. �2�
in a 2D geometry, for which the orbital-dependent hopping
strength t�� in Eq. �15� is given by

t��
a =

t

4
� 3 − �3

− �3 1
�, t��

b =
t

4
� 3 + �3

+ �3 1
� , �16�

for a bond along the a and b cubic axes, respectively. The
hopping term takes then the form

Ht
2D = −

1

4
t 	

ij��a,b

uij�3c̃ix
† c̃jx + c̃iz

† c̃jz � �3�c̃ix
† c̃jz + c̃iz

† c̃jx�

+ H.c.
 . �17�

The correlated fermion operators c̃iz
† =ciz

† �1−nix� and c̃ix
†

=cix
† �1−niz� act in the restricted Hilbert space and create a �z�

��x�� electron only when site i is initially empty. The hopping
term �17� describes therefore spinless fermions with an or-
bital flavor in a restricted Hilbert space, in analogy to the
original t-J model in spin space,30 but with an anisotropic
hopping term. We emphasize that the orbital flavor is not
conserved along the hopping process in dimensions higher
than 1 �Ref. 36�. This has important consequences for the
phase diagram of the orbital Hubbard model and destabilizes
the OO in doped manganites.21

Similar as for the undoped LaMnO3 �see Ref. 32�, the eg
superexchange term for undoped LaSrMnO4 depends on the
pair of occupied eg orbitals at sites i and j for a given bond

ij�. If the spins are in the FM configuration, the superex-
change interactions do not vanish but are simply reduced to

purely orbital interactions which favor alternating directional
�3z2−r2-like� and planar ��x2−y2�-like
 orbitals along every
cubic direction.37 An effective orbital superexchange model
presented below originates from the complete spin-orbital
model32 that included the complete multiplet structure of the
excited d�5 and d�4 states33 and focuses on the orbital dy-
namics in the presence of spin fluctuations which influence
orbital superexchange interactions.

The superexchange due to eg electron excitations contains
spin scalar products multiplied by orbital interactions on the
bonds,32 and the full many-body problem would require
treating the coupled spin and orbital dynamics. Here we
study only the orbital correlations and their consequences
for the magnetic order by replacing the scalar products of
spin operators on each bond by their average values �9�, as
done before in the 1D model,20 which is equivalent to decou-
pling spins and orbitals in a mean-field approximation. As a
result, one is treating the orbital many-body problem coupled
to the classical spins.

The spin operators are replaced by their expectation val-
ues following Eq. �10�. In the present case of a monolayer
one finds the eg superexchange term

HJ
2D = J 	


ij��ab
�1

5
�2�uij�2 + 3��2Ti

�Tj
� −

1

2
ñiñj� −

9

10
�1 − �uij�2�

�ñi�ñj� − �1 − �uij�2��ñi��1 − ñj� + �1 − ñi�ñj�
� , �18�

where number operator ñi� refers in each case to the direc-
tional orbital ��� along a given bond 
ij� and

Ti
� = −

1

2
�Ti

z � �3Ti
x� �19�

depend on the bond direction, with the sign � ��� in Eq.
�19� corresponding to the a �b� axis. The operators are de-
fined by orbital T=1/2 pseudospin operators

Ti
z =

1

2
�i

z =
1

2
�ñix − ñiz� , �20�

Ti
x =

1

2
�x =

1

2
�c̃ix

† c̃iz + c̃iz
† c̃ix� , �21�

with two eigenstates of Ti
z �see Eq. �2�
. The superexchange

constant J= t2 /��6A1� is determined by the lowest high-spin
excitation energy ��6A1� at the Mn2+ ion.32

C. Bilayer manganites

The hopping term for the bilayer manganites can be writ-
ten again in terms of directional orbital along the bonds by
extending Eq. �17�. In fact, the interlayer hopping term along
c axis is then diagonal in the ��x� , �z�� basis,

t��
c = t�0 0

0 1
� , �22�

and one finds
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Ht
BL = −

1

4
t 	

ij��a,b

uij�3c̃ix
† c̃jx + c̃iz

† c̃jz � �3�c̃ix
† c̃jz + c̃iz

† c̃jx�

+ H.c.
 − t 	

ij��c

uij�c̃iz
† c̃jz + H.c.� . �23�

As for a single plane, the hopping Ht describes spinless fer-
mions with an orbital flavor in a restricted Hilbert space. In
each plane the orbital flavor is not conserved along the hop-
ping process.21

We apply again the same approach described above to the
superexchange interaction; it leads in the present case of a
bilayer system to the following expression for the eg super-
exchange,

HJ
BL = J 	


ij��ab
�1

5
�2�uij�2 + 3��2Ti

�Tj
� −

1

2
ñiñj� −

9

10
�1 − �uij�2�

�ñi�ñj� − �1 − �uij�2��ñi��1 − ñj� + �1 − ñi�ñj�
�
+ J 	


ij��c
�1

5
�2�uij�2 + 3��2Ti

zTj
z −

1

2
ñiñj� −

9

10
�1 − �uij�2�

�ñizñjz − �1 − �uij�2��ñiz�1 − ñj� + �1 − ñi�ñjz
� . �24�

Compared to Sec. II B, it is extended by the interlayer cou-
pling terms, with the charge and orbital operators given by
ñiz and Ti

z along the c axis �the remaining terms for the bonds
in ab planes are the same as in Eq. �18�
. For simplicity, we
neglect here the difference between the intralayer and inter-
layer hopping elements, although for a detailed comparison
with experiment it might be necessary to include different
bond lengths for each cubic direction.

D. Density distribution and intersite correlations

Below we present the physical quantities which are used
to characterize electron density distribution and intersite spin
and orbital correlations in the ground states and at low tem-
perature. The density distribution in both monolayer and bi-
layer systems at doping x is described by average electron
densities in orbital �,

n� =
1

N
	

i


ñi�� =
1

N
	

i


c̃i�
† c̃i�� , �25�

with N being the number of lattice sites.
Depending on the actual parameters, we encountered sev-

eral different types of magnetic order, both in monolayer and
in bilayer model. The FM and AF spin interactions compete
with each other, so one of them is selected by a particular
type of orbital correlations. The possible generic types of
magnetic order, all observed in the manganites,3–5 are shown
schematically in Fig. 1. We have investigated intersite corre-
lations at short distance r� by �i� intersite spin correlations,
given by the scalar product �9� of the classical core spins,

S�r�� =
1

N
	

i


S� i · S� i+r�� , �26�

and �ii� intersite orbital correlations

T
�r�� =
1

N
	

i


Ti�
�Ti+r��
�� . �27�

The orbital operators are defined using a particular orbital
basis,

Ti�
� = Ti
z cos 
 + Ti

x sin 
 , �28�

and the pseudospin operators �Ti
z ,Ti

x� at site i are given by
Eqs. �20� and �21�. For instance, 
=0 corresponds to Ti

zTi+m
z ,


=� /2 to Ti
xTi+m

x , and 
=2� /3 to Ti
�Ti+r�

� , with � standing for
the directional orbital along the a axis. The orbital correla-
tions expected in undoped manganites are of alternating or-
bital �AO� type on two sublattices, which suggests that the
orbital correlations T
�r�� defined as in Eq. �27� are predomi-
nantly negative for nearest neighbors. These correlations
were investigated along the �10� and �11� directions in 2D
clusters. In the bilayers we will distinguish between two dif-
ferent cases for both the above directions and consider either
�i� both sites within the same ab layer or �ii� two sites which
belong to different layers.

Spin correlations in a doped system were uniquely deter-
mined by core-spin correlations. When eg holes are present,
it is also of interest to investigate spin correlations near the
hole, so we show in some cases the correlations between the
two nearest-neighbor spins separated by a hole,

R =
1

N
	

i


S� i−e��1 − ñi�S� i+e�� , �29�

where �1− ñi� stands for the hole density at the central site i

and two spins S� i±e� occupy two adjacent sites in either a or b
direction.

E. Numerical methods

We employed two different but related numerical methods
to investigate finite clusters described by the orbital t-J
model: �i� exact diagonalization at zero temperature �T=0�
and �ii� its combination with Markov-chain Monte Carlo
�MC� simulations at finite temperature T�0. The ground
state at T=0 for representative electron fillings was deter-

FIG. 1. �Color online� Schematic spin structures in the magnetic
phases of doped manganites. The number of FM bonds decreases
gradually from the FM to the G-AF phase, through the A-AF and
C-AF phases, with eight and four FM bonds in a cube. For an ab
monolayer, the FM and A-AF phases are equivalent.
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mined by solving the orbital t-J model for several possible
types of spin order, using clusters with periodic boundary
conditions: �8��8 and 4�4 clusters for monolayer manga-
nites and �8��8�2 clusters for bilayer ones. Here, the spin
configurations were fixed, corresponding to different pos-
sible magnetic phases: FM, AF, C-AF, E-AF, and CE phases.
To solve the orbital problem specified by the selected core-
spin configuration, we employed the Lanczos algorithm,
which is suitable for the very large matrices treated here and
guarantees fast convergence to the ground state in each case.
We then determined the global ground state by comparing
the ground-state energies obtained for different magnetic
phases.

