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Molecular dynamics simulations of pure silica, sodium silicate, and soda-lime silicate glasses have been
carried out using a developed potential that includes polarization effects through the shell model �SM�. The
potential has been validated using available experimental and ab initio structural data, such as density, radial
and angular distributions, coordination environments, and network connectivity. In addition, Car-Parrinello
molecular dynamics simulations of the soda-lime silicate glass have been carried out to obtain reference data
for this system. The performances of the SM and of a rigid-ion potential have been compared with experi-
mental and ab initio data, showing that the inclusion of polarization effects improves the description of the
intertetrahedral structure and of the local environment surrounding modifier Na and Ca cations; significant
improvements are also obtained in the Qn distribution of the sodium silicate glass. This shows that the
inclusion of polarization effects in the potential, even at the approximate level of the shell model, is essential
for a reliable modeling of modified bulk glasses. Moreover, the accurate reproduction of the glass density and
the direct representation of polarization effects are important requisites that should enable the application of the
potential to molecular dynamics simulations of modified glass surfaces.
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I. INTRODUCTION

Silicate glasses modified with the addition of sodium and
calcium oxide have important commercial applications, for
example as bioactive materials in medical applications.1 Ad-
vanced experimental techniques,2–6 such as neutron diffrac-
tion, nuclear magnetic resonance �NMR�, x-ray absorption
fine structure �XAFS�, infrared and Raman spectroscopy, as
well as computer simulations7–14 have provided detailed in-
formation on the structure of pure silica and sodium silicate
glasses, although some aspects of the latter compounds are
still controversial, especially concerning the medium-range
structure. On the other hand, not as many studies have con-
cerned soda-lime-silicate glasses, probably due to their more
complex nature. The structure of pure silica glasses is built
up of corner-sharing SiO4 tetrahedra, where bridging oxy-
gens �BO� link two adjacent Si atoms. In modified silicate
glasses, the modifier cations depolymerize the extended net-
work of SiO4 tetrahedra, breaking Si-O-Si links and forming
nonbridging oxygens �NBO� bonded to only one silicon
atom. The structure of the modified glasses is then deter-
mined by the balance of several interactions, involving par-
tially covalent Si-BO and Si-NBO bonds plus van der Waals
and electrostatic forces between the ions. Classical molecular
dynamics �MD� simulations have been successfully used to
model binary silicate glasses,7,9,11 but it is hard to obtain an
accurate description of complex multicomponent systems,
such as soda-lime-silicate glasses, using standard interatomic
potentials. In principle, an essential ingredient of a reliable
empirical potential for these systems should be the large po-
larizability of oxygen ions: this factor should be explicitly
taken into account in order to model with good accuracy the
diverse chemical environments and interactions present in
the glasses, such as the peculiar mixture of covalent and
ionic contributions in the Si-O bonds. In general, the inclu-

sion of polarization effects, especially for systems with po-
larizable anions, can improve structural and dynamical
properties,15 and the representation of defects and varying
coordination geometries16–19 is also improved: this feature of
the potential is essential to model the glass surfaces and the
processes occurring there, such as dissolution and growth
processes, which play a key role, for example, in medical
applications.1

Ideally, the best computational approach would involve
ab initio MD simulations, for example Car-Parrinello20 mo-
lecular dynamics �CPMD�, where the ionic forces are calcu-
lated on the fly during the simulation from an accurate treat-
ment of the electronic structure using density functional
theory: thus many-body and polarization effects are explic-
itly accounted for. However, even with the large computa-
tional resources available today, the size and time scales
which can be probed by CPMD are usually around 100–200
atoms and 10–50 ps. Within these limits, recent CPMD
simulations21–25 have provided very accurate data on the lo-
cal structure and electronic properties of silicate glasses, but
in order to probe longer time scales and examine the struc-
ture in and beyond the medium range, classical MD is still
the only available approach, provided that a reliable potential
can be developed. CPMD simulations are nonetheless very
useful in this context, as they provide ab initio data on the
�short-range� local structure of glasses, which are difficult to
obtain experimentally, to help the development and assess-
ment of new empirical potentials.

In the polarizable-ion model �PIM� developed by Wilson
and Madden,26 polarization effects in classical MD simula-
tions of ionic systems are accurately represented by the in-
clusion of ion dipoles as additional degrees of freedom in an
extended Lagrangian, and the simultaneous propagation of
these additional variables together with the ionic positions is
analogous to the Car-Parrinello method. The PIM approach
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was successfully applied to the simulation of bulk and sur-
face properties of amorphous SiO2,27,28 but no application to
multicomponent glasses has been reported. Another simple
and consistent way to go beyond rigid-ion models and ap-
proximately include polarization effects in an empirical po-
tential is by the shell model of Dick and Overhauser,29 which
can be efficiently implemented in classical MD simula-
tions.30 Although SM potentials have often been applied to
model crystalline oxide materials, including SiO2,31–34 no
previous application to glasses has been reported. The more
rigorous description of ionic polarization in the PIM method
makes it in principle more generally applicable compared to
the shell model; the main advantage of a shell-model ap-
proach in the specific subject examined in the present work
is the relatively small effort needed to obtain and include the
additional interactions present in multicomponent glasses, al-
lowing a straightforward application of an established shell-
model potential for SiO2 �see below�.

In this paper, we describe the development of a shell-
model potential for modified Na/Ca silicate glasses, and its
application to MD simulations of pure silica, sodium silicate,
and soda-lime-silicate glasses. An extensive comparison is
made with experimental results and data from CPMD simu-
lations; we have performed CPMD simulations on the soda-
lime silicate glass, which complement existing CPMD re-
sults on the pure silica and sodium silicate glasses. In

addition, the direct comparison with structural data obtained
from a rigid-ion potential allows us to assess the effects of
the approximate inclusion of polarization through the shell
model.

II. COMPUTATIONAL DETAILS

A. Classical molecular dynamics simulations

The force field developed in this work is based on the
interatomic potential derived by Sanders et al. for quartz,34

which employs full ionic charges. The polarizability of the
oxygen ions is incorporated through the shell model:29 the
total charge Z of the ion is split between a core �of charge
Z-Y� and a shell �of charge Y�, which are coupled by a har-
monic spring kcs,

Ecs�r� =
1

2
kcsr

2. �1�

Short-range forces only act on the shells, whereas Coulomb
forces act on both shells and cores. The shells are then po-
larized by the field of the surrounding ions and in this way
the local environment of each ion affects its charge distribu-
tion: with the further inclusion of three-body interactions
�see below�, partial covalence effects are approximately ac-
counted for.

