
Concentration phase diagram of BaxSr1−xTiO3 solid solutions

V. B. Shirokov, V. I. Torgashev, and A. A. Bakirov
Research Institute of Physics, Rostov State University, 344090 Rostov on Don, Russia

V. V. Lemanov
A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

�Received 4 January 2006; revised manuscript received 3 February 2006; published 29 March 2006�

Method of derivation of phenomenological thermodynamic potential of solid solutions is proposed in which
the interaction of the order parameters of constituents is introduced through the account of elastic strain due to
misfit of the lattice parameters of the end members. The validity of the method is demonstrated for the
BaxSr1−xTiO3 system being a typical example of ferroelectric solid solution. Its phase diagram is determined
using experimental data for the coefficients in the phenomenological potentials of SrTiO3 and BaTiO3. In the
phase diagram of the BaxSr1−xTiO3 system for small Ba concentration, there are a tricritical point and two
multiphase points one of which is associated with up to six possible phases.
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I. INTRODUCTION

The solid solution of BaTiO3 with SrTiO3 is one of the
best documented systems of ferroelectric solid solutions �see
Refs. 1–3 and references therein�.

BaTiO3 �BT in short� is well known as the first oxygen-
octahedra ferroelectric of the perovskite structure with
paraelectric cubic phase Pm3m and three ferroelectric
phases: tetragonal P4mm, orthorhombic Amm2, and rhombo-
hedral R3m. All three transitions are described by one three-
component order parameter �polarization�, and with the po-
tential expansion up to the sixth order.4 Best agreement with
the experiment is achieved when not only one constant in the
term quadratic in the order parameter is assumed to be tem-
perature dependent.5

SrTiO3 �ST in short� represents a textbook example of a
“quantum paraelectric”6 with a polar soft mode, which has
never condensed even at very low temperatures. At a
temperature Ta of about 105 K, pure ST undergoes an anti-
ferrodistortive �improper ferroelastic� phase transition
Pm3m→ I4/mcm with doubling of the primitive cell vol-
ume. Microscopic mechanism of the transition is attributed
to the instability of a soft lattice mode associated with out-
of-phase rotations of TiO6 octahedra. The transition is phe-
nomenologically described by three-component order param-
eter transforming according to R25 representation from the
point R �1/2 ,1 /2 ,1 /2� of the Brillouin zone �BZ� of a
simple cubic lattice with the Landau potential of the
fourth order.7 The constants of the potential were found in
Refs. 8–10.

Along with softening the soft mode from the BZ bound-
ary on cooling,11,12 the static dielectric permittivity signifi-
cantly increases6,13 due to softening of IR-active F1u mode
from the BZ center.14,15 Down to 1.5 K, the ST crystals re-
main in the tetragonal phase.6,16 To describe the temperature
behavior of the static dielectric permittivity, the Barrett quan-
tum equation17 is applied.6 Thus, the phenomenological po-
tential, which simultaneously describes the abovementioned
properties, should include two three-component order param-
eters R25 � F1u. The constants of the fourth order potential
with such order parameters were detemined in Refs. 18–20.

According to a Curie–Weiss law in ST, which follows
from dielectric and optical measurements,6,14,15,21,22 a ferro-
electric phase transition should occur at a temperature near
35 K associated with softening of the IR-active mode. No
dielectric anomaly at this temperature was found but many
authors observed elastic anomalies.23–30 However, in careful
dilatometric studies, no low-temperature anomalies were
observed.31

The solid solution BaxSr1−xTiO3 �BST in short� of these
two remarkable compounds attracts the attention of research-
ers from at least two aspects: �1� basic interest concerning
such problems as impurity induced ferroelectric phase tran-
sition in the ST incipient ferroelectric, as interplay between
the antiferrodistortive and ferroelectric phase transitions, as
development of the theory to predict the �x−T� phase dia-
gram; �2� applied aspect as the possibility of controlling
properties and the phase transition temperature of these
promising for various application materials.

At first, the BaxSr1−xTiO3 solid solutions have been stud-
ied at x�0.1 and at temperatures more than about 100 K.
Hegenbarth32 and Bednorz33 studied impurity-induced ferro-
electric phase transitions in the BST solid solutions at small
x and down to liquid helium temperatures. Bednorz33 and
Miura et al.34 investigated the effect of Ba substitution on the
antiferrodistortive phase transition. Later on, this system at
low x was studied in more details.35–38

The summary of all the experimental data concerning the
�x−T� phase diagram of BST is the following.

The temperatures of all three ferroelectric phase transi-
tions decrease with x decreasing with different rates and
probably converge at x around 0.1.