At finite temperatures, we investigated the effective or-
bital t-J model by making use of a combination of Markov-
chain Monte Carlo algorithm for the core spins20 with Lanc-
zos diagonalization. For each classical core spin
configuration occurring in the MC runs, we defined the ac-
tual values of classical variables �uij� and next employed
Lanczos diagonalization to solve the many-body problem
posed by the orbital model. In each case we obtained the free
energy for that core-spin configuration from the few lowest
eigenstates, which was next used to decide acceptance in the
MC runs. We measured the Boltzmann weight of these low-
est eigenstates and thereby made sure that only states with
negligible weight were discarded. We emphasize that a com-
plete many-body problem in the orbital subspace was solved,
so our method differs from the standard algorithm used for
noninteracting electrons which employs free-fermion formu-
las, as, e.g., in Ref. 38.

In the MC updates, the angle of spin rotation was opti-
mized to keep acceptance high enough. If acceptance was
very good, several rotations were performed in each update.
From time to time, a complete spin flip Si→−Si was pro-
posed. Autocorrelation analysis was employed to obtain reli-
able error estimates, and several hundred effectively uncor-
related samples were considered, taking particular care of
burn-in and thermalization processes. Finally, wherever au-
tocorrelations were observed to be particularly long—e.g., in
symmetry-broken states like the CE phase—the method of
parallel tempering39 was employed.

III. NUMERICAL RESULTS FOR MONOLAYER
MANGANITES

A. Undoped 2D clusters

In undoped manganites �at x=0�, the hopping is entirely
blocked by a large Coulomb interaction U and the nearest-
neighbor Coulomb interaction V �12� is irrelevant as the elec-
tron density is n=1 at each site. Therefore, the Hamiltonian
for a monolayer, Eq. �7�, reduces to the superexchange terms
given by Eqs. �8� and �18�, accompanied by the crystal-field
splitting of eg orbitals, given by Eq. �11�. Therefore, the
ground state for finite J is determined by only two param-
eters J� /J and Ez /J. The phase diagram of the spin-orbital
model �7� in the �J� ,Ez� plane obtained by exact diagonal-
ization of a 4�4 cluster at T=0 is shown in Fig. 2.

A particularly simple result is obtained at J�=Ez=0,
where the FM phase has the lowest energy. As uij �1 in a

ferromagnet, only the first term in the eg superexchange �18�
survives and stabilizes the AO order. Of course, this phase is
also stable in an unphysical regime40 of negative J��0 in a
broad range of crystal-field splitting �see Fig. 2�. This coex-
istence of AO order with the FM spin correlations is
generic—it confirms the trend observed before in the 1D
model20 and on ladders,41 and agrees with the Goodenough-
Kanamori rules.42 When a robust AO state develops at the
orbital degeneracy �Ez=0�, the FM phase extends to a
broader range of J��0 than at �Ez � �0.

As the FM and AF terms in the eg superexchange �18�
compete with each other, the G-AF phase has only slightly
higher energy than the FM one at Ez=0, so it can be rather
easily stabilized by finite AF t2g superexchange J��0. One
finds indeed a transition to AF order at J��0.0091t �we use
below t=1 as an overall energy unit�. Note, however, that
near orbital degeneracy �Ez�0� a robust AO state develops
as both orbitals can participate in an equal amount, and
therefore the FM phase extends here to higher values of J�
than at large orbital splitting �Ez�. Therefore, the crystal-field
energy may easily tip the energy balance and stabilize a dif-
ferent type of magnetic order, although Ez controls primarily
the charge distribution. Indeed, at large �Ez� only one of eg
orbitals is selected and AO order is hindered, so the AF
phase is favored and occurs already for smaller J� than at
Ez=0 �see Fig. 2�. For Ez�0, �x� orbitals are occupied and
one finds large AF eg superexchange—therefore in this case
the AF phase is favored even for J�=0. In contrast, when �z�
orbitals are favored for Ez�0, the eg superexchange is
weaker by a factor of �txx / tzz�2=9 and the G-AF phase can be
stabilized only by J��0.01t. Moreover, one finds that the
competition between the FM and AF orders may induce the
C-AF phase in the crossover regime between the FM and AF
phases. We note that the C-AF phase is expected to be fur-
ther stabilized by finite cooperative JT distortions.

In order to get more insight into the phases of Fig. 2, we
investigated orbital correlations between first and second
neighbors. Let us first look at the ferromagnetic phase at
Ez=0: Since there is no hopping at x=0 and since all bond
are FM �i.e., uij �1�, the Hamiltonian comprises only the

FIG. 2. Phase diagram for the undoped layered manganites �x
=0�, with the stability regions of FM, G-AF, and C-AF phases �see
Fig. 1� in the �J� ,Ez� plane, as obtained at T=0 with a 4�4 cluster.
The core-spin superexchange J� and the crystal-field splitting Ez are
given both in units of J and in units of t for J=0.125t.
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first term of Eq. �18�. While it looks similar to a spin t-J
model �or in this undoped case the Heisenberg model for s
=1/2�, the important difference is that the orbital model is
not isotropic. As a consequence, the orbital correlations �27�
differ markedly from those familiar from the isotropic spin
t-J model and depend on the considered orbitals basis. They
are shown in Fig. 3 for various orbitals parametrized by the
angle 
 �see Eq. �28�
, and one finds that almost no correla-
tions are found when angle 
=0 is selected—i.e., for Tij�0�
= 
Ti

zTj
z�. In contrast, orbital correlations designed to detect

the AO order, with angle 
�� /2, are quite distinct, such as,
for instance, for 
=2� /3, when correlations between two
directional 3x2−r2 /3y2−r2 orbitals within the plane are mea-
sured by Tij�2� /3�=Ti

�Tj
�. As this correlation function is

negative, one finds the OO close to staggered directional
orbitals on two sublattices, with 
i�A=
 and 
 j�B=−
—i.e.,

�
�i�A = cos�


2
��z�i + sin�


2
��x�i, �30�

�
� j�B = cos�


2
��z� j − sin�


2
��x� j . �31�

Remarkably, the orbital correlations defined by the direc-
tional orbitals on two sublattices �−0.1816� are very similar
to those obtained with Tij�2� /3� �−0.1892�, but both types of
OO do not minimize the negative orbital superexchange. A
common large negative contribution to the above values
comes from the 
Ti

xTj
x�=−0.1854 correlation—it decreases

further when the angle 
 is varied towards 
=� /2, where the
orbital correlations reach a minimal value, Tij�� /2�= 
Ti

xTj
x�

=−0.2472. Thus, in agreement with earlier findings,37,41 the
quantum correction to the classical value −0.25 is very small
indeed due to the gap which opens in orbital excitations in
the present 2D case. This means that robust AO order with
orbitals of the form ��x�± �z�� /�2 is realized in an undoped

monolayer without crystal-field splitting, similar to the OO
in the 3D model,32 if this monolayer has FM spin order.

For comparison, we also included in Fig. 3 the spin cor-
relation �26� of the spin t-J model—it is isotropic due to
SU�2� symmetry, and quantum fluctuations keep the value of
S�1� for the �10� direction well above the classical value
−1/4. In contrast, for the orbital model the optimal correla-
tions found for 
=� /2 almost attain the classical value and
thus show almost perfect OO. An additional advantage of
this robust OO for the present calculations is that the ground-
state energy E0 hardly depends on the cluster size—one finds
for the FM phase �uij =1� at Ez=0: E0=−0.21970t for �8
��8, −0.21968t for �10��10, and −0.21967t for 4�4
cluster; i.e., finite-size effects are negligible. When the AF
order is considered instead �uij =0�, the second term in the
orbital superexchange, Eq. �18�, dominates and thus almost
only in-plane �x� orbitals are occupied. Finite-size effects are
here again small, with E0=−0.183 35t for �8��8,
−0.183 34t for �10��10, and −0.183 33t for 4�4 cluster.

In the present model one does not find the E-AF phase,
which has been experimentally observed for strongly JT-
distorted HoMnO3.43 We attribute this to the fact that the
present model does not include phonons and thus rather de-
scribes manganites with little or no JT distortion. The E-AF
phase was found before in MC simulations using a model
neglecting on-site Coulomb repulsion in the regime of large
J� and small electron-phonon coupling �, where it was sta-
bilized by the kinetic energy.23,44 It could argued, however,
that this is not a realistic description, as local Coulomb re-
pulsion �intraorbital U and interorbital U�� inhibits eg elec-
tron motion for the x=0 �n=1� limit, so the microscopic
mechanism of the E-AF phase in HoMnO3 remains puzzling.

While ground-state calculations comparing different or-
dered phases lead to valuable insights at relatively low com-
putational cost, one has to realize that such calculations at
T=0 are still necessarily limited by the authors’ imagination
concerning the magnetic phases to consider. We therefore
complemented them by unbiased MC simulations for a few
parameter sets at low temperature �t=100. Figure 4 shows
the spin correlations �for core t2g spins� obtained from the

FIG. 3. �Color online� Orbital correlations T
�r��, Eq. �27�, in the
�01� direction in the FM phase, as obtained for the undoped 4�4
cluster using Ti

z operators defined for different bases of orthogonal
orbitals: 
=0—��x� , �z��; 
=� /2—���x�± �z�� /�2�, 
=2� /3—
���� , ����. The latter choice involves directional orbitals within the
ab plane. Orbital correlations shown in the �11� direction for 

=� /2 demonstrate an almost perfect AO order. Parameters: Ez=J�
=0. Spin correlations obtained for the spin model �i.e., the Heisen-
berg model for s=1/2� on a 4�4 cluster at n=1 are shown for
comparison by squares and diamonds.

