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We analyze several thermodynamic properties of the two-dimensional Kondo necklace using finite-
temperature stochastic series expansion. In agreement with previous zero-temperature findings the model is
shown to exhibit a quantum critical point �QCP�, separating an antiferromagnetic from a paramagnetic dimer-
ized state at a critical Kondo exchange-coupling strength Jc�1.4. We evaluate the temperature dependent
uniform and staggered structure factors as well as the uniform and staggered susceptibilities and the local
“impurity” susceptibility close to the QCP as well as in the ordered and quantum disordered phase. The
crossover between the classical, renormalized classical, and quantum critical regime is analyzed as a function
of temperature and Kondo coupling.
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There is growing evidence that unconventional finite tem-
perature properties of many novel materials stem from zero-
temperature phase transitions, i.e., changes of the ground
state symmetry as a function of some control parameter.
Prominent potential candidates to show such quantum phase
transitions are the cuprate superconductors,1,2 quantum
magnets,3,4 and heavy-fermion or dense Kondo systems.5,6 In
the latter, quantum critical points �QCPs� can arise from the
competition between magnetic long-range ordered �LRO�
and renormalized paramagnetic metallic or semimetallic
phases resulting from local Kondo screening. This has been
conjectured early on by Doniach.7 Semimetallic behavior in
nonmagnetic states of Kondo lattice materials is typical for
stoichiometric “Kondo insulators” like CeNi1−xPtxSn which
undergoes a para-to-antiferromagnetic transition at x
�0.2. . .0.3.8,9 A model for such materials is the Kondo-
Hubbard lattice model �KHLM�

HKH = − t �
lm,�

cl�
† cm� + U�

l

nl↑nl↓ + J�
l,��

SPl · SIl �1�

with conduction electrons cl�
�†� of spin SPl, which are corre-

lated via an on-site Coulomb repulsion U, and coupled by
antiferromagnetic �AFM� Kondo exchange to localized spins
SIl at sites l. At half filling on bipartite lattices in D�2
dimensions and in the strong-coupling limit U / t�1 the
KHLM shows AFM LRO if the conduction-electron super-
exchange j� t2 /U dominates the Kondo scale TK� t exp
��−1/�J� where � refers to the density of states �DOS�.10

Kondo screening will prevail if TK / j�1. On 2D square lat-
tices the critical coupling jc�U / t� has been determined at
temperature T=0 using projector QMC �Ref. 11� and bond-
operator methods.12 In the strong coupling limit and at half
filling Eq. �1� simplifies to the SU �2�-symmetric so-called
Kondo necklace �SKN�

HSKN = j�
lm

SPl · SPm + J�
l

SPl · SIl �2�

with j�1 hereafter. In this work we will focus on the two-
dimensional �2D� square lattice, where at T=0 the SKN has
been investigated by bond-operator methods, series expan-

sion, and exact diagonalization.13–15 These studies located a
QCP at Jc�1.370. . .1.408 separating AFM LRO from a
gapped spin-dimer phase. The latter can be viewed as the
strong-coupling analog of the Kondo-screened paramagnetic
state of the KHLM.

While the ground state properties of the 2D SKN have
been studied rather extensively, thermodynamic and finite
temperature critical properties of the SKN remain an open
issue. Therefore, the aim of this work is to shed light on the
2D SKN at finite temperatures using a quantum Monte Carlo
�QMC� approach. To this end we employ the stochastic se-
ries expansion �SSE� with loop updates introduced by Sand-
vik and Syljuasen in Refs. 16 and 17 to which we refer the
reader for details on this approach.

We start by discussing the longitudinal staggered structure
factor

Sn�Q� = ��mnQ
z �2� , �3�

where mnQ
z =�lSnl

z exp�iQ ·rl� /Nn is the staggered magnetiza-
tion with Q= �� ,� ,��. mnQ

z selects between n= P , I ,A, for
which rl runs over the “conduction electron plane” for n
= P, the “Kondo sites” for n= I, and all sites for n=A. Figure
1 shows the squared staggered moment MQ

2 =3Sn�Q� vs J at
low temperatures. The system sizes NA are L�L�2�N
with periodic boundary conditions �PBC� in the planar direc-
tions and L=24 and 34. In all three panels MQ