At x=0.2–0.2535 or x=0.4,39 there is a tricritical point for
the cubic-tetragonal phase transition when the first order
phase transition with x decreasing transforms to the second
order one.

The antiferrodistortive transition temperature Ta decreases
with x increasing, and this transition disappears when Ta
should become lower than ferroelectric transition
temperature.38
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At small x �x=0.00533,36 and x=0.01–0.0332,35,38�, the
BST system becomes ferroelectric, and the transition
temperature Tc increases with x increasing.

In spite of this rich experimental data on the BST �x−T�
phase diagram, no theoretical treatment of the phase diagram
is available. This problem is, as mentioned above, of great
interest both basic and applied, and in this work we develop
the phenomenological theory and derive the concentration
phase diagram for BST solid solutions. The region of small
concentration of Ba �small x� is especially interesting since
just in the region of small concentration: �i� the impurity-
induced ferroelectricity occurs; �ii� there is a strong interplay
between ferroelastic �antiferrodistortive� and ferroelectric
phase transitions; �iii� experimental data on the symmetry of
low-temperature phases are not available.

The paper is organized as follows. After the Introduction,
where the background of the problem is depicted, Sec. II
follows with derivation of the phenomenological potential of
the BST solid solution. In Sec. III, the �x−T� phase diagram
of the BST system is analyzed, and specific features of the
phase diagram are discussed in Sec. IV. The last section pre-
sents a summary of the work.

II. PHENOMENOLOGICAL POTENTIAL OF THE
BaxSr1−xTiO3 SOLID SOLUTION

A. Formalism

Thermodynamic description of solid solutions we shall
make by the expansion of the Helmholtz free energy in pow-
ers of order parameter of a high-symmetry phase.40 At all
temperatures, we treat the system as a homogeneous solid
solution, which does not exhibit the ordering of its compo-
nents. The constants of the free energy expansion are tem-
perature and concentration dependent. We suppose that we
know the potentials of the solid soluton end members with
concentration x=0 and x=1. Moreover, we suppose that at
least at high temperatures the end members exist in one and
the same polymorphic modification. We shall derive the ther-
modynamic potential of the solid solution of arbitrary con-
centration using the following approaches.

Atom substitution with no phase transition leads to a ho-
mogeneous change of crystal size. We shall treat the crystal
of solid solution as a mixture of two interacting crystals with
concentration x=0 and x=1 with molar contribution �1−x�
and x, respectively. The interaction of such “crystals” will be
described not by usual introduction of additive terms in the
thermodynamic potential but through the account of elastic
strains remaining in the framework of the phenomenological
theory. These strains for the solid solution end-members u0
and u1 will be determined using two conditions. The first one
is the fit of the lattice parameter of the solid solution ax and
that of “deformed” end members �x=0 and x=1�.

Let us express the �inequilibrium� lattice parameter of the
solid solution a via its equilibrium value ax and the volume
strain u

a = ax�1 + u� .

Then, the lattice parameters of the solid solution end
members are

a0 = ax�1 + u0� ,

a1 = ax�1 + u1� . �1�

The elastic energy of the crystals x=0 and x=1 is F0 and
F1, respectively. The strain in the F0 potential may be ex-
pressed via the strain u of the solid solution

a − a0

a0
=

ax�1 + u� − ax�1 + u0�
ax�1 + u0�

=
u − u0

1 + u0
� u − u0.

A similar relation may be written for the F1 potential. As
a result, the part of the elastic energy related to the crystals
x=0 and x=1 will be �1−x�F0�u−u0� and xF1�u−u1�, re-
spectively. Since the interaction is introduced through defor-
mation, the elastic energy of the solid solution can be written
as

�1 − x�F0�u − u0� + xF1�u − u1� .

Consequently, the second condition is the condition of
equilibrium obtained by minimization of this energy with
respect to the strain u. As a=ax in the equilibrium �u=0� we
get the equation

�1 − x�� �F0

�u
�

u=0
+ x� �F1

�u
�

u=0
= 0. �2�

It means that the resulting stress should be zero when the
lattice parameter of the solid solution acquires its equilib-
rium value ax. The Eqs. �1� and �2� allow us to find the
values of deformations u0 and u1, as well as the equilibrium
value of the solid solution lattice parameter ax.

Writing the F0 and F1 potentials in the solid solution lat-
tice by means of deformation, one can introduce, along with
the common strain u, and common order parameters �. As a
result, the potential of the solid solution written through the
potentials of its end members will be given as

F = �1 − x�F0��,u − u0� + xF1��,u − u1� . �3�

To proceed further, one should minimize Eq. �3� with the
account of Eqs. �1� and �2�.