FIG. 4. �Color online� Spin correlations S�r��, Eq. �26�, in the
undoped monolayer, as obtained in MC simulations with a 4�4
cluster for J�=0 and Ez=0 �FM correlations� and for J�=0, Ez

=−0.5t, as well as for J�=0.05t, Ez=0 �both sets give AF correla-
tions�. Error bars are smaller than symbol sizes. Parameters: J
=0.125t, �t=100.
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MC data for one �Ez=J�=0� example of the FM and two
�Ez=0, J�=0.05t and Ez=−0.5t, J�=0� of the AF phase.
These data are complemented by the orbital correlations �not
shown� which correspond closely to the ground-state results.
Both spin and orbital correlations weaken with rising tem-
perature, as discussed elsewhere,45 but for realistic values of
J��0.02t spin correlations melt somewhat faster even in the
present case when the orbital interactions induced by the JT
effect are neglected.

The situation is somewhat different for the C-AF phase
obtained by exact diagonalization at T=0 for Ez�−0.2t �see
Fig. 2�. We analyzed the spin correlations Sij at low tempera-
ture for Ez=−0.5t and a few selected values of J�=0,
−0.022t, −0.03t, −0.04t �Fig. 5�. For J�=0 one finds AF cor-
relations and for J�=−0.04t FM ones, both in accordance
with the ground-state phase diagram of Fig. 2. However, the
phase transition between these phases �the value J�=
−0.022t lies right in the middle of the C-AF region� does not
occur via the C-AF phase at finite temperature, which would
give an AF signal for r�= �1,1�. Neither do the intermediate
values of J� exhibit the E-AF phase, which should show an
AF signal for r�= �0,2� and has only slightly higher energy
than the C-AF phase at T=0, nor do the MC snapshots for
this parameter range and �t=100 suggest any other ordered
phase. However, the temperature �t=100 might be still too
high to allow for longer-range magnetic correlations pre-
cisely in the crossover regime. In conclusion, we have estab-
lished that the AF and FM phases of Fig. 2 are well sup-
ported by the MC results, while we believe the transition
between them might occur either via the C-AF phase or with
phase separation.22

In order to understand better the phase diagram of Fig. 2
it is instructive to consider the orbital occupation. When a
positive crystal field �Ez�0� is applied, �z� orbitals which
stick out of the ab plane are favored �see Fig. 6�. For the AF
phase at J�=0.05t, a relatively small value Ez=0.15t suffices
already to switch the density distribution from mainly �x� �at
Ez=0� to mainly �z� orbital occupation. The width of the
crossover regime from �x� to �z� orbital occupation increases
with decreasing J�. As discussed above, the FM phase is
characterized by an approximately equal occupation of both
orbitals at Ez=0. When both eg orbitals mix, the AO order

found in the FM phase at J�=0 is robust and a rather large
value of crystal field Ez�0.4t is needed to enforce complete
�z� polarization. This large value of Ez reflects the coopera-
tive character of the FM spin and AO order. At the same
time, a negative crystal field Ez�−0.1t is needed in order to
enforce complete �x� polarization, while this transition occurs
at Ez�0 for J�=0.02t.

Note that in the ferro orbital �FO� phase with �x� orbitals
occupied �at Ez�−0.2t, the AF spin order is induced even
for J�=0; see the spin correlations in Fig. 4 and the phase
diagram of Fig. 2�. This provides another example of
complementary spin and orbital correlations that agree with
Goodenough-Kanamori rules.42 At J�=0.02t one finds an in-
termediate situation in this respect—while both at Ez�0 and
Ez�0.25t the magnetic order is AF and dictated by J�, with
either �x� or �z� orbitals being filled, in the transition region at
0�Ez�0.25t one finds AO ��x�± �z�� /�2 order, but rather
unclear magnetic structure at �t=100. This shows again that
magnetic correlations are typically lost at lower temperature,
particularly when different conflicting trends in magnetic in-
teractions compete with each other.

Experimentally, the AF order with eg electrons occupying
mainly �z� orbitals was found8 in a monolayer-undoped com-
pound LaSrMnO4, which we interpret as a consequence of
sufficiently large positive crystal field, Ez�0.5t, induced by
the 2D structure. With growing temperature �x� occupation
rises,8 as we also observed in the MC simulations.45

B. Stability of the CE phase at half doping

Next we investigate the spin correlations at half doping
�x=0.5� and determine the range of stability of the CE phase,
which was observed in a monolayer La0.5Sr1.5MnO4
compound.9,10 We have performed ground-state �T=0� calcu-
lations using the three clusters shown in Fig. 7, with periodic
boundary conditions. Because of the large Hilbert space at
half-filling, MC simulations could be completed only for
�8��8 clusters �for the cluster geometry and one possible
realization of the CE phase; see Fig. 7�a�
. In these simula-
tions, we obtained the CE phase for some parameters—e.g.,

FIG. 5. �Color online� Spin correlations S�r��, Eq. �26�, in the
undoped monolayer as in Fig. 4, but for decreasing J� from J�=0
�AF correlations� to J�=−0.04t �FM correlations�. Parameters: J
=0.125t, Ez=−0.5t, �t=100.

FIG. 6. �Color online� Electron density in the �z� orbital perpen-
dicular to an ab plane of a monolayer manganite for increasing
crystal-field splitting Ez �see Eq. �11�
, as obtained from MC simu-
lations of undoped �n=1� �8��8 clusters with various values of
J�. Parameters: J=0.125t, �t=100.
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for J=0.125t, Ez=0, either for J�=0.05t and V=0 or for J�
=0.025t and V= t. A typical MC snapshot is shown in Fig. 8.
As we have used periodic boundary conditions, one recog-
nized the CE phase in an �8��8 cluster repeated several
times.

The spin correlations resulting from the MC runs are
compared to those of the ideal CE phase �exact diagonaliza-
tion at T=0� in Fig. 9, and one finds an almost perfect
agreement—in both cases, AF and FM signals cancel along
the �01� direction, because of the different possible realiza-
tions of the CE phase, but along the diagonal �11� direction
the spin correlation reaches −0.5. �For the Monte Carlo
simulations in these parameter regimes, we used parallel
tempering39 in order to sample the different symmetry-
related realizations correctly.�

On the one hand, the occurrence of the CE phase for
classical spins even without the cooperative JT effect in the
present study is in contrast to the results obtained recently
for quantum-mechanical S=1/2 core spins,46 where quantum
fluctuations suppress the CE phase. While it is not com-

pletely clear whether S=3/2 core spins are better approxi-
mated by more quantum S=1/2 or by classical S→
 spins,
the latter has been shown to be an excellent approximation in
the one-orbital model in one dimension.47 On the other hand,
a similar model, but including phonons and without on-site
Coulomb repulsion between the eg electrons, was treated on
a 4�4 site cluster �see Fig. 7�b�
 in Ref. 56. Because the
on-site Coulomb repulsion was not included, unrealistically
large J��0.2t or rather strong electron-phonon coupling �
�1.75 was necessary to stabilize the CE phase. Although
this result could still be improved by considering larger clus-
ters, it highlights already the importance of strong Coulomb
interactions for obtaining physically relevant results.

When FM and AF interactions occur simultaneously at
different bonds in ab planes, one has to investigate the sta-
bility of the CE phase by comparing it with the C-AF phase
which has the same amount of FM and AF bonds. We have
found that at J=0.125t the C-AF phase has higher energy
than the CE one for small clusters of eight sites and the same
holds true for larger 4�4 clusters. However, it has been
pointed out that finite-size effects are important,48 so one
would like to investigate still larger clusters, at least at T
=0.

As a first step, we exploit the quasi-1D nature of the two
phases and investigate 8�2 clusters instead of 4�4 ones �at
present, we cannot treat more than 16 sites�: �i� a ladder for
the C-AF phase and �ii� the cluster shown in Fig. 7�c� for the
CE phase. While the energy of the CE phase hardly changes
with cluster topology, the one of the C-AF phase is consid-
erably lowered, albeit still higher than that of CE phase �see
Table I�. To make the ground-state calculations more conclu-
sive and to eliminate systematic errors, it is therefore indeed
necessary to investigate finite-size effects.

Due to the magnetic order in both C-AF and CE phases,
hopping occurs only along a 1D path, so chains can be in-
vestigated instead of 2D lattices. In this way larger systems
could be reached. Taking the kinetic energy for a FM chain,

Ht
C/CE = −

1

4
t	

i

�3c̃i,x
† c̃i+1,x + c̃i,z

† c̃i+1,z

± �3�c̃i,x
† c̃i+1,z + c̃i,z

† c̃i+1,x� + H.c.
 , �32�

we considered two different geometries: �i� the C-AF phase

FIG. 7. �Color online� Clusters used to investigate the CE phase
at half doping �x=0.5�: �a� �8��8, �b� 4�4, and �c� 2�8. Dark
�light� shading indicates possible realizations of staggered FM zig-
zag chains in the CE phase.

FIG. 8. �Color online� MC snapshot obtained for doping x
=0.5, with spin directions indicated by lines. Four �8��8 clusters
are shown �heavy lines indicate the original cluster�, and one clearly
recognizes the magnetic order in the CE phase. Parameters: J
=0.125t, J�=0.05t, Ez=V=0, �t=100.