2 is finite below
a critical value of J=Jc and drops to approximately zero for
J	Jc. We identify Jc with the QCP and expect AFM LRO
for J
Jc in the thermodynamic limit at T=0. For J	Jc we
find no other transitions, i.e., the systems connect adiabati-
cally to the limit of J=�. Therefore, it is dimerized. At fixed
N, MQ

2 will saturate for T→0 due to finite size gaps. For L
=24 this is the case in Fig. 1�b� for J�1. Figure 1 allows no
conclusion about the magnitude of the T=0 order parameter,
which requires finite size scaling analysis.18 The critical cou-
pling, however, can be extracted efficiently from these re-
sults since Jc is almost invariant to increasing N or lowering
T relative to the parameters in Fig. 1. To determine Jc we fit
MQ

2 to a power law MQ
2 �c	Jc−J

 in its region of negative

curvature and for J�1. This procedure depends only little on
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the interval of J fitted to. The resulting scatter of Jc is taken
to be a measure of the error and is displayed in Figs.
1�a�–1�c�. We find that Jc�1.41�2�. This agrees with Jc

�1.41�1.39� from T=0 series expansion13,14 and is also
close to Jc�1.37 from bond-operator Brückner theory.14,19 A
critical value of Jc�1.4�4t2 /U� is also consistent with
projector-QMC at T=0 for the KHLM.11

For small J, Sn�Q� remains strongly temperature depen-
dent down to T�1 which is due to the near decoupling of
the I sites from the planar sites leading to a Curie-like con-
tribution which is cutoff only at very low T. This is visible
already at J�0.6, by comparing SI�Q� in panels �a� and �b�
of Fig. 1.

In addition to Sn�Q� Fig. 1 includes results for the longi-
tudinal staggered susceptibility

�n�Q� = �
0

�

d��mnQ
z ���mnQ

z � �4�

for n=A which have been encapsulated in the ratio

R =
SA�Q�

T�A�Q�
. �5�

This ratio relates the analysis of �A�Q� to that of the AFM
nonlinear � model �NL�M�.20–22 From there it is expected
that in the classical high-T, as well as in the low-T renormal-
ized classical regime R=1, while R�1 in the quantum criti-
cal regime. While this is consistent with R�J� in Fig. 1, we
will clarify later that the deviations of R from unity for J
�Jc are strongly affected by finite size effects.

Next we discuss the uniform susceptibility

�u = ��m2� , �6�

where m=�lSAl
z /NA is the total magnetization. In contrast to

Eq. �4�, the uniform susceptibility reduces to a simple expec-
tation value, since 	HSKN ,m
=0. Figure 2 is a log-log plot of
the dependence of �u on temperature over more than two
decades 0.05�T�10 and for 0.5�J�2 with system sizes
L=24, 50, and 100. For T�0.1 finite-size effects are negli-

gible if L�24. For 0.05�T�0.1 finite-size effects, albeit
small, have been considered for J in the vicinity of the QCP.
As can be seen from the near identity of results with L=50
and 100 at J=1.40 in Fig. 2, it is sufficient to choose L
�50 to reach the thermodynamic limit for all temperatures
studied. For T�2 the uniform susceptibility turns Curie-like,
independent of J. For J	Jc the spin spectrum develops a
gap � which implies a low-temperature behavior �u�exp
��−���. This is consistent with Fig. 2, where to within sta-
tistical error �u�T=0.05,J=2�=0. For 0
J
Jc AFM LRO
occurs at T=0, which agrees with the saturation of �u�T
→0�=�u

0 shown in the figure. We note that as J vanishes �u
0

will diverge due to the Curie contribution from the impurity
spins.

At the QCP we expect scaling of the uniform susceptibil-
ity. Indeed, for J�Jc, and at low temperatures �u follows
nearly straight lines in Fig. 2. A close-up of this low-T re-
gion, shown in Fig. 3, evidences a weak curvature of �u�T�
independent of the system size. These results allow excellent

FIG. 1. Solid: staggered structure factor Sn�Q� vs J close to the
QCP at low-temperatures and for two system sizes: �a� T=0.05, L
=24, �b� T=0.01, L=24, and �c� T=0.05, L=34. Dashed: fits of
SP�Q� to c	Jc−J

 for J�1 with Jc indicated per panel. The fits
depart visibly from SP�Q� only close to J�1.4. Dashed-dotted:
ratio of total staggered structure factor to susceptibility times T. If
not indicated, statistical errors are less than the solid-circle marker
size.