MD simulations were carried out with the DL�POLY code,35

in which the core-shell dynamics is controlled by the adia-
batic shell method.30 In this approach, a small fraction of the
core mass �0.2 a.u. for oxygen in this work� is assigned to
the shells, and their motion, controlled by conventional equa-
tions of motion, follows the ionic motion adiabatically. Start-
ing from a configuration where all the shells have been re-
laxed, with no vibrational energy in the core-shell springs,
the small mass allows shells to respond quickly to the chang-
ing environment so that �almost� no net force acts on them:
this is a necessary condition in order to calculate accurate
forces on the ion cores. Ideally, due to the low shell mass, no
energy exchange between the core-shell spring and the other

TABLE I. Shell-model parameters.

Buckingham potential

A �eV� � �Å� C �eV Å6�

Os-Os 22764.30 0.14900 27.88

Si-Os 1283.91 0.320520 10.661580

Na-Os 56465.3453 0.193931 0.0

Ca-Os 2152.3566 0.309227 0.099440

Three-body harmonic potential

k3b

�eV rad−2�
�0

�deg�
�

�Å�
rmax

�Å�

Os-Si-Os

Raw �SM0� 2.097 109.47 1.9

Screened �SM1� 100.0 109.47 1.0 2.5

Core-shell harmonic potential

kcs �eV Å−2� Y �e�

Oc-Os 74.92 −2.8482

TABLE II. Optimized cell parameters for Na2Ca�SiO3�2 and
Na2Ca2�SiO3�3; experimental values are shown in parentheses.

a �Å� c �Å� �

Na2Ca�SiO3�2 10.487 �10.500� 13.172 �13.184� 120°

Na2Ca2�SiO3�3 10.514 �10.464� 13.149 �13.176� 120°

TABLE III. Teter potential parameters.

Buckingham potential b /rn

A �eV� � �Å� C �eV Å6� b �eV� n

O1.2−-O1.2− 2029.22040 0.343645 192.28 44.67287 3.64673

O1.2−-Si2.4 13702.9050 0.193817 54.681 25.503 4.79

O1.2−-Na0.6 4383.75550 0.243838 30.700 43.4528 3.598

O1.2−-Ca1.2 7747.18340 0.252623 93.109 67.0644 3.42435
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degrees of freedom should occur as the frequency of the
spring is well above the ionic frequencies. However, a slow
leakage usually occurs and the “internal” temperature of the
core-shell vibration tends to increase, although at a very low
rate.30 In order to avoid a significant heating of the core-shell
degree of freedom over relatively long time scales �above
100 ps�, in the present simulations a frictional damping term
was added to the core-shell spring force, and the correspond-
ing energy loss was balanced by controlling the system tem-
perature through a Berendsen thermostat; no significant drift
in the total energy resulted, with rms fluctuations of less than
0.005%. Cubic periodic boundary conditions are used and
the short-range interactions were cut off at 8 Å, whereas the
Ewald method36 was used for summation of the long-range
Coulomb interactions with a real-space cutoff of 12 Å; the
time step was set to 0.2 fs.

The interaction pair potential between ions i and j con-
sists of a short-range Buckingham term �representing repul-
sive and dispersive interactions� plus the long-range electro-
static contribution,

Eij�r� = Aije
−r/�ij − Cij/r

6 + qiqj/r , �2�

where Aij, �ij, and Cij are the Buckingham potential param-
eters, and qi is the charge of ion i. Coulombic forces act
between all species, whereas the Buckingham potential is

applied to the pair interactions involving oxygen: it is cus-
tomary in most force fields for SiO2 to exclude short-range
forces between Si and other cations, since Si ions are
shielded by the oxygen atoms surrounding them. In addition
to these two-body terms, in the Sanders potential three-body
forces are included to control the O-Si-O angle through a
harmonic potential,

EOSiO��� =
1

2
k3b�� − �0�2, �3�

where �0 is the tetrahedral angle �109.47°� and k3b is the
bending force constant. The Sanders potential �or potentials
derived from it� has been successfully used in modeling
complex inorganic materials, including zeolites and alum-
inophosphates.37–41

For the modified Na and Ca silicate glasses, several pre-
viously published potentials for Na-O and Ca-O interactions,
based on the Sanders potential, were tested, but none of them
were found to be completely reliable in reproducing the main
structural features of sodium- and soda-lime silicate glasses.
Therefore we decided to obtain a new set of potential param-
eters by fitting to the structure of Na2Ca�SiO3�2 �Ref. 42� and
Na2Ca2�SiO3�3.43 The first is the only crystal phase found
upon crystallization of 25Na2O-25CaO-50SiO2 glass,44 and
the main crystal phase identified upon crystallization of a
typical Bioglass composition,45 whereas the latter is the crys-
tal phase in bioactive P2O5-Na2O-CaO-SiO2 glass ceram-
ics.46 These structures consist of approximately circular six-
membered rings of silicate tetrahedra, connected by Na and
Ca ions. The GULP code47 was employed to derive the poten-
tial parameters, with the parameters for O-O and Si-O inter-
actions held fixed at the values of the original Sanders po-
tential. The derived potential parameters are listed in Table I,
whereas Table II shows the optimized cell parameters ob-
tained with this potential model.

The rigid-ion, partial charge potential of Teter,48 slightly
modified to improve the silicon coordination number,49 was
used both to obtain the initial glass structures for the simu-
lations with the shell-model potential, and to provide struc-
tural data for comparison. The Teter potential parameters,
listed in Table III, were obtained by fitting to a large number
of crystal structures. Recent work48–51 has employed the
Teter potential to model pure silica and sodium silicate
glasses, showing that the quality of its reproduction of struc-
tural properties is very close to the BKS potential52 �which is
probably the most used partial-charge potential for glass
simulations�, but with an improved silicon coordination
number. Due to the use of partial ionic charges, a three-body
angular term is not needed in the Teter potential, and the
short-range potential is in the Buckingham form. In order to
avoid problems related to the divergence of the power term
in the Buckingham potential at short distances, in the high-
temperature simulations the Buckingham potential was
smoothly switched to an exponential B /rn repulsive term for
short r.53 For the runs with the Teter potential, a longer time
step �2 fs� could be used, and the same cutoffs as for the
shell model �SM� runs were employed.