FIG. 9. �Color online� Spin-spin correlation S�r��, Eq. �26�, for
the ideal CE phase and the MC data for an �8��8 cluster. There is
one AF signal at �1,1�. Parameters: J=0.125t, J�=0.05t, Ez=V=0,
�t=100.
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with a chain along b axis—i.e., taking+sign for the interor-
bital hopping in Eq. �32�—and �ii� a zigzag path chosen in-
stead for the CE phase, which leads to a sequence
�b ,b ,a ,a ,b ,b , . . . � of bond directions and therefore to the
phase sequence �+, + ,− ,− , + , + , . . . � in the hopping.

Because the FM order within the chains �in either CE or
C-AF phase� is perfect at zero temperature �uij =1�, the su-
perexchange along them contains only one term,

HJ
FM = J	

i
�2Ti

�Ti+1
� −

1

2
ñiñi+1� , �33�

where � is the directional orbital along the bond direction—
i.e., along b in the C-AF phase and alternating between a and
b in the CE phase. However, superexchange via AF bonds
also contributes and these interchain coupling terms could be
crucial for stabilizing one or the other phase.49 We therefore
embedded the chains and included into the effective 1D
Hamiltonian additional AF superexchange terms,

HJ
AF =

3

5
J	

i
�2Ti

�̄Ti+1
�̄ −

1

2
ñiñi+1� − J	

i

�ñi�̄�1 − ñi+1�

+ �1 − ñi�ñi+1�̄
 −
9

10
J	

i

ñi�̄ñi+1�̄, �34�

where �̄ is the directional orbital perpendicular to the chosen
path—i.e., couples nearest-neighbor sites on two adjacent
chains. The form of Eq. �34� is motivated by the fact that a
bridge site on one chain �in the CE phase� lies always next to
two corner sites of the neighboring chains in the ab plane.
By symmetry, these should be equivalent to the corner sites
on the considered chain, which are again the nearest-
neighbor sites to a given bridge site. The energy of the C-AF
phase is evaluated with a similar term.

In order to check the validity of this one-dimensional ap-
proach, we compare the energies obtained on small 2D clus-
ters �third to fifth columns in Table I� to those obtained on
short chains of four and eight sites �last two columns in Table
I�. For the CE phase, L=4 corresponds to the chain length
encountered in a �8��8 cluster and the energies differ in-
deed only by �0.0015t. For the C-AF phase, L=4 corre-
sponds to either �8��8 or 4�4 cluster and one also finds

remarkably good agreement. The difference is larger for L
=8 and the ladderlike clusters, but it seems still reasonable to
investigate systematically the Hamiltonian comprising the
three terms given in Eqs. �32�–�34� on chains of different
length.

The results for chains of various lengths were next ex-
trapolated to the 1/L→0 limit �see Fig. 10�. An excellent fit
was obtained using a quadratic dependence of the ground-
state energy on the inverse chain length, E0=E0,
+k�

1
L2 . In

this way we deduced the extrapolated energy values E0,
. As
only directional orbitals oriented along the chain contribute
to the kinetic energy in the C-AF phase, this energy is not
influenced by U. Consequently, one finds that large on-site
repulsion U—i.e., small J—favors the C-AF phase �see also
Refs. 48 and 49�. Furthermore, it appears that the energies of
both phases are so close to each other for J� t /8 that one
cannot distinguish between these phases and decide on the
nature of magnetic correlations in the ground state. This re-
sult is not strongly affected by a uniform crystal field Ez
either—the energies of the two magnetic phases are again
very similar for J= t /8.

As the commonly used picture of the CE phase assumes
charge order, one expects that it to be stabilized by nearest-
neighbor Coulomb repulsion V. The extrapolation to 1/L
→0 gives indeed lower energies of the CE phase for V�0,
but the effect of V remains surprisingly small. The reason is
that the second of the AF terms in Eq. �34� already induces

TABLE I. Ground-state energies as obtained for the C-AF and
CE phases with different clusters of Fig. 7 and for 1D chains simu-
lating these phases, for three representative values of Ez. In case of
2�8 clusters, a ladder was used for the C-AF phase and the cluster
shown in Fig. 7�c� for the CE phase. Parameters: J=0.125t, V=0.

Ez / t Phase �8��8 4�4 2�8 4�1 8�1

0.0 CE −0.6452 −0.6624 −0.6624 −0.6466 −0.6641

C-AF −0.5366 −0.5366 −0.6330 −0.5366 −0.6365

0.5 CE −0.7371 −0.7358 −0.7358 −0.7372 −0.7357

C-AF −0.6220 −0.6221 −0.7068 −0.6140 −0.7076

−0.5 CE −0.5895 −0.6238 −0.6238 −0.5917 −0.6269

C-AF −0.5183 −0.5184 −0.6045 −0.5159 −0.6077

FIG. 10. �Color online� Finite-size extrapolation of the ground-
state energy E0 for the C-AF and CE phases on chains of different
length L�16, as obtained at T=0 for different values of J: �a� J
=0.25t, �b� J=0.125t, and �c� J=0.05t. The data for the C-AF phase
alternate between the chains of length L=4n and L=4n+2, with n
integer. Parameters: J�=Ez=V=0.
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some charge order in the C-AF phase as well, and therefore
its energy does not suffer much from Coulomb repulsion V.
If, on the other hand, V becomes too large, it hinders electron
motion along the FM chains in both the C-AF and CE phases
and thus affects both of them, even favoring the C-type AF
phase for very large V�1.5t.

C. Orbital and charge order at half doping

When the magnetic order of CE type occurs, the sites
along each FM zigzag chain are nonequivalent, and one ex-
pects that holes are predominantly found at the corner
sites.22–24 However, in the present finite cluster calculations
different CE patterns mix with each other and the holes can-
not be detected using just density operators. This information
can be extracted only from intersite correlations, such as, for
instance, the spin-hole-spin correlation R which measures
the spin-spin correlations across a central site occupied by
the hole �see Eq. �29�
. For the clusters shown in Fig. 7 we
consider the FM zigzag chains along the �11� direction. On
the one hand, the sites to the “right” and “left” of a corner
site along the a axis—i.e., �10� direction—have opposite
spin, as well as those “above” and “below” it along the b
axis—i.e., �01� direction. For the bridge sites, on the other
hand, the neighboring spins along either direction have the
same sign. In the CE phase, negative values of R indicate
therefore that holes occupy corner rather than bridge sites.50

We have calculated the correlation function R for the
ground state; i.e., first the spins were set into the zigzag CE
pattern and next the resulting orbital Hamiltonian was solved
with Lanczos diagonalization. In the absence of nearest-
neighbor Coulomb repulsion �at V=0�, we then found R=
−0.087, from which we deduced the electron density at cor-
ner sites nc�0.413 vs nb�0.587 on the bridge sites. �The
MC data at low temperature �t=100 with J�=0.05t and Ez
=V=0 give a somewhat weaker spin and charge order with
R=−0.0757±0.001.� The electrons at the bridge sites are
almost exclusively in the directional 3x2−r2 �3y2−r2� orbit-
als along the a �b� axis—i.e., along the direction of the zig-
zag chain. In contrast, the electrons at corner sites are more
evenly distributed over both orbitals in the CE ground state
�at Ez=0�, with nx

c=0.2307 in �x� vs nz
c=0.1823 in �z� orbital,

respectively.
These findings—i.e., the relatively small difference in the

density at bridge and corner sites and the occupation of the
directional orbitals—are in contrast to some experimental
results.51,52 However, the OO similar to our findings was also
reported,16,53,54 and one expects that rather extreme charge
modulation, with holes at corner sites and eg electrons in
bridge positions, should be excluded as then the FM double
exchange which stabilizes the CE phase would be lost.
Therefore, the charge order with alternating Mn3+ and Mn4+

ions has been challenged and an intermediate valence picture
with only small density variations has been suggested both in
experimental55 and in theoretical studies.24,56–58

In this section we would like to address as well the recent
controversy concerning the type of the OO in the CE phase.
We analyzed the orbital occupation in the 3x2−r2 and 3y2

−r2 orbitals for various values of the crystal-field splitting

Ez�0 �Fig. 11�. At Ez=0 the electrons at the bridge sites are
found in the orbitals parallel to the FM chain � Fig. 11�a�
—
i.e., in 3x2−r2 or 3y2−r2—as discussed above. One finds that
the corresponding orthogonal orbital is practically empty—
e.g., y2−z2 orbitals at the bridge sites with both neighboring
FM bonds along the x direction. However, a large density is
found within these orbitals at the remaining bridge positions
�in y2−z2 orbitals on those sites where the FM chains have
the bonds along the y direction�, which is due to the consid-
erable overlap between the 3y2−r2 and y2−z2 orbitals. Thus,
the 3x2−r2 /3y2−r2 order appears to be qualitatively similar
to the z2−x2 /y2−z2 order. In the present case, however, we
would rather identify it as 3x2−r2 /3y2−r2 order because the
occupation on the bridge sites is almost exclusively in the
directional orbitals.