FIG. 2. Uniform susceptibility �u vs temperature for 0.05�T
�10 and 0.5�J�2.0 at L=24 �solid� and for 1.39�J�1.42 at
L=50 �100� 	dashed�dashed-dotted�
. Statistical errors are less than
the solid-circle marker size. The difference between L=50 and 100
at J=1.40 remains below the statistical error for all T depicted.
Legends label plots from top to bottom.

FIG. 3. Low-temperature uniform susceptibility �u�T� close to
the QCP for J=1.39, 1.40, and 1.42 �from top to bottom�. Dotted
curves: fits of �u�T� to a+bT+cT2. System sizes L=24 �solid�, 50
�dashed�, 100 �dashed-dotted� are indicated for T�0.1. Statistical
errors are less than the solid circle marker size. For T�0.11 finite
size effects are below statistical error and results for J
=1.40�1.39,1.42� refer to L=100�24� only. The difference between
L=50 and 100 at J=1.40 remains below the statistical error for all
T depicted.
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fits to a scale-free behavior of the form �u�a+bTc with c
�1.25. However, this exponent differs from that obtained in
the NL�M, i.e., c=1.20,21 Assuming the SKN to be of the
same universality class than the NL�M we are forced to treat
the curvature in Fig. 3 as deviations from scaling present
already at rather low temperature. As is shown in Fig. 3, a
reasonable description of the QMC results can be obtained
including a second order nonuniversal contribution. This be-
havior should be contrasted against the AFM bilayer Heisen-
berg model, where critical linear T scaling has been found in
a comparable temperature range.23 At the QCP �u vanishes
for T→0 due to the opening of the spin gap and for J	Jc
exponential behavior should replace the scaling. Vanishing of
the offset a at Jc=1.40�1� in Fig. 3 is consistent with Jc as
from the static structure factor.

For the sake of consistency it is interesting to consider the
uniform susceptibility �u also as a function of J in the low-
temperature limit T�J. On approaching the QCP from the
LRO side one expects �u to vanish due to the incipient spin
gap. The corresponding QMC results are shown in Fig. 4.
Extracting Jc from this figure is less straightforward, both
due to the sizeable temperature variation and to the lack of a
scaling prescription for �u as J→Jc. Nevertheless, as can be
seen in the inset, a value of J�1.4 for the QCP is consistent
with the suppression of �u.

Now we turn to the individual impurity-spins longitudinal
susceptibility

�loc = �
0

�

d��T�SIl
z ���SIl

z � �7�

where l refers to a particular site, say l=0 within the Kondo
spin layer I. Figure 5 shows a log-log plot of �loc vs T for
0.05�T�10 and 0.5�J�2. At J=0�loc obeys Curie’s law.
For J�0 but J
Jc, we expect �loc to saturate at some cross-
over temperature T��J due to the coupling of the impurity
spin to the planar moments within the AFM LRO state. In
agreement with this, Fig. 5 signals a departure from �loc

�T−1 for T�0.2 at J=0.5, i.e., in the AFM LRO state. Simi-

larly, for J	Jc we expect a Pauli-like saturation of �loc for
T�T� with T��J due to the local dimer formation between
the impurity spins and the planar sites. This can also be seen
in Fig. 5 for J=2. The interesting point of Fig. 5, however, is
that it suggests a crossover from the high-temperature Curie
behavior to a region of power-law behavior �loc�T−� with an
exponent � different from unity in the vicinity of the QCP.
Future QMC analysis should focus on additional data in the
thermodynamic limit at T
0.05 to elaborate on this obser-
vation. From Fig. 5 we extract ��0.20�5� at J=1.40. The
error on this exponent is rather large, due to the error in
determining the QCP and due to the temperature range of
only one decade to fit to. Regarding finite-site effects, the
situation for �loc is similar to that for �u. As shown in the
inset of Fig. 5, in the vicinity of the QCP the thermodynamic
limit is reached for L�24�50� if T�0.1�0.05�. Similar ef-
fects are expected at the lowest temperature T=0.05 for J
=0.5 and 2.0 and have not been considered.