B. Potential of the BST system

We apply the approach developed in the previous subsec-
tion to the BaxSr1−xTiO3 solid solution �now x=0 and x=1
mean ST and BT, respectively�. The Helmholtz free energy
per unit volume Fi �i=ST or BT� is given as18

Fi = �1,i
u ��1

2 + �2
2 + �3

2� + �11,i
u ��1

4 + �2
4 + �3

4�

+ �12,i
u ��1

2�2
2 + �1

2�3
2 + �2

2�3
2� + �1,i

u �p1
2 + p2

2 + p3
2�

+ �11,i
u �p1

4 + p2
4 + p3

4� + �12,i
u �p1

2p2
2 + p1

2p3
2 + p2

2p3
2�

+ �111,i
u �p1

6 + p2
6 + p3

6� + �112,i
u �p1

4�p2
2 + p3

2� + p2
4�p1

2 + p3
2�

+ p3
4�p1

2 + p2
2�� + �123,i

u p1
2p2

2p3
2 − t11,i

u ��1
2p1

2 + �2
2p2

2 + �3
2p3

2�

− t12,i
u ��1

2�p2
2 + p3

2� + �2
2�p1

2 + p3
2� + �3

2�p1
2 + p2

2��

− t44,i
u ��2�3p2p3 + �1�3p1p3 + �1�2p1p2� + Fu,i. �4�

Here, � is the rotational order parameter �oxygen ion shift
in the R25 mode related to out-of-phase rotation of TiO6 oc-
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tahedral�; p, the polarization �related to polar shifts of ions in
the F1u mode�; Fu,i, the deformation potential presented be-
low. The superscript u in Eq. �4� indicates that the coeffi-
cients are taken at constant strain. We shall further suppose
that the elastic strains are not the order parameters, i.e., there
are no proper ferroelastic transitions. Then, the deformation
potential should be quadratic in strain

Fu,i = − �c11,i + 2c12,i��iT�u1 + u2 + u3�

+ c12,i�u1u2 + u1u3 + u2u3� +
1

2
c11,i�u1

2 + u2
2 + u3

2�

+
1

2
c44,i�u4

2 + u5
2 + u6

2� − b11,i�u1�1
2 + u2�2

2 + u3�3
2�

− b44,i�u4�2�3 + u5�1�3 + u6�1�2� − b12,i�u1��2
2 + �3

2�

+ u2��1
2 + �3

2� + u3��1
2 + �2

2�� − g11,i�u1p1
2 + u2p2

2 + u3p3
2�

− g44,i�u4p2p3 + u5p1p3 + u6p1p2� − g12,i�u1�p2
2 + p3

2�

+ u2�p1
2 + p3

2� + u3�p1
2 + p2

2�� , �5�

where ckj,i are the elastic moduli of the ith components; �i,
their thermal expansion coefficients �i=ST,BT�; T, the abso-

lute temperature, u is the strain: uk=
���xk�

�xk
, k=1,2 ,3;

u4=
���x2�

�x3
+

���x3�

�x2
, . . ., in the Voigt notation. Only linear in

strain and quadratic in the � and p interaction terms are
included in Eq. �5�.18

Now, we write the phenomenological potential of the
solid solution. From Eq. �3�, it follows

FBST = �1 − x�FST��,p,uk − �ST,um� + xFBT��,p,uk − �BT,um� ,

�6�

where k=1,2 ,3, m=4,5 ,6, and �ST, �BT are determined by
Eqs. �1� and �2� where u0=�ST, u1=�BT with the deformation
potentials Eq. �5� at �=0, p=0. In the high-symmetry phase
Eqs. �1� and �2� yield

ax =
�1 − x��aST + xaBT

�1 − x�� + x − ��1 − x�� + x�1 + 	���STT

�ST =
− x� − ��1 − x�� + x�1 + 	���STT

�1 − x�� + x�1 + ��

�BT =
�1 − x�� − �1 + ����1 − x�� + x�1 + 	���STT

�1 − x�� + x�1 + ��
, �7�

where �=
aBT−aST

aST
, �=

c11,ST+2c12,ST

c11,BT+2c12,BT
, 	=

�BT−�ST

�ST
, and �ST, �BT are

the thermal expansion coefficients of BT and ST, respec-
tively.

At room temperature, �=0.02635 and �=0.024.36 Below
we use �=0.026. The thermal expansion coefficient deter-
mines the � temperature dependence. However, in a tempera-
ture range of 0–500 K the change of � is not higher than
several percent, so we will neglect this dependence and con-
sider the � coefficient as independent of temperature.