FIG. 1. �Color online� Snapshots of equilibrated glass structures:
�a� SiO2; �b� 30Na2O-70SiO2; �c� 10Na2O-15CaO-75SiO2. Si and
O atoms are represented as light and dark sticks, respectively,
whereas Na and Ca atoms are represented as dark and light spheres.
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B. Glass preparation

The three systems studied here are pure silica glass �N
=1500 atoms�, and two modifications: 30%Na2O and
10%Na2O-15%CaO �N=1500 and 1425 atoms, respec-
tively�. Snapshots of the three structures are shown in Fig. 1.
The glass preparation procedure was as follows: the initial
configuration was generated by randomly inserting the ap-
propriate number of ions into a cubic simulation cell whose
volume was chosen to reproduce the experimental density of
the glass at room temperature. Unphysical overlaps were
avoided by defining distances of closest approach between
each pair of atomic species, 10–15 % shorter than their op-
timal distance �that is, the typical distance observed in the
crystalline silicates�; a new random particle i was inserted in
the box only if all its Rij interatomic distances were larger
than the predefined cutoffs. Using the Teter potential, the
system was then heated to 6000 K and kept at this tempera-
ture for 100 ps. Then, the liquid was continuously cooled to
300 K, at a 10 K/ps cooling rate, in 570 ps. A 100 ps equili-
bration run in the NVT ensemble followed, before the final
production run of 200 ps. The final configuration of the Teter
run was used to start the shell-model run: the shells were
initially relaxed through a short minimization run, then a

100 ps run in the NVT ensemble at T=300 K was carried
out, where the last 80 ps were considered for structural
analysis.

The use of the Teter potential to generate the initial glass
structure deserves some comments. The overall simulation
time required to prepare a glass sample is about 1 ns in each
case, and we found it more convenient to use the Teter po-
tential in this phase: the need of a shorter time step and the
larger number of species in the simulation box for the shell
model require a much longer CPU time �by about an order of
magnitude� for the same task. Switching to the SM allows
for local relaxation of the glass structure at short and me-
dium range, but not for longer-range relaxations involving
significant global changes in the network connectivity. For
instance, the initial Qn-species distribution54 generated with
the Teter potential is largely maintained in the SM simula-
tions. There are some advantages in using exactly the same
initial structure when comparing the performances of rigid-
ion and SM potentials: for instance, any difference in the
short-range environment of each ion will be associated with
the different potential and not to a �possibly� different glass
sample. The effect of using the SM also for generating the
glass structure was checked in the case of the sodium silicate
glass, for which experimental data are available: the Qn dis-
tribution of the SM-made sodium silicate glass turns out to
be significantly closer to the experiment than the correspond-
ing Teter-made glass �see also the discussion in Sec. III D 2�.
The glass preparation procedure using the SM potential was
the same as with the Teter potential: �i� 100 ps high-T trajec-
tory, started from a random initial structure; �ii� cooling at
10 K/ps to 300 K; �iii� 100 ps equilibration followed by a
200 ps production run. In the high-temperature simulations,

TABLE IV. SiO2 glass structure. Distances in Å, angles in degrees.

SM0 SM1 T CP-LDAa CP-GGAa Expt.

� �g cm−3� 2.330
�+5.9% �

2.327
�+5.8% �

2.279
�+3.6% �

2.37-2.45
�+7.7–11% �

2.24-2.33
�+1.8–5.9% �

2.20

rSi-O 1.610 1.611 1.615 1.62 1.63 1.610b

rO-O 2.63 2.63 2.61 2.65 2.67 2.63c

rSi-Si 3.11 3.11 3.16 3.10 3.105 3.08c

�O-Si-O 109.2�13� 109.3�12� 108.4�13� 109.5�12� 109.5�13� 109.7�10.6�2

�Si-O-Si 145�36� 145�38� 156�35� 149�33�,
145�31�g

147�33� 144�38�,d 147�35�,e
142–151f

CNSi-O
h 4 4 3.99

CNO-Si 2 2 2

CNO-O 6.25 6.25 6.07

CNSi-Si 4.02 4 4

Rx �%� 5.4% 5.2% 6.1%

aReference 22.
bReference 63.
cReference 59.
dReference 64.
eReference 65.
fReference 66.
gReference 23.
hCoordination number, cutoffs: O-O 3 Å; Si-O 2 Å; Si-Si 3.4 Å.

TABLE V. % Qn distributions and coordination: SiO2 glass.

Q2 Q3 Q4 Q5 O1 O2 O3 Si3 Si4 Si5

SM0 0 0.5 99.1 0.4 0.01 99.98 0.01 0.4 99.2 0.4

SM1 0 0.8 99.2 0 0.2 99.8 0 0.4 99.6 0

Teter 0.2 2.4 97.4 0 0.5 99.3 0.2 0.6 99.4 0

TILOCCA, de LEEUW, AND CORMACK PHYSICAL REVIEW B 73, 104209 �2006�

104209-4



the Si-O and O-O Buckingham potentials were modified at
very short distances in the same way as was done for the
Teter glass generation.

C. Car-Parrinello simulations

Accurate structural data on the soda-lime silicate glass
were obtained from CPMD, which has already been shown
to be reliable in modeling glassy systems.21–25 The high ac-
curacy obtained from the explicit treatment of the electronic
structure is paid for in terms of limited system size and tra-
jectory length. The size of the system and computational
procedure were similar to those in previous CPMD
studies:22,24,25 114 atoms of a 10Na2O-15CaO-75SiO2 com-
position were placed randomly in a periodic cubic box of
side 11.655 Å, corresponding to the experimental density of
2.503 g cm−3. Using the Teter potential, the system was
heated to 7000 K for 40 ps and then continuously cooled to
300 K in 670 ps, at 10 K/ps nominal cooling rate. Finally, a
200 ps NVT run and 200 ps NVE run were carried out; these
long times were used to ensure that the relatively small sys-
tem achieved full equilibration. The final structure was then
used as a starting point of the CPMD simulation, with initial
velocities set to zero in order to limit the initial heating of the
system due to the switch to the ab initio description.24