When the crystal field Ez increases, the orbital occupation
changes �see Fig. 11�. Not surprisingly, the density in the
3z2−r2 orbitals �not shown� has increased, which modifies
the type of the OO—one finds now that the directional or-
bital is the one which is empty on some sites, which means
that the electron on a bridge site has moved from the 3x2

−r2 �3y2−r2� into the z2−x2 �y2−z2� orbital. This situation
could therefore be considered as representing �z2−x2 /y2

−z2�-type order. The observed transition from the former �at
Ez=0� to the latter �at Ez=1� phase is driven by the crystal
field and is gradual �see Fig. 11�. Therefore, it may be argued
that the combination of spin and orbital structure in Fig. 1 of
Ref. 52, given schematically in Fig. 12�a�, is incorrect: In
this picture, the FM spin chains run perpendicular to the
occupied z2−x2 �y2−z2� orbitals at the bridge sites—i.e., in
the y �x� direction. Instead, our data indicate that the FM
chains run as shown in Fig. 12�b�—i.e., in the x direction,
where the z2−x2 orbital is occupied for large Ez�0 and
along the y direction for the y2−z2 sites.

Another difference between the analysis performed in
Ref. 52 and our results is that charge order is not perfect in
our case, as it was assumed in their analysis. This does not
influence the OO, however—for V= t the charge order is en-
hanced �i.e., the electron density at bridge sites increases�

FIG. 11. �Color online� Orbital structure for the CE phase at T
=0, with circles �crosses� for 3x2−r2 �3y2−r2� orbitals, as obtained
for �a� Ez=0, �b� Ez=0.2t, �c� Ez=0.5t, and �d� Ez= t. The size of
circles and crosses is proportional to the electron density in a given
orbital. Parameters: J=0.125t, V=0.
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without greatly affecting the type of the OO �not shown�.
Here we would like to emphasize that our findings concern-
ing the nature of spin and OO, as well as rather weak charge
order, agree with recent Hartree-Fock calculations on the
multiband d-p model,58 indicating that the local Coulomb
interactions and superexchange suffice already to stabilize
the CE phase. There is no doubt, however, that oxygen dis-
tortions also contribute to the stability of this phase46,58 and
would expand the regions of the CE phase in the phase dia-
grams shown in the next section. At the same time realistic
oxygen distortions would also modify somewhat the type of
occupied orbitals, but the essential features of the orbital
order in the CE phase �see Fig. 12�b�
 would remain the
same.

The facts that �z2−x2 /y2−z2�- and �3x2−r2 /3y2−r2�-type
orbital orders are qualitatively similar59 and that one can
come from one to the other one by adding a constant crystal
field are consistent with the results reported in Ref. 51,
where a shear-type distortion �alternating contractions along
the x /y axes� has been found more plausible than a JT-type
OO �alternating elongations along the x /y axes�. In the
shear-type order, the out-of-plane Mn-O bond is of a similar
length as the longer in-plane bond, while it is comparable to
the shorter bond in the JT-like case. Variation of the out-of-
plane bond, equivalent to Ez�0 in our model, can therefore
lead from one scenario to the other. In closing, we remark
that the kinetic energy favors 3x2−r2 /3y2−r2 occupation as
this maximizes the hopping. On-site Coulomb repulsion in-
hibits the kinetic energy, and when we weaken Coulomb
repulsion from U=8t �J=0.125t� to U=4t �J=0.25t� and
thus enhance the kinetic energy, we indeed find that a stron-
ger Ez is needed to induce �z2−x2 /y2−z2�-type OO. This is in
accordance with the usual experience based on comparing
local density approximation �LDA� with LDA+U
calculations,51 where inclusion of on-site interaction has like-
wise been found to be crucial in stabilizing shear type over
the JT type of OO.

D. Phase diagrams at half doping

Our results on the stability of magnetic phase at x=0.5
were collected in the phase diagrams of Fig. 13 for two rep-
resentative values of the on-site Coulomb repulsion, U=8t
and 4t, leading to J= t /8 and t /4. For a more realistic J
= t /8, the extrapolated energies for the C-AF and CE phases

are indeed very close to each other, with V�0 slightly fa-
voring the CE phase �see above�, and we anticipate that the
observed differences might actually be smaller than the error
induced by the use of 1D chains instead of 2D clusters. We
therefore could not determine a phase boundary between
these two phases. We also had to compare the energies of the
two quasi-1D phases to the 2D-like FM and AF phases.
However, we observed that the energy of the CE phase for
L=8 is already very similar to the extrapolated result for L
→
 for all values of V. Therefore the results obtained for the
8�2 cluster �see Fig. 7�c�
 could be used for energy com-
parison with the FM and AF phases.

In order to estimate the uncertainty of the ground-state
energies in a reliable way and, thus, of the determined phase
boundaries, we further investigated the change of the energy
of the FM phase with cluster size for three clusters used in
the present calculations: �8��8, �10��10, and 4�4. It
was found that the energies did not depend much on cluster
size, but these might, however, still be too small. A some-
what simpler situation occurs for the G-type AF phase which
turns out to be perfectly charge ordered for V�−J, so its
energy is independent of V. Moreover, as all electrons are
perfectly localized, one finds in the present approximation a
classically ordered G-AF phase without finite-size effects.

For the C-AF and CE phases, we investigated how much
the energy of the CE phase for L=8 differs from the extrapo-
lated energies for either the C-AF or the CE phase at L
→
. We finally arrived at the estimated error �J��

�E
2

�0.01t and the resulting phase diagram for J / t=1/8 given
in Fig. 13�a�. The CE or C-AF phases are stable in between
the AF and FM phases, respectively. Increasing nearest-

FIG. 12. �Color online� Possible orbital and spin structure for
the CE phase, as suggested �a� in Fig. 1 of Ref. 52 and �b� from our
calculations. The orientation of the rectangles indicates the type of
occupied orbital—horizontal z2−x2 or vertical y2−z2.

FIG. 13. Phase diagram at half doping �x=0.5� for �a� J
=0.125t and �b� J=−.25t, as obtained from finite-size consider-
ations at orbital degeneracy �Ez=0�. The black lines around the
phase boundaries give their estimated numerical and finite-size er-
rors. At J / t=1/8 the energies for the C-AF and CE phases differ
only very little and we could not determine a phase boundary be-
tween them. For J / t=1/4 the CE phase has lower energy than the
C-AF phase.
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neighbor Coulomb repulsion V�0 weakly suppresses the
FM phase and favors the AF phase. On the one hand, the FM
phase is suppressed because it is stabilized by the kinetic
energy which decreases when the charge order is induced by
finite V. The AF phase, on the other hand, is already charge
ordered in the absence of explicit Coulomb repulsion and is
therefore not influenced by V. Altogether, the electrons redis-
tribute at finite V also in the CE phase, so its range shrinks.

For a smaller on-site Coulomb repulsion U=4t—e.g.,
J / t=1/4—the CE phase is favored over the C phase for all
values of V, at least in the investigated parameter range
−0.5t�V�2t. We used the same procedure as described
above to determine the boundary toward the FM and AF
phases, and arrived at the phase diagram depicted in Fig.
13�b�. One finds that the G-AF phase extends to a broader
range of parameters, and the region of CE phase is reduced
with increasing V. This contradicts the common belief that
the CE phase is stabilized by the nearest-neighbor Coulomb
interaction.

E. Magnetic and orbital correlations for increasing doping

We complete this section by a qualitative discussion of the
changes in orbital occupation and magnetic correlations in a
monolayer under increasing doping. For a 4�4 cluster
doped with one hole �x=1/16=0.0625� we observed rather
weak AF order in MC runs for J�=0.02t and more pro-
nounced AF order for J�=0.05t, with Ez=V=0. Unfortu-
nately, we were not able to perform MC simulations for more
than one hole on 4�4 clusters �x�1/16=0.065� due to the
increasing size of the Hilbert space. For one hole doped to a
smaller �8��8 cluster �doping x=1/8=0.125�, we found
weakly AF correlations for J�=0.05t, while AF order had
vanished for J�=0.02t, which is a clear sign of the increasing
importance of FM double exchange with increasing doping.
The fast disappearance of AF order �x�0.125 for J�=0.02t�
agrees with experimental observations, where AF order dis-
appears at x�0.115 and is replaced by short-range spin-glass
type of order.10

Magnetic correlations at higher doping are theoretically
challenging, and various anisotropic magnetic phases �A-AF
and C-AF� were obtained in the model discarding strong
Coulomb repulsion.35 In the range of large doping x�0.5,
higher doping can be reached for Nd1−xSr1+xMnO4, while
La1−xSr1+xMnO4 can be doped only up to x�0.7. In
Nd1−xSr1+xMnO4 samples the C-AF phase was observed60 for
0.75�x�0.9; additionally, a structural phase transition sug-
gesting predominant occupation of directional orbitals along
one axis was reported. We found it very encouraging that the
same trends have been observed in the MC simulations for
two electrons on a �8��8 cluster and for four electrons on
a 4�4 cluster �x=3/4�, as well as for three electrons on 4
�4 cluster �x=0.8125�, for large enough J�=0.025t and
0.05t.

The spin correlations obtained from MC simulations of a
�8��8 cluster with two electrons are shown in Fig. 14 for
two parameter sets J�=0.05t, V=Ez=0 and J�=0.025t, V= t,
Ez=0.25t. For a larger value of J�=0.05t we see the telltale
signal of the C-type phase, the strongly negative signal at

�11�. The nearest-neighbor spin correlation in the �10� direc-
tion nearly vanishes because the FM and AF signals from the
two directions almost cancel each other. �Parallel tempering
was employed in this case to ensure good autocorrelation
times.� For smaller J�=0.025t and V= t, Ez=0.25t, the C-AF
phase is not as marked and the FM correlations are stronger
than the AF ones. In agreement with expectations based on
the 1D model,20 the electrons occupy directional orbitals
along the FM direction in the C-AF phase, because this
maximizes the gain of the kinetic energy.