Note that Eqs. �7� give concentration dependence of a
which differs from the Vegard rule �1−x�aST+xaBT.35,36

However, the ratio of elastic moduli in our case is close to 1
��=1.13�, so at fixed temperature deviations from the simple
linear dependence are rather small. Here we may note that it
is quite evident physically that lattice parameter of solid so-
lution should depend on the relative elasticity of its constitu-
ents, so appearance of � in Eq. �7� seems to be quite reason-
able.

The potential, Eq. �6� is the Helmholtz free energy for
BST with the end-member ST and BT potentials with the
order parameters which are given now for the BST lattice.
The Gibbs potentials 
i=Fi−�u �i=ST,BT,� is the stress�
may be written by substitution of strain u for the quantities
determined from the equation �=

�Fi

�u . From the form of Eqs.
�4� and �5�, it follows that only constants of the second and
fourth order will be renormalized. Thus, the quadratic part of
the Gibbs potential of BST will be

��1 − x��1,ST
� + x�1,BT

� + �b11,BT + 2b12,BT − b11,ST − 2b12,ST�
x�1 − x���	 − ���STT + ��

�1 − x�� + x�1 + �� ��2

+ ��1 − x��1,ST
� + x�1,BT

� + �g11,BT + 2g12,BT − g11,ST − 2g12,ST�
x�1 − x���	 − ���STT + ��

�1 − x�� + x�1 + �� �p2. �8�

Below we will use the Gibbs potentials 
i.

III. PHASE DIAGRAM OF THE BaxSr1−xTiO3 SYSTEM

To study the solid solutions in the framework of the for-
malism developed above, it is necessary to determine the
potential coefficients at the boundary points x=0 and x=1
for the 
ST, and 
BT potentials, respectively.

As a base for 
ST, we take the potential up to the fourth
order presented in Ref. 18 and modified in Ref. 20. Taking

into account the quantum properties of 
ST, which are im-
portant at low temperatures, we assume that constant �1,ST

� in
the �2 term from Eq. �8� follows the equation41

�1,ST
� = B	coth
60.75

T
� − coth
60.75

Ta
�� �J/m5� �9�

with Ta=106 K.
With experimental data from18 �11,ST

� =1.69�1050 J /m7

and �=0.69�10−11 m at T=2 K, one obtains
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B=1.7�1028 J /m5. Note that this value of � is associated
with the angle of TiO6 rotation which is equal to 2°.

For the 
BT potential of BaTiO3 we take the constants
from Refs. 5 and 42. The potential with these constants sat-
isfactorily describes the phase transitions in BaTiO3. The BT
crystal is stable with respect to the appearance of the � order
parameter at the R �1/2 ,1 /2 ,1 /2� point of the BZ boundary.
Therefore, we add to the potential42 the part quadratic in �
with the constant proportional to the square of the appropri-
ate “soft mode” frequencies at the R point. The order param-
eter � at this point is associated with oxygen ion shifts
�oxygen octahedral rotation� only,43 and Ba ions do not take
part in these shifts. Thus, the ratio of this frequency squared
to the constant in the �2 term should be the same as that in
the ST crystal at the same temperature. Taking for the
appropriate frequencies at T=300 K the values12,44 6
and 16 meV for ST and BT, respectively, we obtain �1,BT

�

=3.7�1029 J /m5.
We neglect the other �-dependent terms in 
BT as com-

pared to the �1,BT
� �2 term since there is no transition with the

� order parameter in BT.
The coefficient in the p2 term we take from Refs. 20 and

45, where this value was found from the temperature depen-
dence of ferroelectric soft mode with account of specific be-
havior of SrTiO3 at low temperatures

�1,ST
� = A	coth
54

T
� − coth
54

30
�� Jm/C2. �10�

According to Ref. 20, A=4.05�107 Jm/C2. This value
gives the Pm3m↔P4mm transition line in the T−x phase
diagram which does not agree with experiment �almost
straight line in the experiment�. If the thermal hysteresis is
neglected, this transition line should be determined by the
line of zero coefficient in the p2 term in Eq. �8�. We assume

that at high temperatures
��1,ST

�

�T =
��1,BT

�

�T . In such a case
coth�a /T��T /a, and the xT term in the first two terms at
p2 in Eq. �8� may be neglected, and the transition line be-
comes close to the straight line. Then, one obtains
A=1.8�107 Jm/C2. However, the best agreement with the
experiment is reached with A=1.5�107 Jm/C2. Just this last
value we will use below.