CPMD runs were carried out using the CP code included in
the Quantum-ESPRESSO package,55 using the PBE exchange-
correlation functional56 and ultrasoft pseudopotentials57 for
all atomic species, explicitly including semicore shells as
valence states for Na and Ca. The accuracy and transferabil-
ity of the pseudopotentials were extensively tested by com-
paring the optimized structure of several molecules and crys-
tals containing Na, Ca, Si, and O atoms with the corre-
sponding experimental values, as well as with the corre-
sponding theoretical values calculated with similar approxi-
mations. Plane-wave basis set cutoffs for the smooth part of
the wave functions and the augmented density were 30 and
200 Ry, respectively, with which convergence was reached
for the test calculations discussed above. k sampling was
restricted to the � point. The time step and fictitious elec-
tronic mass were set to 0.1694 fs and 700 a.u., respectively,

and a trajectory of 70000 steps �11.8 ps� was carried out, of
which the last 50000 steps were used for statistical analysis.
After the initial quenching, the temperature of the CPMD run
spontaneously increased to �300 K in 30 fs, and averaged to
295 K over the whole trajectory.

III. RESULTS AND DISCUSSION

A. Silicon coordination

The SM led to a significant fraction �up to 5%� of
fivefold-coordinated Si atoms �Si5� when the modifier cat-
ions are included �simulations labeled SM0 in Tables VII and
IX�. Note that in the initial configuration, generated with the
modified Teter potential, no such defects were present, but
they are irreversibly formed soon after the potential is
switched to the shell model. Although the appearance of
these defects had already been observed in simulations using
other potentials,58 experimentally they are only found at rel-
evant concentrations in alkali-metal glasses prepared under
high pressure.59 We considered the possibility that constrain-
ing the density to the experimental value in our simulations
could result in high pressures imposed on the glasses, in turn
leading to the formation of defects. However, a similar per-
centage of Si5 defects was formed in test runs carried out at
the theoretical density, that is, with the cell volume relaxed to
the average volume of a constant-pressure �isotropic NPT�
run. This occurrence thus ruled out the above hypothesis,
pointing instead to an intrinsic limitation of the SM potential
in reproducing the silicon coordination in the presence of
modifier cations. The geometry of a Si5 defect is a trigonal
bipyramid, characterized by �90° O-Si-O angles, which ap-
pear as a corresponding tail in the O-Si-O bond-angle distri-
bution �BAD�.58 In order to bias our model against the for-
mation of these defects, we increased the value of the O-Si-O
bending force constant, in such a way as to make angles
around 90° energetically unfavorable. Moreover, we replaced
the raw harmonic form of the three-body potential with a
screened harmonic form,

EOSiO���� =
1

2
k3b�� − �0�2 exp�− �rSi-O/� + rSi-O�/��� , �4�

where rSi-O and rSi-O� represent the distance between the cen-

FIG. 2. Radial distribution functions for pure silica glass, SM1
potential.

FIG. 3. Total distribution function �broadened using the experi-
mental Qmax=45.2 Å−1� obtained from the MD simulation with
SM1 potential �dashed line�, compared with the neutron diffraction
data �full line�.
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tral Si atom and the two neighbor oxygens O and O�, respec-
tively. The screening exponential factor damps three-body
forces where the O-Si-O angle involves long Si-O distances.
This enables a smoother cutoff of the angular term, com-
pared to the raw harmonic potential: using the latter, the
maximum distance Rmax at which the three-body term acts
had to be reduced to 1.9 Å in order to avoid instabilities in
the dynamics when a pair of atoms crossed the Rmax cutoff.
On the other hand, the use of the damping term allows us to
extend the cutoff Si-O distance to 2.5 Å without any prob-
lems, as the angular forces are smoothly turned on.60 Using
�=1 Å, taking into account the screening exponential, a
value of k3b=100 eV rad−2 roughly corresponds to doubling
the original bending constant for typical Si-O distances of

1.6 Å. With these parameters �simulations denoted as SM1
hereafter�, significant improvements in the coordination are
obtained for the modified glasses, with a percentage of Si5

close to 0%. The improvements are seemingly connected
both to the higher effective spring constant, which makes the
fivefold coordination around silicon less favorable, and to the
damping term. In fact, the longer Si-O cutoff allowed by the
damping exponential enables us to apply �damped� three-
body forces also to O-Si-O triads, which would not other-
wise �that is, using the raw harmonic potential� satisfy the
conditions to employ the three-body term. The occasional
occurrence of these situations during the dynamics with the
raw harmonic potential would lead to the formation of stable
Si5 species, which would be difficult to remove subsequently.

TABLE VI. 30Na2O-70SiO2 glass structure. Distances in Å, angles in degrees.

SM0 SM1 T CP �NS4�a Expt.

� �g cm−3� 2.572
�+4.2% �

2.516
�+2.0% �

2.514
�+1.9% �

2.466

rSi-O 1.625 1.625 1.614 1.63 1.62b,c

rO-O 2.65 2.65 2.61 2.66 2.61c

rSi-Si 3.11 3.1 3.15 3.06 3.06c

rNa-O 2.33 2.33 2.39 2.28 2.30,d,e2.32,f

2.34,b 2.45c

rNa-Na 3.27 3.24 2.94 3.0 3.2–3.4c

�O-Si-O 109.5�15� 109.9�13� 108.7�11� 109�15�
�Si-O-Si 139�28� 140�31� 150�33� 141�25�
�O-Na-O 59–92 59–91 55–97

CNSi-O
g 4.05 4.00 4

CNO-Si 1.67 1.65 1.65

CNO-O 5.35 5.33 5.07

CNSi-Si 3.26 3.18 3.16

CNNa-O 5.38 5.33 5.35 5.4±1.1

CNNa-Na 7.1 7.2 7.5

Rx �%� 5.1% 4.6% 5.8%

aReference 24.
bReference 70.
cReference 6.
dReference 4.
eReference 91.
fReference 71.
gCN cutoffs: O-O 3 Å; Si-O 2 Å; Si-O 3.4 Å; Na-O 3.1 Å; Na-Na 5 Å.

TABLE VII. % Qn distributions and coordination: 30Na2O-70SiO2 glass. The initial glass structure for the MD runs is obtained using the
Teter potential, apart from SM1*, which was started from an initial glass structure obtained using the SM1 potential.

