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4e-condensation in a fully frustrated Josephson junction diamond chain
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Fully frustrated one-dimensional diamond Josephson chains have been shown [B. Dougot and J. Vidal, Phys.
Rev. Lett. 88, 227005 (2002)] to possess a remarkable property: The superfluid phase occurs through the
condensation of pairs of Cooper pairs. By means of Monte Carlo simulations we analyze quantitatively the
insulator to 4e-superfluid transition. We determine the location of the critical point and discuss the behavior of
the phase-phase correlators. For comparison, we also present the case of a diamond chain at zero and 1/3
frustration where the standard 2e-condensation is observed.
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Josephson arrays in the quantum regime have been stud-
ied extensively,! both experimentally and theoretically, as
model systems through which to investigate a variety of
quantum phase transitions. The application of a magnetic
field creates frustration and leads to a number of interesting
physical effects.!?

Very recently, renewed interest in frustrated Josephson
networks has been stimulated by the work by Vidal et al.? on
the existence of localization in fully frustrated tight binding
models with 753 symmetry. Localization in this case is due the
destructive interference for paths circumventing every
plaquette. These clusters over which localization takes place
were named Aharonov-Bohm (AB) cages. Experiments in su-
perconducting networks have been performed and the exis-
tence of the AB cages has been confirmed through critical
current measurements both in wire* and junction™® networks.
Starting from the original paper by Vidal et al., several as-
pects of the AB cages both for classical’"'” and quantum'!
superconducting networks have been highlighted.

The basic mechanism leading to the AB cages is also
present in the (simpler) quasi-one-dimensional (1D) lattice
shown in Fig. 1. At fully frustration, it has been shown'? that
superconducting coherence is established throughout the sys-
tem by means of 4e-condensation.'* The global supercon-
ducting state is due to the condensation of pairs of Cooper
pairs. Predictions of the critical current of the diamond chain
of Fig. 1 amenable to experimental confirmation have been
put forward by Protopopov and Feigel’'man.!*!> Unusual
transport properties of these systems have been also pre-
dicted in semiconducting samples.!® In this work, we present
the results of our Monte Carlo simulations on the Josephson
junction network with the geometry depicted in Fig. 1. Our
aim was to perform a detailed quantitative analysis of the
phase diagram predicted in Ref. 12. In order to have a fairly
complete description of the effect of frustration in this case,
we considered the stiffness and phase correlators for three
values of the frustration parameter; i.e., f=0, f=1/3 and
f=1/2.

The Hamiltonian for a Josephson junction network is
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PACS number(s): 74.81.—g, 32.80.Pj, 75.10.Hk, 64.60.Cn
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The first term in the Hamiltonian is due to the charging en-
ergy. Here for simplicity we consider the case in which the
Coulomb interaction is on site; see Ref. 14 for the more
realistic case of long-range charging interaction. The second
term is the Josephson contribution. The phase of the super-
conducting order parameter in the ith island is denoted by ¢,
E, is the charging energy, and E; is the Josephson coupling
energy. The number n; and phase ¢; operators are canonically
conjugate on each site: [n;,e'%]=&;e'%. The gauge-invariant
definition of the phase in presence of an external vector po-
tential A and flux-per-plaquette ® (Py=hc/2e is the flux
quantum) contains the term A; J:%; JIA-dl. All the observ-
ables are a function of the frustration parameter defined as

oL
Do Jp

1
A-dl= 2772;:' A,
where the line integral is performed over the elementary
plaquette. Due to the periodicity of the model, it is sufficient
to consider values of the frustration 0<f<1/2.

The Monte Carlo simulations have been performed on an
effective classical 1+1D XY-model. The effective action is
constructed by applying the Trotter-Suzuki time slicing to the
partition function associated to the Hamiltonian in Eq. (1).