Constants from Eqs. �9� and �10�, along with the constants
�11,ST

� , t11,ST
� and t12,ST

� determine the behavior of ferroelectric
modes at temperatures below the transition point Ta. Since
the �1,ST

� constant was changed, it is necessary to redetermine
the t11,ST

� , t12,ST
� constants.

To do this we used the following procedure, similar to that
of Ref. 45. Neglecting a small hard modes contributon to
dielectric constant we have3

1


=

�2
ST

�p2 = K�2,

K being some constant scale factor, which we determine
from this relation at the temperatures above the ST transition
temperature Ta. Below Ta analogous relations �with the same
K� for the inverse longitudinal and transversal dielectric con-
stants define correspondingly the temperature dependence of
the frequencies of the soft A1u and Eu modes resulting from

the splitting of the original F1u mode in ST tetragonal phase.
The formulas for these split frequencies are given in Refs. 18
and 45 and they depend on coupling coefficients t11,ST

� , t12,ST
� .

Using experimental data,45 we recalculated them to obtain
t11,ST
� =−0.7�1029 and t12,ST

� =−0.32�1029 in J /C2 m. To ex-
amine the validity of these values, the experimental data45 on
the temperature dependence of the ferroelectric modes in
SrTiO3 and the dependence predicted using our values of the
constants are presented in Fig. 1 for the scale factor
K=1.65�104 Jm/C2 cm−2.

We discuss further our values of the constants �11,ST
� , and

�12,ST
� . In the experimental phase diagram35,38 one observes

the convergence of the lines of ferroelectrics phase transi-
tions and probably disappearance of the P4mm and Amm2
phases. This can be described by the sign change of the
anisotropic coefficient of the fourth order invariant in 
BST
which is equal to ��12

� −2�11
� �. Since �12,BT

� −2�11,BT
� �0, the

value of ��12
� −2�11

� � in 
BST potential should change the sign
as a function of concentration x �this follows from the global
stability of the BT rhombohedral phase�, which is possible if
�12,ST

� −2�11,ST
� �0 in 
ST. Moreover, one observes the disap-

pearance of thermal hysteresis for the Pm3m↔P4mm phase
transition at x=0.2–0.4,35,39,47 i.e., there is a tricritical point
in �x−T� phase diagram.

We assume that three phase transition lines converge at
x=0.13 and the tricritical point is observed at x=0.2
�x=0.2–0.25 in Ref. 35�. As a result one obtains
�11,ST

� =0.33 and �12,ST
� =0.2 in 109 Jm5/C4. �If the tricritical

point occurs at x=0.4,39,47 the constants increase up to
�11,ST

� =0.69 and �12,ST
� =0.92 in 109 Jm5/C4�.

All the constants in the 
ST and 
BT potentials accepted
in this work are presented in Table I.

For the constants presented in Table I, the coordinates of
the convergence points are given as x=0.13, T=93 K, and
these of the tricritical point are x=0.2, T=118 K. In the cal-
culated phase diagram there appears one more N-phase point
with the coordinates x=0.027, T=48 K. The theoretical
phase diagram together with experimental points35–39 is
shown in Fig. 2. The calculations both analytical and numeri-
cal were performed with the MAPLE-6 software package.

FIG. 1. Temperature dependence of the ferroelectric modes in
SrTiO3. Experimental points are from Ref. 45, solid lines are fitting
with t11,ST

� =−0.7�1029, t12,ST
� =−0.32�1029 in J /C2 m units

and with scale value K=2�1,ST
� /�2=1.65�104 Jm/C2 cm−2 at

T=200 K.
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Symmetry of the phases and their positions near the sec-
ond N-phase point depend on the constant t44

� which seems to
be not quite well determined in the experiment contrary to t11

�

and t12
� . Depending on the sign and value of t44

� , the following
three phases can appear near the N-phase point with tempera-
ture decreasing: �� ,� ,� , p , p , p�-R3c, �0,0 ,� , p , p ,0�-Ima2,
and ��1 ,�1 ,�2 ,p1 , p1 , p2�-Cc.