Q1 Q2 Q3 Q4 Q5 O0 O1 O2 O3 Si3 Si4 Si5

SM0 0.9 15 47.6 33 3.5 0.1 33.3 66.7 0 0 95.7 4.3

SM1 0.9 15.5 51.5 32.1 0 0.1 35.1 64.8 0 0.01 99.95 0.05

SM1* 0.3 10.6 63.7 25.4 0 0 35.3 64.7 0 0 99.96 0.04

Teter 1.1 16 49.8 33.1 0 0.1 35.1 64.8 0 0 100 0

Expt.a 0 8 70 22 0

aReference 92.
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B. Theoretical densities

Previous work58 had shown that the BKS potential yields
correct densities, but the rigid-ion potential by Vessal et al.,61

which employs full ionic charges and three-body angular
terms, did not reproduce the experimental density accu-
rately.58,62 This seemed to point out an intrinsic limitation of
full-charge potentials in reproducing the correct density of
these systems. In Tables IV, VI, and X, the theoretical den-
sities, calculated using the average cell volume of a 40 ps
NPT simulation, are compared with the experimental densi-
ties of the simulated systems, for both Teter and the new SM
potentials. In general, the differences are small: the Teter
potential performs slightly better for the pure silica glass,
and for the modified glasses both the SM �especially SM1�
and the Teter potentials yield densities in very good agree-

ment with the experimental ones. In other words, the inclu-
sion of shells and the explicit approximate treatment of po-
larization effects reduces the internal strain of the bulk
glasses compared to an equivalent rigid-ion potential with
full ionic charges and three-body forces, making the SM
more suitable for surface simulations, which require the bulk
structures to have reasonable densities under zero pressure.

C. Pure silica glass

Table IV lists the structural parameters calculated for the
pure silica glass from the simulations with SM0 �original
bending term in the Sanders potential�, SM1 �modified bend-
ing term�, and Teter potential, compared to the available ex-
perimental and ab initio data. The larger bending constant
does not affect the structure compared to the SM0 potential,
besides very small changes in the full width at half-
maximum �FWHM� of the O-Si-O and Si-O-Si BAD. The
location of the BAD maxima is unaffected, and the same
applies to the peaks in the radial distribution functions
�RDFs�. A similar comparison applies to the modified silicate
glasses as well: the modified bending potential does not in-
troduce any structural perturbation, besides improving the
coordination statistics.

TABLE VIII. Distances from BO/NBO atoms �Å�: 30Na2O-
70SiO2 glass.

Si-NBO Si-BO Na-NBO Na-BO

SM1 1.54 1.63 2.31 2.47

Teter 1.57 1.62 2.36 2.62

CP-GGA �NS4 glass�a 1.58 1.65

aReference 24.

FIG. 4. Radial distribution functions for the 30Na2O-70SiO2

glass calculated with the SM1 potential.

FIG. 5. Total distribution function �broadened using the experi-
mental Qmax=22.88 Å−1� obtained from the MD simulation with
SM1 potential �dashed line�, compared with the neutron diffraction
data �full line�.

FIG. 6. �Color online� Enlargement of a snapshot taken from the
30Na2O-70SiO2 run, showing the local structure around sodium.
Dashed lines connect the central Na ion to the six closest oxygen
atoms. Na are pictured as dark spheres, Si and O are represented as
ball-and-sticks.
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The short-range structure of pure silica glass predicted by
SM1, represented in the RDFs of Fig. 2, is in very good
agreement with experimental3,63–66 and Car-Parrinello ab ini-
tio molecular dynamics �CPMD�21–23 data. The introduction
of shells improves the description of the structure: the Rx
factor �as defined in Refs. 58 and 67� of 5.2%, calculated by
comparing the simulated T�r� �Ref. 68� in Fig. 3 to the neu-
tron diffraction data of Grimley,3 is about 1% smaller than
the one we obtain with the Teter potential �Table IV�; the Rx
factor is also significantly improved with respect to the 9.3%
value obtained using the corresponding Vessal rigid-ion
model,58 and with respect to the 7.2% yielded by the BKS
potential.58

The differences with respect to the Teter potential are
minimal: a shorter Si-Si distance �3.1 Å� and a correspond-
ing lower average Si-O-Si angle �145°�, which are closer
both to the experiments and CPMD simulations �see Ref. 69
for a recent discussion of the Si-O-Si BAD in silicate
glasses�. Although the very low fraction �0.4%� of Si5 de-
fects present in the SM0 run with the original k3b is com-
pletely removed with a higher bending constant �see Table
V�, it should be remarked that the main benefits of adjusting
the three-body potential apply to the modified silicate
glasses, and no adjustments to k3b would in principle be

needed to model the pure silica glass with the SM0. This
point is highlighted in Table IV, showing ideal coordination
numbers for Si and O in all runs.

D. 30Na2O-70SiO2 glass

1. Radial and angular distribution functions

Tables VI and VII show that 4.3% of Si5 are formed with
the SM0 potential, but practically all Si atoms are found in
perfect �tetrahedral� coordination when we switch to the
SM1 potential.

The structure is examined in Table VI, and the RDFs are
shown in Fig. 4: in the sodium silicate case, the Rx factor was
calculated comparing the broadened T�r� to the neutron dif-
fraction data of Wright,70 using a maximum Q of 22.88 Å−1;
the SM yields again a very good match with the experimen-
tal structure; the Rx factor of 4.6% with SM1 potential, see
Fig. 5, is significantly improved with respect to Teter poten-
tial �Rx=5.8% �, as well as with respect to BKS and Vessal
potentials �5.6% and 6.8%, respectively58�. As for the pure
silica glass, the location of the peaks in the Si-Si RDFs and
Si-O-Si BADs shows some minor improvements with re-
spect to the Teter potential, when we compare to previous
CPMD24 simulations and experimental neutron and EXAFS
data.70,71,91 Compared to pure silica glass, the Si-O distance
increases with the addition of sodium, as is observed
experimentally.72,73 The increase in Si-O upon addition of
sodium is correlated with the shift of Si-O-Si BADs to
smaller angles, observed for both the SM and Teter poten-

TABLE IX. %Qn distributions and coordination: 10Na2O-15CaO-75SiO2 glass.