FIG. 1. The diamond chain Josephson network analyzed in the
present paper. The crosses represent the Josephson junctions con-
necting two neighboring superconducting islands. In the chain,
there are two types of inequivalent sites with two (gray) and four
(black) neighbors. By an appropriate choice of the gauge, the mag-
netic phase factors A; ; can be chosen to be zero on the three links
indicated by continuous lines, and f in the fourth one indicated by a
dotted line.
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FIG. 2. (Color online) In the upper panel, the stiffness for the
case of f=0 frustration is plotted against the coupling. Different
symbols correspond to different sizes of the chain: circles to
L=36, squares to L=48, diamonds to L=56, up triangles to L=64,
and down triangles to L=72. The dashed line with slope 2/ gives
a rough estimate of the transition point. A better estimate is obtained
by means of the finite size scaling shown in the lower panel and
explained in the text. The thick black line has a slope of exactly 1
and is plotted as a reference guide. The value of [ at the transition
is 2.9.

The procedure, discussed in detail in Refs. 17 and 18, leads
to the action (A7 is the imaginary time slice)

1
S=- 2 cos(@;x— ¢ixr)
EOATi,(kk/>
~EATY, cos(@— @i~ Ar)). (2)
(ijyk

The first term corresponds to charging (and takes into ac-
count the quantum fluctuations) while the second is due to
the Josephson coupling. Close to the phase transition univer-
sality guarantees that the properties are unaffected by rescal-
ing of the underlying space-time lattice. By making the
choice Ar=1/\EE,, one obtains an isotropic classical
model with coupling K=\E,;/E,."”'8 Such a choice makes
the analysis of the Monte Carlo data considerably simpler;
studying the 7=0 phase diagram implies taking the thermo-
dynamic limit also in the time direction. It is important to
emphasize that this rescaling works only for the study of the
zero-temperature phase transition. The simulations were per-
formed on L X L lattice with periodic boundary conditions
(the largest lattice was 72X 72). The expectation values of
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FIG. 3. (Color online) The same plots of Fig. 2 for the case of
f=1/3. The critical point is K'=1.045 (with [y~ 0.6).

the different observables (stiffness and correlation functions)
have been obtained, averaging up to 107 Monte Carlo con-
figurations, by using a standard Metropolis algorithm. Typi-
cally, the first half of configurations in each run were used
for thermalization.

The stiffness, related to the critical current, is used to
signal the presence of the transition. It is defined through the
increase of the free energy J due to a phase twist é imposed
along the space direction:'’

_PF
T8

The critical point is expected to be of the Berezinskii-
Kosterlitz-Thouless (BKT) universality class.'>?! Its location
can be determined using the following ansatz for the size
dependence of I'(K,):2°

r

7K
‘T (K)=1
2 L( L)

T (L) ®)

where [ is the only fit parameter. In the presence of frustra-
tion, the universality class of the transition may be different
from that of the unfrustrated case. In the case of the two-
dimensional fully frustrated XY-model this issue has been
investigated in great detail (see Refs. 22 and 23 and refs.
therein). Up to date, there is no unanimous consensus on the
nature of the transition. However, in this work we suppose
that the transition belongs to the BKT universality class, as

100502-2



4e-CONDENSATION IN A FULLY FRUSTRATED...

FIG. 4. (Color online) The same plots of Figs. 2 and 3 for
f=1/2. Compared to the cases of f=0 and f=1/3, the superfluid
region has shrunk considerably. The value of [, at the transition
is ~25.

suggested by Ref. 12, and determine the critical value by
means of Eq. (3).

We first analyze the f=0 case and extract the value of the
critical coupling from the stiffness. This extrapolation has
been done by performing a linear fit in logarithmic scale
[7KT;(K)-2]"'=a(K)In L-1n [, and searching for the cou-
pling value such that a(K)=1. This coupling value is then
identified with the critical point K,.. The proposed ansatz fits
very well the data and the estimated value of the critical
coupling is K.'=1.28 which corresponds to (E,/E,).~0.61.
Data are reported in Fig. 2.

The results of the stiffness at f=1/3 and 1/2 are shown in
Figs. 3 and 4, respectively. As compared to the unfrustrated
case, the critical value of the Josephson coupling required to
establish superfluid coherence is slightly larger for f=1/3
and further increases for the fully frustrated case f=1/2.
The ansatz of Eq. (3) seems to provide an accurate estimate
of the transition point for f=0 and f=1/3. In the fully frus-
trated case, however, the value of [;=25 indicates that we
probably need larger chains in order to really enter the criti-
cal region. Another indication of this fact emerges in the
upper panel of Fig. 4, where the line of slope 2/ crosses the
data when the stiffness decreases to zero. In order to put
bounds to the critical point in the fully frustrated case, we
plot in Fig. 5 the stiffness as a function of the system size.
From the raw data it is possible to bound the transition point
in the range 0.55<K_'<0.57.
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FIG. 5. (Color online) The stiffness is plotted as a function of
the system size for different values of K in the critical region.
This plot highlights the existence of a transition, although it
does not allow us to extract the transition point. For K~'<0.55,
data seem to scale to a finite value in the thermodynamic limit,
whereas over 0.57 it seems clear that they go to zero. Different
symbols correspond to values of K~ circles (0.45), squares (0.49),
diamond (0.53), triangles up (0.555), triangles left (0.56), triangles
down (0.565), triangles right (0.575).