Finally, we analyze the temperature dependence of the
ratio of the total staggered structure factor to the total stag-
gered susceptibility of Eq. �5�. This is shown in Fig. 6 for
0.05�T�10 and 0.5�J�2. Nonlinear error propagation of
the QMC data through Eq. �5� leads to substantially larger
statistical errors on R as compared to the remaining quanti-
ties evaluated in this work. Several properties of R can be
realized based on general grounds. First, for T�max�J ,1
,
i.e., in the classical regime, �A�q�=SA�q� /T for any wave
vector q and therefore R→1. This behavior of R is obeyed
for all values of J displayed in Fig. 6. Next, we note that the
zero-temperature limit of the ratio SA�Q� /�A�Q� will be a
T-independent constant whenever the system has no LRO at
the wave vector Q and is gapped. This is true for any finite
system, where SA�Q� and �A�Q� will both saturate at finite
values as T→0. It is also true in the thermodynamic limit

FIG. 4. Uniform susceptibility �u vs J on approaching the QCP
for two temperatures T=0.05�0.01� 	solid�dashed� line
 at fixed L
=24, and comparing two system sizes L=24�34� 	solid�dashed-
dotted� line
 at fixed T=0.05. Finite size effects are exceedingly
small and are shown in the inset for better visibility. Statistical
errors are less than the solid-circle marker size.

FIG. 5. Impurity susceptibility �loc vs temperature. Solid line
with solid circle markers: L=24 for 0.05�T�10 and 0.5�J
�2.0. Dashed line with solid circle markers: L=50 for 0.05�T
�0.1 and 1.39�J�1.42. Inset: low-T region including additional
results for L=40 at J=1.40 �dashed-dotted�. Legends refer to lines
from top to bottom. Statistical errors are less than the solid-circle
marker size in the main panel and are indicated by bars in the inset.
In the quantum critical regime �loc displays a cross-over region with
power-law behavior �loc�cT−� with ��0.20�5�.
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where SA�Q� and �A�Q� will both be exponentially activated
to leading order. Therefore, R�1/T in the thermodynamic
limit in the quantum disordered regime, i.e., for J	Jc, which
is consistent with the increase of R in Fig. 6 for J=2. In
addition to this, R�1/T for any other value of J below a
characteristic temperature set by finite size gaps. This is par-

ticularly obvious for J�Jc where strong finite size effects
occur for T
0.1. This effect also sets the magnitude of R for
J�Jc in Fig. 1. Finally, in the AFM LRO phase the system
allows for a classical description in terms of the order pa-
rameter modes leading to a renormalized classical regime for
which R�T→0�=1 again.20,21 This is consistent with the be-
havior for J=0.5 in Fig. 6 and with R in Fig. 1. From a
comparison of R at fixed T and identical J in panels �a� and
�c� of the latter figure one can also deduce that the small
difference between R and unity in the renormalized classical
regime decreases upon increase of L. Lowering the tempera-
ture from the classical to the renormalized classical regime,
one crosses the quantum critical regime in which R	1 due
to quantum fluctuations.21,22 For J
Jc this regime has a fi-
nite extend in temperature only. Close to the QCP, however,
i.e., for J=1.4 and 1.39, Fig. 6 strongly suggests that R ap-
proaches a temperature independent constant R�1.10�1� as
T→0. Analysis of the NL�M has resulted in R=1.09.21,22 In
turn, the quantum critical regime starts at T�1 and extends
down to T=0 at the QCP. Unfortunately, in this regime, R is
is very sensitive to the system size. This will be the issue of
future QMC studies.18
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FIG. 6. Solid �dashed� 	dashed-dotted
: ratio R of the total stag-
gered structure factor and susceptibility vs temperature for 0.5�J
�2.0 and L=24�50� 	100
. In the classical �renormalized classical�
regime, i.e., T→� �T→0, J
Jc�, R is expected to be 1. In the
gapped state R�1/T as T→0. In the quantum critical regime,
roughly sketched by the shaded region, R differs from unity, how-
ever approaching a constant as T→0. Size of statistical errors is
given by vertical bars.
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