Q1 Q2 Q3 Q4 Q5 O1 O2 O3 Si3 Si4 Si5

SM0 0.9 8.5 41.5 45.3 3.8 26.5 73.4 0.1 0 95 5

SM1 0.8 9.9 44.4 44.8 0.1 28.5 71.5 0 0 99.9 0.1

Teter 0.8 10.4 43.5 45.3 0 28.6 71.4 0 0 100 0

CP-GGA 0 20 26.7 53.3 0 28.6 71.4 0 0 100 0

FIG. 7. Radial distribution functions for the 10Na2O-
15CaO-70SiO2 glass calculated with the SM1 potential.

FIG. 8. Top: total distribution function �broadened using
Qmax=22.88 Å−1� obtained from CPMD �full thick line�, SM1 po-
tential �full thin line�, and Teter potential �dashed line�. The func-
tions have been calculated up to half the CPMD cell size �5.8 Å�.
Bottom: difference between CPMD and SM1 potential �full thin
line�, and between CPMD and Teter potential �dashed line�.
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tials; the Si-O-Si BAD peak position for the SM1 potential
�140°� is very close to the 141° obtained by CPMD. Note
also that the SM predicts a narrower Si-O-Si BAD �the
FWHM decreases by 7° with respect to pure SiO2 glass�
upon addition of sodium, which agrees nicely with experi-
mental indications.74,75

It is interesting to consider the local order around the
sodium atom predicted by the SM, as the relevant Na-O po-
tential was refined for the present work. The first-neighbor
Na-O distance of 2.33 Å compares well with the value of
2.28 Å predicted by CPMD simulations,24 and even better
with values between 2.30 and 2.34 obtained in EXAFS and
neutron studies.4,70,71,91 The RMC fit of Zotov et al.,6 on the
other hand, gives a longer Na-O distance of 2.45 Å, which is
also reflected in a Na-Si distance 0.2 Å longer than the one
predicted by our model. The O-Na-O BADs obtained by the
SM and Teter potentials are similar, featuring a sharp peak
around 60° and a broader peak around 90°.

It is well established that the introduction of modifier cat-
ions M disrupts the tetrahedral network, by breaking Si-O-Si
linkages and hence forming Si-O bonds where the oxygen is
not bridging between two tetrahedra. Each modifier cation is
usually linked to several BO and NBO, see Fig. 6: the peak
around 90° in the O-Na-O BAD results from NBO-Na-NBO
groups. Table VII shows that the number of NBOs �O1 in the
table� created with the introduction of Na cations in the sili-
cate network matches almost exactly the number of Na at-
oms in the simulation cell; each NBO is bonded to a Si and
weakly coordinated to �3 Na atoms. The coordination num-

ber of sodium �calculated using the first minimum at 3.1 Å in
the Na-O RDF as cutoff radius� is 5.33 �of which 60% NBO�
for the SM and 5.35 �of which 64% NBO� for the Teter
potentials, which compare favorably with the CPMD value
of 5.4±1.1. The RDFs calculated separately for BO and
NBO �peak positions reported in Table VIII� show that
Si-BO bonds are 0.09 Å �0.05 Å� longer than Si-NBO in the
SM �Teter� potential, in good agreement with the difference
observed in CPMD simulations �0.07 Å�.24

2. Qn-species distribution

The environment around Si atoms can be described by the
Qn notation,54 where n is the number of BOs in the first
coordination shell of Si. Only Q4 species are present in pure
silica glasses, while Q2 and Q3 species are formed in the
modified glasses. According to the binary model,76 Qn+1 spe-
cies will completely transform into Qn before Qn−1 can be
formed; however, NMR experiments tend to show inadequa-
cies of this model and point to the existence of several dif-
ferent Qn species.77,92 As mentioned above, no significant
changes to the Qn-species distributions in the glass generated
through the Teter potential are expected after switching to the
SM. The sodium silicate sample shows a prevalence of Q3

species followed by Q4 and Q2 �Table VII�. The presence of
more than two Qn species and their relative ordering agrees
with the NMR results for this composition,92 but the experi-
mental data show a larger percentage �around 70%� of Q3.
This difference could be somewhat related to the necessarily

TABLE X. 10Na2O-15CaO-75SiO2 glass structure. Distances in Å, angles in degrees.

SM0 SM1 T CP Expt.

� �g cm−3� 2.634
�+5.2% �

2.578
�+3% �

2.564
�+2.4% �

2.503

rSi-O 1.615 1.618 1.610 1.63

rO-O 2.64 2.64 2.61 2.65

rSi-Si 3.10 3.09 3.16 3.08

rNa-O 2.38 2.37 2.39 2.35

rNa-Na 3.5 3.4 3.25 3.3

rCa-O 2.30 2.30 2.37 2.30

rCa-Na 3.5 3.4 3.32 3.45

�O-Si-O 109.6�15� 109.9�13� 108.4�12� 108.7�14�
�Si-O-Si 141�28� 141�30� 148�36� 137�24�
�O-Na-O 58–95 58–95 57–89 56–83

�O-Ca-O 56–85 56–85 56–85 61–80

CNSi-O
a 4.06 4 4 4

CNO-Si 1.74 1.71 1.71 1.71

CNO-O 5.67 5.62 5.35 5.66

CNSi-Si 3.47 3.35 3.34 3.44

CNNa-O 5.8 5.72 5.55 5.6

CNCa-O 5.85 5.95 6.2 5.9

CNNa-Na 2.28 2.31 2.38 3.0

CNCa-Ca 1.88 1.98 1.89 2.4

CNNa-Ca 1.98 1.97 2.06 2.0

aCN cutoffs: O-O 3 Å; Si-O 2 Å; Si-Si 3.4 Å; Na-O 3.1 Å; Na�Ca�-Na�Ca� 5 Å; Ca-O 3.2 Å.
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much higher cooling rate used in our glass-generation proce-
dure compared to the experiment;50 however, we carried out
a lengthy glass-generation procedure using only the SM1
model, and the resulting Qn distribution, denoted SM1* in
Table VII, is now much closer to the experimental one. It
thus appears that the shell model improves the description of
the experimental glass structure �although at a higher com-
putational expense�, especially for what concerns the connec-
tivity of the tetrahedral network. Apart from the Qn percent-
ages, we checked that the distances and angles reported in
Table VI for the SM1 glass match very closely those of the
SM1* sample, as is expected since the short-range order
should not depend directly on the preparation history. The
only observable variations are in structural properties more
directly affected by the Qn relative abundances: the Si-Si
distance �0.05 Å shorter in the SM1* glass� and the Si-O-Si
angle �5° smaller in the SM1* glass�.