All these results are summarized in the table below:

f 0 1/3 1/2
K 1.28+0.01 1.045+0.005 0.56+0.01
(E,/Ey). 0.61+0.01 0.91+0.01 3.2+0.1

The ratio of the obtained critical couplings for the unfrus-
trated and fully frustrated systems is K. 1,,/K,.(,=2.28+0.06
and not 4, as expected from the reduction by a factor of 1/2
of the effective charge of the topological excitation that un-
binds at the critical point. This may be due to the fact that the
screening of the vortices is different in the unfrustrated and
fully frustrated cases, therefore leading to a further correc-
tion in the ratio between the two critical points.

The differences in the fully frustrated case manifest dra-
matically in the way condensation is achieved. As predicted
by Dougot and Vidal,'? the destructive interference built in
the diamond structure prevents the Cooper pair from having
(quasi-) long-range order. The superfluid phase is then estab-
lished via the delocalization of pairs of Cooper pairs. This is
at the origin of the 4e-condensation. In order to check this
point, the knowledge of the phase-phase correlators is re-
quired. Quasi-long-range behavior in a two-point correlation
function of the type

82.(li = j|) = (cos n(@; - ¢;)) (4)

signals the existence of condensation of 2n charged objects.
In Fig. 6 we discuss their properties. In the upper panels, we
consider the phase-phase correlator g, for two different cou-
plings deep in the superfluid and Mott insulating phases, re-
spectively. What is evident from the figure is that, despite the
fact that the system is phase coherent, phase correlations
decay very fast almost independently from the value of K. As
explained in Ref. 12, this behavior should be ascribed to the
existence of the Aharonov-Bohm cages. Even if hopping of
single Cooper pairs is forbidden because of quantum inter-
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FIG. 6. (Color online) The phase correlators g, and g4 are
shown as a function of the distance for the fully frustrated case
f=1/2. Data are plotted for a chain with L=48. The distances on
the horizontal axis are calculated along the sawtooth path consti-
tuted by the lower halves of rhombi in Fig. 1. Black and gray
symbols refer to black and gray sites respectively, in Fig. 1. The
alternating signs are due to the choice of the gauge. The important
feature is the decaying behavior. On the left side, circles correspond
to K~'=0.1 deep in the ordered phase and squares to K~'=0.5 on
the border of it. On the right side, squares are K~'=0.6 and circles
K~'=1.2, deep in the Mott insulator phase. Differently from g,, the
correlator g, shows quasi-long-range order.

ference, correlated hopping of two pairs does not suffer
the same destructive interference. In the lower panels of
the same figure, the space dependence of the correlator g,
is plotted for the same coupling as upwards. The different
behavior between the Mott and the superfluid phase is
now evident. The correlator decays exponentially only for
K '=1.2>K, (right side): in the other panel, differently from
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FIG. 7. (Color online) Phase correlators at frustration f=1/3.
Top: the phase correlator g,(|i—j|) is shown as a function of the
distance between the sites both in the ordered phase (left panel),
K~'=0.3 (circles) and 1.0 (squares) and in the Mott insulator phase
(on the right) K~'=1.1 (squares) and 1.4 (circles). Differently from
the fully frustrated case, here the phase correlator of Cooper pairs
changes its behavior at the critical point. Bottom: the phase cor-
relator g,(|i—j|) is shown for the same coupling values as at the top.

8-, the decay is power-law like. For comparison we report
also simulations of the phase correlators for the case f
=1/3. In this case the “standard” condensation of Cooper
pairs is observed as witnessed by the behavior of g, shown in
Fig. 7.
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