With negative t44
� , only the phases Ima2 and Cc exist

�Fig. 3�a��, and transitions to the Cc phase are only of first
order. At small positive t44

� , the phase R3c appears in a nar-
row region between the phases Cc and R3m �Fig. 3�b��. The
phase borders between R3m↔R3c and R3c↔Cc phases are
second order. As t44

� increases, the region of existence of the
R3c phase becomes broader because of decreasing of the
existence region of the low-symmetry phase Cc unless the
latter disappears completely. In this case, the transition line
between the R3c and Ima2 phases is of first order �Fig. 3�c��.
As t44

� increases further, the Ima2 phase becomes “swallowed

up” by the R3c phase, and first order phase transition is
possible between the I4/mcm and R3c phases �Fig. 3�d��. At
t44
� �3.1�1029 J /C2 m, the 
ST�x=0� potential describes the

R3c phase at low temperatures, which at first is metastable
and then at t44

� �4.0�1029 J /C2 m becomes stable.

IV. DISCUSSION

Now, we discuss the phase diagrams in Figs. 2 and 3. One
can see that in the region of small Ba concentration x, there
is rather a large scatter of the experimental points. The scat-
ter seems to be due to different methods of sample synthesis.
For example, changing temperature of the synthesis, one ob-
tains different dielectric properties in the samples with the
same concentration x48 which should lead to different values
of the constant of the potentials. In Fig. 2, the experimental
point at x=0.1 from Ref. 37 cannot be used, otherwise �11,ST
should be negative. In this case a more complete model is
needed with up to the sixth order in 
ST.

In the phase diagrams in Figs. 2 and 3, the existence of
N-phase points TN1 and TN2 do not contradict the Gibbs
phase rule. This follows from the developing of the phenom-
enological theory itself: along the lines and in the points of
second order phase transitions, a system is in a single-phase
state, namely in the phase with the highest symmetry. One
should apply the Gibbs rule only to the solid lines in Figs. 2
and 3 �first order transitions�; in the points of these lines, the
system is multi-phase, in our case, two phase.

Various versions of the phase diagram at small x are pre-
sented in Fig. 3. The steepness of decreasing the 0↔1
�Pm3m↔ I4/mcm� phase transition line as a function of x is
determined by the frequency of the �—normal mode at the
R �1/2 ,1 /2 ,1 /2� point from the BZ boundary which in the
BT crystal is high and is assumed to be temperature indepen-
dent.

TABLE I. Constants of the potentials for the ST and BT
crystals. Constants with superscript u are for the Helmholtz free
energy Fi=Fi�� , p ,u�, constants with superscript �, for the Gibbs
potential 
i=
i�� , p ,��, �i=ST,BT,u is the strain, �, the stress�.
Constants in the quadratic terms: �1,ST

� =1.7�1028�coth�60.75/T�
−coth�60.75/106��, �1,BT

� =3.7�1029 in J /m5 units, �1,ST
�

=1.5�107�coth�54/T�−coth�54/30��, �1,BT
� =3.34�105�T−381� in

Jm/C2 units.

Constant SrTiO3 BaTiO3 Units

�11
u 1.94a 0 �1050 J /m7

�12
u 3.97a 0

�11
� 1.69a 0

�12
� 3.88a 0

�11
u 0.63 �2.0a� −1.48+0.00469Tb �109 Jm5/C4

�12
u 0.02 �1.19a� −0.0877b

�11
� 0.33 �1.7a� −2.04+0.00469Tb

�12
� 0.2 �1.37a� 0.323b

�111
u ,�111

� 0 24.45−0.0552Tb �109 Jm9/C6

�112
u ,�112

� 0 4.47b

�123
u ,�123

� 0 4.91b

t11
u −2.0 �−3.0a� 0 �1029 J /C2 m

t12
u 0.67 �0.23a� 0

t11
� −0.7 �−1.74a� 0

t12
� −0.32 �−0.75a� 0

c11 3.36a 2.06c �1011 J /m3

c12 1.07a 1.4c

c44 1.27a 1.26c

b11 1.25a 0 �1030 J /m5

b12 −2.5a 0

b44 −2.3a 0

g11 1.25a 1.0b �1010 Jm/C2

g12 −0.108a −0.017b

g44 0.243a 0.365b

aReference 20.
bReference 42.
cReference 46.

FIG. 2. Phase diagram of BaxSr1−xTiO3 Solid and dashed lines
present calculated diagram for the first and second order phase tran-
sitions, respectively. Experimental points: circles, �Refs. 35 and 38�
crosses �Ref. 37�, triangles �Ref. 36�, squares �Ref. 39�. The calcu-
lated coordinates of the tricritical and multiphase points are
Tk=118 K, x=0.2; TN1=93 K, x=0.13; TN2=48 K, x=0.027. De-
tailed pictures of the phase diagram in the vicinity of the multiphase
point TN2 are presented in Fig. 3.
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For the line �1=0 �the 0↔1 phase transition line�, one
obtains x=0.034 at T=0. If the position of the 0↔2
�Pm3m↔P4mm� phase transition line �see Fig. 2� changes
depending on the sample synthesis, the N2-phase point
would change its coordinates along the line �1=0. If TN2
decreases, the region of stability of the phase 1 �I4/mcm�
will increase up to x=0.034. If TN2 increases, there is a pos-
sibility of crossing the borderline of the phases 5, 6, 7 and
the line x=0. Thus, several phase transitions in the pure ST
crystals become possible. Impurities change the deformation
potential49and that results in renormalization of the constants
of the complete potential and in the shift of points in the
phase diagram.