E. 10Na2O-15CaO-75SiO2 glass

To our knowledge, only a previous MD study, using the
BKS potential, involved the 10Na2O-15CaO-75SiO2 glass,79

whereas no neutron diffraction data or ab initio calculations

of this structure are as yet available; in this work, accurate
reference data on the local structure were therefore obtained
from CPMD simulations of a smaller sample. As for the
sodium silicate glass, Table IX shows that adjusting the
bending potential �run SM1� completely removes oddly co-
ordinated silicon atoms, whereas a relevant fraction �5%� of
these defects were formed in the SM0 run; note also that no
Si5 or O3 atoms are formed in our CPMD run, which con-
firms that the occurrence of these defects is unlikely at stan-
dard temperatures and pressure. The different Qn distribution
of the sample used in the CPMD simulation is probably re-
lated to the smaller system size.78 The RDFs for the SM1 run
are shown in Fig. 7, and the structural data are collected in
Table X. Although no experimental total correlation function
was available in this case, we calculated the ab initio T�r�
from the CPMD trajectory, using the same approach as for
the pure silica and sodium silicate glasses, and used it as
reference. The comparison with the T�r� calculated for the
SM1 and Teter models and the corresponding Rx factors �re-
ported in Fig. 8� confirms the overall better performances of
the shell model in this case as well.

The main structural features predicted by the SM and
Teter potentials are rather similar to those of the sodium
silicate glass; the absence of major modifications due to the
replacement of sodium with calcium is in agreement with the
previous MD simulation using the BKS potential.79 As for
the pure silica and sodium silicate glasses, small improve-
ments in the SM with respect to the Teter potential concern
the Si-Si distance and Si-O-Si angle: in general, the glass

TABLE XI. Distances from BO/NBO atoms: 10Na2O-
15CaO-75SiO2 glass �Å�.

Si-NBO Si-BO Na-NBO Na-BO Ca-NBO Ca-BO

SM1 1.54 1.625 2.31 2.48 2.30 2.64

Teter 1.57 1.615 2.36 2.64 2.37 2.62

CP-GGA 1.59 1.64 2.31 2.62 2.30 2.54

FIG. 9. Ring size distributions calculated from the runs with the
SM1 �full triangles� and Teter �circles� potentials.

FIG. 10. VDOS of pure silica glass, SM models.

FIG. 11. VDOS of sodium silicate glass, SM models.

TILOCCA, de LEEUW, AND CORMACK PHYSICAL REVIEW B 73, 104209 �2006�

104209-10



structures predicted by SM and CPMD are in very good
agreement. The Ca-O distance is slightly shorter than the
Na-O distance in both empirical models, and both distances
are closer to the CPMD data in the case of the SM potential.
Both Na-O and Ca-O distances fall in the lower range of the
distances observed in crystalline Na2CaSi2O6.42 With the
SM1 potential, each Na ion is coordinated to 5.7 oxygens, of
which 49% are NBO, whereas the Ca ions show a net pref-
erence for NBO coordination:79 69% of the 5.9 oxygens in
Ca first coordination shell are NBO. With the Teter potential,
each Na ion is coordinated to 5.5 oxygens, of which 54% are
NBO, and the Ca ions show a similar preference for NBO
coordination: 71% of the 6.2 oxygens in the calcium first
coordination shell are NBO. This greater preference of Ca
for NBO coordination is quantitatively similar to what is
observed with the BKS potential;79 previous MD simulations
of a different soda-lime silicate glass composition44 also
showed a higher fraction of NBO in the Ca coordination
shell, although their relative BO-NBO percentages differ sig-
nificatively from ours, due to the different glass composition.
A Ca-O total coordination number higher than Na-O is also
apparent in all our simulations, however the difference is less
marked in the SM and CPMD simulations. Compared to the
CPMD results, the SM model yields exactly the same Na-
NBO �2.31 Å� and Ca-NBO �2.30 Å� distances, and fairly
accurate Na-BO and Ca-BO distances �Table XI�. The Teter
potential predicts a Na-BO distance closer to the ab initio
value. Si-BO �-NBO� distances of 1.625 Å �1.54 Å� are also
close to the CPMD values.

A recent NMR study80 examined the distribution of Ca
and Na ions around bridging and nonbridging oxygens in
soda-lime silicate glasses with the same mol% of SiO2 �75%�
as our system, but slightly different fractions of Na2O and
CaO. The NMR data evidenced interactions between
network-modifying cations and the bridging oxygen net-
work, as well as extensive mixing of Ca and Na around
NBO. We directly calculated the distribution N�i , j� of NBO
atoms coordinated to i Na and j Ca ions from the SM1 tra-
jectory, and the average percentages are N�1,1�=28%,
N�2,0�=5%, N�0,2�=16% for NBO coordinated to two
ions; N�1,2�=14%, N�2,1�=16%, N�3,0�=5%, N�0,3�
=3% for threefold coordination. The higher percentage of
“mixed” �that is, including both Na and Ca� coordination

shells, with respect to coordination shells involving only one
type of ion, points out some preference for Na-Ca pairing
around NBOs.

F. Distribution of ring sizes

The distribution of primitive ring sizes, shown in Fig. 9
for the SM1 and Teter runs, has been calculated with the
algorithm proposed in Ref. 81; the two models yield similar
ring size distributions, with some differences only for the
sodium silicate glass. For the pure silica glass, the ring size
distribution extends from 3- to 11-membered rings, with a
maximum around 6–7. The disruption of the network of tet-
rahedra due to introduction of sodium results in a decrease of
the number of 6-membered rings from above three to about
one per Si atom, and in the appearance of larger rings, up to
20-membered; it is likely that the occurrence of the isolated
peak at the 24-membered ring is related to the limited cell
size.81 The ring size distribution for the soda-lime glass is
narrower, with a maximum ring size around 15, but other-
wise similar to the sodium silicate, with a first maximum of
about one 6-membered ring per Si atom.