Figure 15 shows that orbital occupation depends strongly
on doping for realistic parameters J�=0.025t and V= t. This
is reflected by the percentage of electrons occupying out-of-
plane �z� orbitals which is furthermore very sensitive to the
actual value of Ez �see Fig. 15�. It is quite remarkable that for
the degenerate eg orbitals—i.e., without a crystal field �Ez

=0�—practically only in-plane �x� orbitals are occupied at
x=0 �squares in Fig. 15�a�
. This state is induced by finite AF
superexchange J�=0.025t which �due to large Hund’s ex-
change� selects the AF interactions between eg, and these
interactions are maximal in ab planes when �x� orbitals are
occupied. In this way the core-spin superexchange influences
also the eg orbital occupation �at J�=0 one finds an almost
isotropic electron distribution with nz /n�0.5 in the FM
phase�. Upon doping, the electron population in �z� orbitals
gradually increases, reaches a maximum at x=5/8 where FM
correlations are found, and then decreases again. This behav-
ior follows from the kinetic energy which contributes in the
entire regime of 0�x�1 and is gained when the interorbital
processes which excite electrons to �z� orbitals, ��3�c̃ix

† c̃jz

+ c̃iz
† c̃jx� /4, are allowed.
For a large positive crystal field favoring �z� orbitals Ez

=0.5t �triangles in Fig. 15�a�
, the density distribution is re-
versed at x=0—almost all electrons are found within �z� or-
bitals. They redistribute, however, gradually with increasing
doping, because the kinetic energy competes with the crystal
field and favors in-plane �x� orbitals. �In this case one finds a
FM phase in a range of doping from x=1/4 to x=5/8, sepa-
rated by the CE phase found at x=0.5 for Ez=0.� In the
intermediate case of a smaller crystal-field splitting of Ez
=0.2t �crosses�, the normalized �z� density nz /n is first re-

FIG. 14. �Color online� MC results for the spin-spin correlations
S�r��, Eq. �26�, for a monolayer, as obtained in �8��8 cluster with
two electrons �at high x=0.75 doping� for two parameter sets J�
=0.05t, V=0, Ez=0 �� for �10� and � for �11� direction
 and J�
=0.025t, V= t, Ez=0.25t �� for the �10� and � for the �11� direc-
tion
. Error bars are smaller than symbol sizes. Parameters: J
=0.125t, �t=100.
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duced but next rises again towards the FM phase which in
this case suppresses the CE phase at x=0.5.

As in the last scenario, we investigated the effect of a
doping-dependent crystal-field splitting,

Ez = �1

2
− x�t . �35�

The doping dependence of this type �circles in Fig. 15�a�
 is
qualitatively expected by considering the experimental data.8

This is probably the most realistic case of those considered
here, as it shows both the correct orbital polarization for x
=0 and the CE phase for x=0.5. Note that in all cases except
Ez=0, we find the experimentally observed8 increase of in-
plane �x� electron density with increasing doping which
shows that Ez�0 in the low-doping regime.

Taking the decreasing with x crystal field as in Eq. �35�,
one finds a very fast decrease of nz from nz=1 at x=0 to
nz�0.22 at x=0.25 � Fig. 15�b�
. Thus the electrons move
fast from �z� to �x� orbitals in this doping regime, as dictated
by the kinetic energy gain. This qualitative trend is very well
reproduced by the analytic approach using the mean-field
approximation in the slave-boson method, introduced by
Kotliar and Ruckenstein.61 We have adapted this method to
the FM phase in a monolayer, as explained in the Appendix.
The performed comparison with the results of exact diago-
nalization shows that this analytic approach provides a sur-
prisingly reliable way to estimate both the charge distribution
in layered systems and the magnetic interactions at increas-
ing doping. In the present case the double-exchange mecha-
nism promotes FM states in a large range of doping, while in
a bilayer system changing the electron density distribution
provides a natural explanation for an observed transition
from the FM to A-AF structure.15

The changes in magnetic correlations at increasing doping
follow from the competing superexchange and double-
exchange interactions. The double exchange is directly pro-
portional to the kinetic energy,34 which vanishes at x=0 and
is gradually gained by doping when the available space for
hopping processes increases up to x�0.5 and then is gradu-
ally lost beyond half doping �see Fig. 16�. Therefore, the
kinetic energy has an approximately parabolic shape, as ob-
tained for a �8��8 cluster with a few representative param-
eter sets. Since different orbital occupations can favor either
the FM or AF spin configuration for any bond, the superex-
change energy is finite even in the cases where the average
nearest-neighbor spin correlation function vanishes, like in
the CE and C-AF phases.

In the FM case at J�=0, the kinetic energy has its mini-
mum at x=0.5 because of the optimal carrier density �Fig.
16�. For J��0, however, the minimum of the kinetic energy
is moved to larger doping x=5/8=0.625, because this elec-
tronic filling allows one to realize the FM phase, while the
magnetic correlations favor instead the CE phase at x=0.5 at
the expense of the kinetic energy. This demonstrates that
these two energies are to some extent complementary and
their competition controls the magnetic order. With finite

FIG. 15. �Color online� Orbital electron densities for increasing
doping x=1−n as obtained in MC method for a �8��8 cluster: �a�
percentage of density in �z� orbitals nz /n for a few selected values
of the crystal-field parameter Ez and for variable Ez �see below� and
�b� absolute densities nz and nx in the two orbitals from MC �sym-
bols� compared with the densities found with the Kotliar-
Ruckenstein �KR� slave-boson mean-field approximation Ref. 61
�lines� with variable Ez= � 1

2 −x�t. The charge distribution found at
doping x=0.5 with the KR method �nz�0.14, nx�0.36� is indi-
cated by diamonds. Remaining parameters in the MC calculations:
J=0.125t, J�=0.025t, V= t, �t=100.

FIG. 16. �Color online� Kinetic �approximately parabolic shape�
and superexchange �weakly increasing� energies for increasing dop-
ing x=1−n, as obtained for �8��8 clusters with various parameter
sets: � and �, for J�=0 and Ez=V=0; � and �, for J�=0.05t and
Ez=V=0; � and �, for J�=0.025t, V= t, and Ez given by Eq. �35�.
Parameters: J=0.125t, �t=100.
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nearest-neighbor Coulomb repulsion V= t, the kinetic energy
of the CE phase is partly lost due to charge order. Concern-
ing the total energy, which contains additional contributions
from V and Ez and is not shown in Fig. 16, we want to
emphasize that it is convex over the entire doping range and
for all parameter sets. Although this result seems to exclude
phase separation,22 the clusters used in the present study are
definitely too small to address this issue in a conclusive way.

IV. MAGNETIC PHASES IN BILAYER MANGANITES

A. Phase diagrams for undoped system

Bilayer manganites like La2−2xSr1+2xMn2O7 represent an
intermediate situation between the 2D monolayer systems
and 3D perovskite manganites, so it is interesting to ask to
what extent the qualitative trends reported above for the
monolayers are modified by the interlayer coupling. We shall
provide some limited answers to this question, as unfortu-
nately the calculations could only be performed for certain
selected fillings of the smallest bilayer �8��8�2 cluster
used in the numerical studies.

The study of magnetic correlations in an undoped �x=0�
system performed on �8��8�2 clusters led to the phase
diagram in the �J� ,Ez� plane �see Fig. 17�. It was obtained by
comparing the energies of various possible magnetic states at
T=0. As in a monolayer, large positive J� leads to the G-AF
phase �with AF correlations in all three spatial directions�
and strongly negative J� induces FM phase.40 Apart from
these two phases, one finds here several different types of
intermediate magnetic order in the crossover regime from the
FM to G-AF phase, with FM bonds along either two or only
one cubic direction �see Fig. 1�. Two phases of the same
type, either A-AF and A�-AF or C-AF and C�-AF, are distin-
guished by the directions of FM bonds. When the FM corre-
lations occur within the ab layers, as found experimentally,12

they are called A-AF and C-AF phases, respectively. These
phases appear for the expected13 positive �Ez�0� crystal
field which favors �z� orbital occupancy, while for the Ez
�0 interlayer FM correlations occur in A�-AF and C�-AF
phases.

For intermediate J�, one obtains the A-AF phase, reminis-
cent of the ground state of undoped 3D perovskite manganite
LaMnO3. For Ez�0.2t this plane is particularly robust,
which suggests that positive Ez simulates here the effect of
missing planes along the c axis on the electron distribution.
A large-�z� amplitude is needed as �i� this type of order is
supported by the AO order in the ab planes and �ii� �z� or-
bitals are responsible for the AF interlayer coupling. This
coexisting AO-FM phase within the ab planes is robust and
can be suppressed only by AF core-spin superexchange J�
�0 of a similar value as in the monolayer �see Fig. 2�.

MC simulations performed at �t=100 for various param-
eter sets support the phases found in the ground-state calcu-
lations �J= t /8 in all cases�: J�=0.05t, Ez=0 �G-AF�; J�=
−0.02t, Ez=0 �FM�; J�=0 and J�=−0.02t, Ez=0.5t �A-AF�;
J�=−0.005t, Ez=−0.5t �C�-AF�. For some parameter sets
close to the ground-state phase boundaries, we observe com-
peting phases; i.e., configurations showing several different
phases occur in the MC runs: J�=0, Ez=0 �FM and A-AF�
and J�=0.01t, Ez=0 �A-AF, some configurations with A�-AF
and C-AF�.