Let us pay attention to the phase borderlines in Figs. 2 and
3 which are close to vertical. Even with a very precise deter-
mination of the Ba concentration, there is always concentra-
tion ingomogeneity. That is why the vertical borderlines will
be smeared. We would also like to note that another distur-
bance of the phase diagram may be due to possible spinodal
decomposition of the solid solution and formation of BT
nano-regions in the process of sample preparation.50 Note
that maybe just such a decomposition of the solid solution
was the reason for glass-like behavior in the ceramic samples
at low x observed in Ref. 35, though this result was not
supported in the other works.33,36,38

Now, we discuss how important is the elastic contribution
for the phase diagram. It appears that at, for example,
x=0.51, the difference between the 0–2 phase transition tem-
peratures calculated with and without the elastic contribution
is 24 K. At x=0.8, the same value for the 3–4 phase transi-
tion temperatures is 17 K. �The elastic contribution de-
creases the phase transition temperatures.� Thus, the differ-
ence is no more than 10%, i.e., not very high. However, even
small variation of the potential constants can significantly
change the phase diagram at small x, which is clearly seen in
Fig. 3.

V. SUMMARY

The method of construction of the potential in the frame-
work of the phenomenological theory has been developed for
description of the concentration phase diagram of nonorder-
ing solid solutions. �The ordered solid solution is a special
case which should be treated separately.�

The concentration �x−T� phase diagram of BaxSr1−xTiO3

solid solution has been derived, and the diagram adequately
agrees with the available experimental data.

There are three specific points in the phase diagram: two
N-phase points and one tricritical point. The coordinates of
these points critically depend on the numerical values of the
potential constants, which may explain large scattering of
experimental data.

At low Ba concentration, there are several phase states,
which are very close with respect to the concentrations. Con-
centration fluctuations in the samples can result in broaden-
ing of these “quasi-vertical” borderlines.

ACKNOWLEDGMENTS

We are grateful to P. N. Timonin for illuminating discus-
sion during the course of this work. This study was partially
supported by the Russian Foundation for Basic Research
�Project No. 04-02-16228� and the Grant No. UR
�01.01.270�.

1 F. Iona and G. Shirane, Ferroelectric Crystals �Pergamon, New
York, 1962�.

2 W. C. B. Jaffe and H. Jaffe, Piezoelectric Ceramics �Academic,
New York, 1971�.

3 M. E. Lines and A. M. Glass, Principles and Applications of

Ferroelectrics and Related Materials �Clarendon, Oxford,
1977�.

4 A. Devonshire, Philos. Mag. 40, 1040 �1949�.
5 D. Meyerhofer, Phys. Rev. 112, 413 �1958�.
6 K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 �1979�.

FIG. 3. Phase diagram of BaxSr1−xTiO3 at low x in the vicinity
of the TN2=48 K multiphase point. As in Fig. 2, solid and dashed
lines present calculated diagrams for the first and second order
phase transitions, respectively. Experimental points are from Refs.
35 and 38 �circles� and from Ref. 36 �triangles�. The values of t44

� in
�a�–�e� are: �a� t44

� �0, �b� 0� t44
� �2.3, �c� 2.3� t44

� �2.8, �d�
2.8� t44

� �4, �e� t44
� �4 �in �1029 J /C2 m units�.

SHIROKOV et al. PHYSICAL REVIEW B 73, 104116 �2006�

104116-6



7 H. Thomas and K. A. Müller, Phys. Rev. Lett. 21, 1256 �1968�.
8 J. Slonczewski and H. Thomas, Phys. Rev. B 1, 3599 �1970�.
9 J. Slonczewski, Phys. Rev. B 2, 4646 �1970�.