G. Vibrational properties

In a previous work,82 the vibrational density of states
�VDOS� of amorphous SiO2 was calculated using several
potentials including the Sanders shell model; the latter
yielded a rather different and inaccurate vibrational spectrum
compared to other potentials. In particular, two common par-
tial charge potentials such as Tsuneyuki83 and �especially�
BKS52 yielded fairly accurate VDOS spectra, despite a less
satisfactory agreement with the experimental VDOS at inter-
mediate frequencies.82,84,85 The poor performance of the SM
in Ref. 82 is rather unexpected, as the elastic and dielectric
constants of quartz were fitted parameters in the model;34

however, the potential described in Table 1 of Ref. 82 does
not match exactly the Sanders model �a Si-O stretching term
is included�. Indeed, the VDOS �shown in Fig. 10� for the
pure silica glass modeled with the SM potential, calculated
as the Fourier transform of the mass-weighted velocity auto-
correlation function,86 is different and much improved with
respect to the one reported in Ref. 82.

The SM0 yields a reasonably accurate VDOS �compared
with the experimental inelastic neutron scattering �INS�
values2 of �400, 800, and 1100 cm−1�, with three main
bands centered at 370, 830, and 1030 cm−1; modifying the
bending term �potential SM1� has no effect on the location of
the two higher-frequency peaks, whereas the lowest fre-
quency peak is shifted to 440 cm−1. The frequencies obtained
for the SM1 potential are thus in good agreement with the IR
spectrum calculated with the PIM method,27 which shows
three bands at 463, 802, and 1080 cm−1 �note that VDOS and
IR intensities are not directly comparable�. An additional
small peak at 560 cm−1 �520 cm−1 with the SM0 potential� is
present in our calculated VDOS, which has also been ob-
served around 600 cm−1 in VDOS calculated through CPMD
simulations.21,84 Overall, although the splitting of the high-
frequency peak is not reproduced, the VDOS at intermediate

FIG. 12. VDOS of soda-lime silicate glass, CPMD and SM
models.
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frequency is better represented in the SM model than the
BKS potential.

For the sodium silicate glass, Fig. 11 shows a similar ef-
fect. In this case no INS spectra exist, to the best of our
knowledge; the main peaks in the Raman spectrum of a NS3
glass87 are found around 500, 800, and 1100 cm−1. Model
calculations by Zotov et al.88 for NS4 glass show that the
VDOS increases in intensity in the 200–400 cm−1 region,
correlated to the presence of NBO. This same increase is
present to a larger extent in our calculated VDOS, as a larger
number of NBOs is present in our glass composition com-
pared to the NS4 glass; this intensity tends to mask the first
peak above 400 cm−1. The locations of the two other main
bands are similar to the ones found for the pure silica glass,
as are also observed for the NS4 glass.88 The location of the
high-frequency peak at 1000 cm−1 with a shoulder at
1090 cm−1 agrees fairly well with recent CPMD calculations
for sodium tetrasilicate,89 despite the different intensities,
which are related to the different composition. The midfre-
quency band at 820 cm−1 is shifted to high frequencies com-
pared to the CPMD data, but a similar blueshift was previ-
ously observed with a classical valence force field potential
fitted using experimental vibrational frequencies of crystal-
line silica and sodium silicates.89

Figure 12 shows the VDOS of the soda-lime silicate glass
obtained using CPMD and the SM1 potential. The VDOS for
the SM1 potential was calculated from an MD trajectory of
the same small system used for the CP run, in order to mini-
mize differences in the spectrum related to the small size of
the glass sample used in the ab initio simulation. The low-
and high-frequency bands are broader, compared to the so-
dium silicate glass; as for the sodium silicate glass, the SM1
model yields a blueshift of the band at intermediate frequen-
cies, which tends to partially overlap the high-frequency re-
gion. On the other hand, the low- and high-frequency bands
are in better agreement.

To sum up, the vibrational properties of glasses modeled
through the SM are fairly adequately represented, and no
significant distortions are induced by the modified three-
body term. An intrinsic difficulty to reproduce correctly the
intermediate region of the vibrational spectrum of glasses,
which seems to be common to most force fields, is observed
for the modified glasses.

IV. CONCLUSIONS

We have developed an empirical potential �SM1� for the
simulation of modified silicate glasses, using full ionic
charges, with a SM approach to represent polarization ef-
fects. To our knowledge, no previous applications of the SM

to MD simulations of glasses have been reported. The per-
formances of the potential have been thoroughly checked
and compared with other rigid-ion potentials, and with avail-
able experimental and ab initio theoretical data. The main
points can be summarized as follows: �a� the use of the SM
removes some problems associated with the use of formal
ionic charges and three-body angle-bending terms: in par-
ticular, the experimental density of the modified glasses is
reproduced very well, with both the rigid-ion and SM poten-
tials; �b� the rigid-ion Teter potential performs rather well in
describing the complex structural properties of modified sili-
cate glasses; however, we have shown that the Si-O-Si angle
�and the related Si-Si distance� predicted by the SM1 poten-
tial is closer to the predictions of experiments and ab initio
MD, and significant improvements in the description of the
local environment surrounding Na and Ca ions are also ob-
tained with the shell model; �c� vibrational properties are
fairly satisfactorily reproduced, despite some apparent dis-
crepancies in the intermediate frequency region for the modi-
fied glasses, which seem to be common to other force fields
as well; �d� the sodium silicate glass generated using the
shell model shows a Qn distribution significantly closer to
the experiment than the same glass generated with the rigid-
ion potential. The last point appears particularly important,
given the strong influence of the network connectivity on the
glass physical properties, such as the solubility.90

The potential thus combines a reliable representation of
the experimental density with an accurate reproduction of the
structural and dynamical properties of the modified glasses,
which can hardly be obtained with rigid-ion models. The
explicit inclusion of polarization effects through the shell
model seems to be essential to obtain high structural accu-
racy, as also confirmed by the ab initio MD results, despite
the small size of the system used in the CPMD simulations.
The higher computational requirements of the SM versus
rigid-ion dynamics appear reasonable, in view of the greater
versatility warranted by the first. For instance, the potential
can be used in the simulation of glass surfaces, where the
highly heterogeneous local environment involving varying
coordination and distorted local geometries �resulting in
ionic charge distributions different from those of the bulk�
should be well represented by the shell model. In fact, pre-
liminary calculations appear to confirm the reliability of the
potential to model glass surfaces and will be presented in a
subsequent paper.
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