The crossover region from the FM to the G-AF phase
with increasing J� is characterized by the competition be-
tween nearly degenerate magnetic phases. As for the mono-
layer phase diagram, the ground-state calculations also yield
small regions with the C-AF or C�-AF phases. The C�-AF
was indeed found in MC runs for J�=−0.005t, Ez=−0.5t,
�t=100, and J=1/8t, but the C-AF phase �having a very
narrow stability region in the ground-state phase diagram�
only occasionally surfaced in the MC runs for Ez=0 and J�
=0.01t �competing with A-AF� and J�=0.02t �competing
with G-AF�. It also occasionally occurs at J�=0.015t, but the
magnetic structure there remains unclear, which could mean
that temperature was still too high and/or the cluster too
small.

For negative Ez in-plane �x� orbitals are favored, which in
turn enhances the region of stability of the G-AF phase. This
can be understood by looking at the orbital correlations in
the G-AF phase at Ez=0 depicted in Fig. 18�a�: Even at
orbital degeneracy �without a crystal field�, one finds rather
pronounced polarization for 
=0–80% of the electrons oc-
cupy �x� orbitals as then the superexchange energy is gained.
The G-AF phase can therefore take advantage of a negative
Ez, as seen in the phase diagram of Fig. 17.

Figure 18�b� shows the orbital correlations in the FM
phase, where strong AO order within the layers coexists with
FM order in the ab planes. As this AO order can best develop
when occupations of �x� and �z� orbitals are nearly equal, the
FM phase is most pronounced around Ez=0. At the same
time, the interlayer coupling �kinetic energy� is much
weaker. This state competes with the G-AF state with larger
occupancy of �x� orbitals.

Finally, the A-AF phase is found mainly for Ez�0 which
enhances the electron density in �z� orbitals and supports the
AF interlayer coupling. The orbital correlations in this phase

FIG. 17. Phase diagram of the undoped bilayer system as ob-
tained in the �Ez ,J�� plane with a �8��8�2 cluster at T=0. The
phases found between FM and G-AF order for two ab planes with
interlayer coupling along the c axis are C-AF and A-AF phases as in
Fig. 1, C�-AF: FM along the c axis and AF within the ab planes,
A�-AF: FM along the a and c axes, and AF along the b axis. The
OO which accompanies the FM and G-AF phase at Ez=0 is also
indicated and shown in Figs. 18�a�–18�c�. Units J� / t and Ez / t cor-
respond to J=0.125t.
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�at Ez=0� are depicted in Fig. 18�c�—one finds the AO order
within the FM planes; i.e., orbital correlations for 
=� /4 are
strongly alternating within the ab planes. Between the
planes—i.e., along the AF bonds in the c direction—the or-
bital correlation is weakly positive, indicating weak FO or-
der.

Although the phase diagram of Fig. 17 was obtained with
small �8��8�2 clusters, we argue that it is representative
of the bilayer system in the thermodynamic limit, as it is
determined by short-range spin and orbital correlations that
follow from local superexchange interactions �charge excita-
tions� on the nearest-neighbor bonds. To support this point of
view we present also the phase diagram found with a smaller
2�2�2 cluster in Fig. 19. One finds that indeed the same
phases occur as in Fig. 17 and their stability regimes are
remarkably close to those of the larger �8��8�2 cluster.

B. Competition between different phases in half-doped bilayer
clusters

Next, we investigate the magnetic and orbital order at half
doping, assuming orbital degeneracy �Ez=0�. Figure 20�a�
shows the energy of various phases of the half-doped bilayer
depending on the value of the t2g superexchange J� in the
absence of intersite Coulomb repulsion �V=0�. Not only for
negative but also for small positive J�, the system is FM,

while for larger positive J��0.02t one finds the G-AF phase.
In between these phases the CE phase, with alternating FM
zigzag chains in the ab planes and AF coupling between
them, has a lower energy. However, finite-size effects are
again important, as discussed in Sec. III B, and thus one
expects that instead the C-AF phase is the actual ground state
in the thermodynamic limit for the present realistic param-
eters. �Similar to the 1D chains used for finite-size consider-

FIG. 18. �Color online� Orbital correlations T
�r�� �27� in the
�01� direction within one ab plane and between the two different
planes of the bilayer, as obtained for the undoped �8��8�2 clus-
ters at Ez=0 and T=0 in the �a� G-AF phase, �b� FM phase, and �c�
A-AF phase. In each case Ti

z operators are defined by different bases
of orthogonal orbitals: 
=0—��x� , �z�� and 
=� /2—��x�+ �z� , �x�
− �z��. Parameters: �a� J�=0.05t; �b� and �c� J�=−0.02t.

FIG. 19. Phase diagram of the undoped 2�2�2 cluster as ob-
tained in the �Ez ,J�� plane at T=0. The phases and parameters are
the same as in the bilayer system �Fig. 17�, with the directions of
FM bonds in A-AF, A�-AF, and C�-AF phases distinguished by the
symmetry-breaking crystal field �Ez �see Eq. �11�
. The C-AF
phase almost vanishes in this case.

FIG. 20. �Color online� Ground-state energy E of various mag-
netic phases for increasing t2g superexchange J� in the half-doped
bilayer �8��8�2 cluster, as obtained at T=0 for �a� V=0 and �b�
V= t. Different phases with coexisting AF and FM bonds are defined
as follows: C-AF, FM in the a direction; A-AF, AF in the c direc-
tions, FM in the ab planes; CE1, FM zigzag chains in the ab planes
with FM interlayer coupling; CE2, FM zigzag chains in the ab
planes with AF interlayer coupling. Parameters: J=0.125t, Ez=0.
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ations instead of 2D clusters, one can use 2D ladderlike clus-
ters instead of 3D clusters, but as the attainable lengths are
here much shorter definite results are difficult to obtain.
However, an energy comparison of the C-AF and CE phases
on 4�2 and 8�2, including 6�2 for the C-AF phase, sug-
gests that the C-AF phase has lower energy.�

We have already shown in the case of a monolayer that
the nearest-neighbor Coulomb repulsion V decreases the
range of stability of the CE phase. Also for the bilayer sys-
tem the CE phase is suppressed by V� t, with weak prefer-
ence for the C-AF phase � Fig. 20�b�
. Namely, one finds that
the energy of the C-AF phase is lower than that of the CE
phase for V= t and J��0.02t. The reason is that the inter-
layer charge stacking �along the c direction� required by the
CE phase costs extra energy now, whereas the C-AF phase
permits alternating charge order in all three directions and
has thus a lower energy-increment due to V. Unlike for the
2D clusters of Sec. III D, the situation here is also similar for
J=0.25t �not shown�. We have verified that both phases here
have very similar energies on an 8�2 ladder, which seems
to indicate that the C-type phase wins in the thermodynamic
limit for J= t /4 as well. For V= t and J��0.02t the A-AF
phase is more stable than the CE phase, which suggests that
this parameter range is relevant for the experimentally mea-
sured LaSr2Mn2O7 sample.11,12

However, isotropic magnetic phases, FM for J��0.02t
and G-AF for J��0.02t, are more stable than anisotropic
phases in the entire range of J� if V= t � Fig. 20�b�
. As for
monolayers, finite V�0 favors the G-AF phase, because its
kinetic energy vanishes already for V=0 and thus the energy
of this phase is not affected by V, while charge order induced
by V in other phases hinders electron motion, and thus their
total energies increase. While the spin-orbital model leads to
the CE phase in a monolayer at J� t /8 or for V�0, lattice
degrees of freedom are apparently needed to stabilize it in
3D perovskites. Furthermore, it should be noted that the bi-
layer compound LaSr2Mn2O7 shows A-AF order,11,12 in con-
trast to the monolayers and the 3D compounds. The origin of
this behavior remains unclear at present, especially as the
orbital correlations are reported to be similar in all cases.10,16

C. Bilayer clusters at large doping

The reference system for large hole doping regime is x
=1 case, when itinerant eg electrons are absent and the mag-
netic order depends exclusively on core spin superexchange
J�—one finds then the G-AF phase for J��0 �while an un-
physical J��0 induces the FM phase�. We have been able to
investigate the highly doped regime because the small num-
ber of electrons leads here to a small Hilbert space which
allows us to perform MC simulations down to x�3/4 on a
�8��8�2 cluster �filled by up to 4 electrons�. MC simula-
tions show that G-AF order for J�=0.05t is strong enough to
persist upon inclusion of one eg electron—i.e., at doping x
=15/16—as demonstrated by spin correlations presented in
Fig. 21�a�. They describe G-type alternating spin order in all
three directions.

Somewhat lower doping x=13/16 �three electrons in the
present cluster� gives a C-AF phase with FM chains lying in

the ab planes and predominant occupation of directional or-
bitals along the FM direction—this state is stabilized by the
double-exchange mechanism. Indeed, the strongly negative
spin correlation at the �1,1� point �see Fig. 21�b�
 is a signa-
ture of the C-AF phase. For distance r=1 along the �0,1�
direction, the signal is approximately zero, because the FM
and AF correlations in the two directions nearly cancel each
other. Finally, the intermediate case of x=0.875 �with two
electrons� does not allow to establish a clear picture of mag-
netic correlations �not shown�, which may be due to strong
competition between the two AF phases. In fact, experiments
show a transition from G-AF to C-AF at doping x�0.9 �see
Ref. 12� which agrees with these results.