10 K. Müller, W. Berlinger, and J. Slonczewski, Phys. Rev. Lett. 25,
734 �1970�.

11 P. Fleury, J. Scott, and J. Worlock, Phys. Rev. Lett. 21, 16 �1968�.
12 G. Shirane and Y. Yamada, Phys. Rev. 177, 858 �1969�.
13 T. Sakudo and H. Unoki, Phys. Rev. Lett. 26, 851 �1971�.
14 R. Cowley, Phys. Rev. Lett. 9, 159 �1962�.
15 H. Vogt, Phys. Rev. B 51, 8046 �1995�.
16 J. Kiat and T. Roisnel, J. Phys.: Condens. Matter 8, 3471 �1996�.
17 J. Barrett, Phys. Rev. 86, 118 �1952�.
18 H. Uwe and T. Sakudo, Phys. Rev. B 13, 271 �1976�.
19 N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61,

R825 �2000�.
20 A. K. Tagantsev, E. Courtens, and L. Arzel, Phys. Rev. B 64,

224107 �2001�.
21 P. Fleury and J. Worlock, Phys. Rev. 174, 613 �1968�.
22 J. Petzelt, T. Ostapchuk, and I. Gregora et al., Phys. Rev. B 64,

184111 �2001�.
23 G. Sorge, E. Hegenbarth, and G. Schmidt, Phys. Status Solidi 37,

599 �1970�.
24 O. Ness, K. Müller, T. Suzuki, and F. Fossheim, Europhys. Lett.

19, 397 �1992�.
25 E. Balashova, V. Lemanov, G. M. R. Kunze, and M. Weihnacht,

Solid State Commun. 94, 17 �1995�.
26 J. Scott and H. Ledbetter, Z. Phys. B: Condens. Matter 104, 635

�1997�.
27 C. Ang, J. F. Scott, Z. Yu, H. Ledbetter, and J. L. Baptista, Phys.

Rev. B 59, 6661 �1999�.
28 A. V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. K. H. Salje,

and J. F. Scott, Phys. Rev. B 61, 946 �2000�.
29 A. Binder and K. Knorr, Phys. Rev. B 63, 094106 �2001�.
30 L. Arzel, B. Hehlen, A. Tagantsev, F. Denoyer, K. Liss, R. Currat,

and E. Courtens, Ferroelectrics 267, 317 �2002�.

31 M. Liu, T. R. Finlayson, and T. F. Smith, Phys. Rev. B 55, 3480
�1997�.

32 E. Hegenbarth, Phys. Status Solidi 9, 191 �1965�.
33 J. Bednorz, Ph.D. thesis, Swiss Federal Institute of Technology,

Zurich, 1982.
34 S. Miura, M. Marutake, H. Unoki, H. Uve, and T. Sakudo, J.

Phys. Soc. Jpn. 38, 1056 �1975�.
35 V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tara-

kanov, Phys. Rev. B 54, 3151 �1996�.
36 R. Wang, Y. Inaguma, and M. Itoh, Mater. Res. Bull. 36, 1693

�2001�.
37 C. Menoret, J. M. Kiat, B. Dkhil, M. Dunlop, H. Dammak, and O.

Hernandez, Phys. Rev. B 65, 224104 �2002�.
38 E. Smirnova, A. Sotnikov, R. Kunze, M. Weihnacht, O. Kvyatk-

ovskii, and V. V. Lemanov, Solid State Commun. 133, 421
�2005�.

39 L. Benguigui, Phys. Status Solidi A 46, 337 �1978�.
40 L. Landau and E. Lifshitz, Statistical Physics �Pergamon, Lon-

don, 1985�.
41 E. Salje, M. Gallardo, J. Jimenez, F. Romero, and J. del Cerro, J.

Phys.: Condens. Matter 10, 5535 �1998�.
42 A. Bell, J. Appl. Phys. 89, 3907 �2001�.
43 R. Cowley, Phys. Rev. 134, A981 �1964�.
44 J. Harada, J. Axe, and G. Shirane, Phys. Rev. B 4, 155 �1971�.
45 Y. Yamanaka, M. Kataoka, Y. Inaba, K. Inoue, B. Hehlen, and E.

Courtens, Europhys. Lett. 50, 688 �2000�.
46 W. Bond, W. Mason, and H. McSkimin, Phys. Rev. 82, 442

�1951�.
47 A. Hilton and B. W. Ricketts, J. Phys. D 29, 1321 �1996�.
48 J.-H. Jeon, J. Eur. Ceram. Soc. 24, 1045 �2004�.
49 M. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crys-

tals �Springer, Berlin, 1996�.
50 D. Fuks, S. Dorfman, S. Piskunov, and E. A. Kotomin, Phys. Rev.

B 71, 014111 �2005�.

CONCENTRATION PHASE DIAGRAM OF BaxSr1−xTiO3¼ PHYSICAL REVIEW B 73, 104116 �2006�

104116-7