V. DISCUSSION AND CONCLUSIONS

The present study clarifies that orbital degrees of freedom
are of crucial importance for the understanding of magnetic
correlations in layered manganites. We treated a realistic
model including intraorbital and interorbital Coulomb inter-
actions and investigated charge, intersite spin, and intersite
orbital correlations in monolayer and bilayer manganites.
The obtained results revealed a close relationship between
orbital and magnetic order which follows the Goodenough-
Kanamori rules at x=0.42 The magnetic phases found in dif-
ferent doping regimes, where double exchange also contrib-
utes, are in accordance with experiments over the whole
doping range 0�x�1, particularly for the monolayer sys-
tems.

FIG. 21. �Color online� Spin correlations �26� as obtained from
MC simulations with a �8��8�2 cluster in the highly doped re-
gime for increasing coordinate r in the ab plane: �a� G-AF phase for
one electron �x=15/16� and �b� C-AF phase for three electrons.
Different symbols and lines indicate different types of neighbors: �
and dashed �blue� line, within the ab planes along either the �01� or
�10� direction; � and solid �red� line, within the ab planes along the
�11� direction; � and dashed �green� line, between the two planes
along the a or b direction; � and solid �black� line, between the two
planes and along the �11� direction in the ab plane. Parameters: J
=0.125t, J�=0.05t, V=Ez=0, �t=100.
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For the undoped monolayers the model predicts either FM
or AF order, but not the E-AF phase, reported previously in
an approach similar to ours but ignoring on-site Coulomb
repulsion between the eg electrons.22,23 In their study it was
stabilized by the kinetic energy and arose mainly for nearly
vanishing electron-phonon coupling23 i.e., in the situation
when lattice degrees of freedom could be neglected. Other-
wise, the model of Ref. 23 is similar to our Hamiltonian
apart from missing Coulomb repulsion. Experimentally,
however, the E-AF phase is only observed43 for the very
strongly JT-distorted HoMnO3 and never in less distorted
compounds. In the FM phase, the OO induced by the orbital
superexchange—i.e., by local Coulomb repulsion—is found
even in the absence of electron-phonon coupling, in contrast
to the model without Coulomb repulsion.23 This shows that
the correct treatment of electron correlation effects due to
large Coulomb repulsion, which suppresses the kinetic en-
ergy in undoped compounds �at x=0�, is crucial for the quali-
tatively correct description in this doping regime.

The experimental situation in doped La1−xSr1+xMnO4
could be modeled with varying crystal fields favoring out-of-
plane �z� orbitals in the undoped system and gradually de-
creasing with x to accelerate the electron transfer from �z� to
�x� orbitals. Indeed, for positive Ez�0.5t the undoped mono-
layers contain then almost only �z� electrons, while the �x�
occupation grows rapidly with doping when Ez decreases in
the present model �see Fig. 15 in Sec. III E�. Indeed, such a
doping dependence of Ez is suggested by recent
experiments.8

Another success of the model is that one observes the CE
phase at half doping with physically realistic parameters for
layered manganites; i.e., it is obtained for small t2g superex-
change J��0.03t, as deduced29 from the analysis of ex-
change constants in LaMnO3. We also investigated the im-
pact of nearest-neighbor Coulomb repulsion and found it to
slightly stabilize the CE phase with respect to the C-AF
phase in monolayers in the relevant regime of J�, but to favor
instead the C-AF phase in bilayer clusters. �In both cases, the
stability region of either the CE or C-AF phase shrinks and
that of the G-AF phase grows when nearest-neighbor Cou-
lomb repulsion is included.� In the CE phase, we found rela-
tively similar electron densities at corner �nc�0.413� and
bridge �nb�0.587� positions in the zigzag FM chains, which
clearly contradicts the localized picture of this phase. Fur-
thermore, we observed that electrons occupy mainly bridge
positions; they are found in the directional 3x2−r2 /3y2−r2

orbitals without crystal field, and in the planar z2−x2 /y2−z2

orbitals for the Ez�0. While this is in contrast to the inter-
pretation of some experiments,51,52 other groups reported a
similar charge distribution.55 It is quite remarkable, however,
that the CE phase could be here explained by a purely elec-
tronic mechanism—one may expect that the oxygen distor-
tions due to the JT effect would further stabilize it. Also, at
large doping , the calculations for monolayer clusters predict
the C-AF phase with predominant occupation of directional
orbitals, in agreement with experimental data for
Nd1−xSr1+xMnO4.60

An interesting variation of spin and orbital correlations
with doping was also found in the bilayer systems. They can
be considered as intermediate between 2D and 3D mangan-

ites, and we obtained the A-AF phase for the realistic param-
eters at x=0, observed in undoped 3D LaMnO3 perovskite
compound. The absence of the CE phase in the bilayer phase
diagram of Ling et al.12 could not be explained, however.
Perhaps the electron transfer from �z� to �x� orbitals at in-
creasing doping is really fast, as suggested by the variation
of intralayer and interlayer exchange constants,15,17 and then
the A-AF phase is stabilized again, yet by different physical
mechanisms. For very large doping x�0.75, however, we
obtained the C-AF and G-AF phases with a transition be-
tween them, as indeed observed in bilayer compounds.12

Summarizing, the present study shows that the internal
frustration of magnetic interactions in doped manganites,
with competing FM/AF terms in the spin superexchange
which coexist with complementary terms in the orbital su-
perexchange, has important consequences. Due to the intri-
cate energy balance between different types of intersite cor-
relations, the magnetic order may be completely switched
over by small changes of microscopic parameters, when the
orbital order which coexists with it switches at the same
time. We find it quite encouraging that these generic features,
as well as the experimentally observed trends in layered
manganites, could be reproduced within the present micro-
scopic model.
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APPENDIX: SLAVE-BOSON APPROACH FOR THE 2D
MODEL OF SPINLESS FERMIONS

It is notoriously difficult to implement electron correlation
effects in the nonmagnetic phases realized in multiband mod-
els. Therefore we consider here a simpler case of a FM
monolayer in the limit of large U→
 to compare the result-
ing charge distribution with the exact diagonalization of fi-
nite 2D clusters. The electronic structure for eg electrons is
then described by the so-called orbital Hubbard model of
Ref. 21.

It was shown recently21 that cubic invariance is obeyed
when the constraint of no double occupancy in the limit of
large U is implemented by slave bosons for electronic states,
using a basis of complex orbitals at each site i,

� + �i =
1
�2

��z�i − i�x�i�, �− �i =
1
�2

��z�i + i�x�i� . �A1�

Then the hopping term Ht
2D, Eq. �14�, and the crystal-field

term Hz, Eq. �11�, may be written as follows �the superex-
change terms vanish in the limit of U→
�:

DAGHOFER et al. PHYSICAL REVIEW B 73, 104451 �2006�

104451-18



Ht
U=
 = −

1

2
t 	

ij��a,b

�ci+
† cj+ + ci−

† cj− + �e−i��ci+
† cj− + e+i��ci−

† cj+�

+ H.c.
 −
1

2
Ez	

i

�ci+
† ci− + ci−

† ci+� , �A2�

where ci±
† are the corresponding creation operators and �a=

+2� /3 and �b=−2� /3 are the phase factors for the bonds

ij� along the a and b axes. Note that the crystal-field term
contains only off-diagonal terms for the complex orbital
stares �A1�. In order to implement rigorously the constraint
at U=
 we replace now the fermion operators as follows:

ci±
† = bi±

† f i�
† ei, �A3�

corresponding to a representation of the local states by

�0�i = ei
†�vac� ,

� + �i = ci+
† �0�i = bi+

† f i−
† �vac� ,

�− �i = ci−
† �0�i = bi−

† f i+
† �vac� , �A4�

where �vac� is a true vacuum, following Ref. 21. In the slave-
boson mean-field approximation we replace the boson opera-
tors by their averages, which leads to the �a priori site-
dependent� hopping renormalization factors qi±. For an
isotropic charge distribution one finds then, from a global
constraint

n+ + n− = 1 − x , �A5�

that the renormalization factors

qi± =
x

1 − 
f i�
† f i��

=
x

1 − 
n±�
= q± �A6�

are the same for all kinetic energy terms. In this way one
arrives at the effective Hamiltonian with renormalized hop-
ping terms

HU=

MF = −

1

2
t 	

ij��a,b

�q+ f̂ i+
† f̂ j+ + q− f̂ i−

† f̂ j− + �q+q−�e−i�� f̂ i+
† f̂ j−

+ e+i�� f̂ i−
† f̂ j+� + H.c.
 −

1

2
Ez	

i

� f̂ i+
† f̂ i− + f̂ i−

† f̂ i+� .

�A7�

By diagonalizing it in reciprocal space and using the inverse
transformation to Eq. �A1�,

�z�i =
1
�2

�� + �i + �− �i�, �x�i =
i

�2
�� + �i − �− �i� , �A8�

we determined the occupations of �x� and �z� orbitals shown
in Fig. 15�b�. A similar analysis used before for the bilayer
system gave the density distribution and the effective ex-
change constants in good agreement with experiment.15
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