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Significantly different normal-state Lorenz numbers have been found in two independent direct measure-
ments based on the Righi-Leduc effect, one about six times smaller and the other one about two times larger
than the Sommerfeld value in single cuprate crystals of the same chemical composition. The controversy is
resolved in the model where charge carriers are mobile lattice bipolarons and thermally activated nondegen-
erate polarons. The model numerically fits several longitudinal and transverse kinetic coefficients providing a
unique explanation of a sharp maximum in the temperature dependence of the normal-state Hall number in
underdoped cuprates.
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Particular interest in studies of high-temperature super-
conductors lies in a possible violation of the Wiedemann-
Franz �WF� law in doped cuprates. A departure from the
Fermi–BCS liquid picture is seen in both the superconduct-
ing and normal-state thermal conductivities and might be
related by a common mechanism.1,2 Takenaka et al.1 system-
atically studied the oxygen-content dependence of the insu-
lating state thermal conductivity enabling them to estimate
the phononic contribution, �ph�T�, for the metallic state to
some extent. Their analysis led to the conclusion that the
electronic term, �, is only weakly T dependent. This approxi-
mately T-independent � in the underdoped region therefore
implies the violation of the WF law since the resistivity is
found to be a nonlinear function of temperature in this re-
gime. A breakdown of the WF law has been seen in other
cuprates such as Pr2−xCexCuO4 �Ref. 2� at very low tempera-
tures. On the other hand, measurements by Proust et al.3 on
Tl2Ba2CuO6+� have suggested that the Wiedemann-Franz
law holds perfectly well in the overdoped region. However,
in any case, the extraction of the electronic thermal conduc-
tivity has proven difficult and inconclusive as � and �ph are
comparable at elevated temperatures, or there is a thermal
decoupling of phonons and electrons at ultralow
temperatures.4

This uncertainty has been avoided in measurements of the
Righi-Leduc effect. The effect describes transverse heat flow
resulting from a perpendicular temperature gradient in an
external magnetic field, which is a thermal analog of the Hall
effect. Using the effect the “Hall-Lorenz” electronic number,
LH= �e /kB�2�xy / �T�xy� has been directly measured in
YBa2Cu3O6.95 and YBa2Cu3O6.6 �Ref. 5� since transverse
thermal �xy and electrical �xy conductivities involve presum-
ably only electrons. The experimental LH�T� showed a qua-
silinear temperature dependence above the resistive Tc,
which strongly violates the WF law. Remarkably, the mea-
sured value of LH just above Tc turned out precisely the same
as predicted by the bipolaron theory,6 L=0.15L0, where L0
=�2 /3 is the conventional Sommerfeld value. The break-
down of the WF law revealed in the Righi-Leduc effect5 has
been explained by a temperature-dependent contribution of
thermally excited single polarons to the transverse
magnetotransport7.

Surprisingly, more recent measurements of the Hall-
Lorenz number in single crystals of optimally doped
YBa2Cu3O6.95 and optimally doped and underdoped
EuBa2Cu3Oy led to an opposite conclusion.8 The experimen-
tal LH for these samples has turned out only weakly tempera-
ture dependent and exceeding the Sommerfeld value by more
than two times in the whole temperature range from Tc up to
the room temperature. Following an earlier claim9 Matusiak
and Wolf8 have argued that a possible reason for such a
significant difference might be that Zhang et al.5 used differ-
ent samples, one for �xy and another one for �xy measure-
ments, which makes their results for LH inconsistent.

Here I argue that there is no inconsistency in both LH
determinations. One order of magnitude difference in two
independent direct measurements of the normal-state Hall-
Lorenz number is consistently explained by the bipolaron
theory.10 The theory explains the huge difference in the Hall-
Lorenz numbers by taking into account the difference be-
tween the in-plane resistivity of detwinned5 and twinned8

single crystals. The theory fits well the observed LH�T�s and
explains a sharp Hall-number maximum8 observed in the
normal state of underdoped cuprates.

In the presence of the electric field E, the temperature
gradient �T, and a weak magnetic field B �z�E and �T, the
electrical currents in x ,y directions are given by

jx = axx�x�� − 2e�� + axy�y�� − 2e�� + bxx�xT + bxy�yT ,

jy = ayy�y�� − 2e�� + ayx�x�� − 2e�� + byy�yT + byx�xT ,

�1�

and the thermal currents are

wx = cxx�x�� − 2e�� + cxy�y�� − 2e�� + dxx�xT + dxy�yT ,

wy = cyy�y�� − 2e�� + cyx�x�� − 2e�� + dyy�yT + dyx�xT .

�2�

Here � and � are the chemical and electric potentials.
Real phonons and �bi�polarons are well decoupled in the

strong-coupling regime of the electron-phonon interaction10

so the standard Boltzmann equation for the kinetics of renor-
malized carriers is applied. If we make use of the ��E�

PHYSICAL REVIEW B 73, 100501�R� �2006�

RAPID COMMUNICATIONS

1098-0121/2006/73�10�/100501�4�/$23.00 ©2006 The American Physical Society100501-1

http://dx.doi.org/10.1103/PhysRevB.73.100501


approximation11 the kinetic coefficients of bipolarons are
found as7 �kB= 	 =c=1�,

axx
b = ayy

b =
2enb

mb
��b� ,

ayx
b = − axy

b =
2egbBnb

mb
��b

2� ,

bxx
b = byy

b =
2enb

Tmb
��E − ���b� ,

byx
b = − bxy

b =
2egbBnb

Tmb
��E − ���b

2� ,

and

cxx
b = cyy

b =
nb

mb
��E + 2e���b� ,

cyx
b = cxy

b gbBnb

mb
��E + 2e���b

2� ,

dxx
b = dyy

b =
nb

Tmb
��E + 2e���E − ���b� ,

dyx
b = − dxy

b =
gbBnb

Tmb
��E + 2e���E − ���b

2� ,

where

�Q�E�� =

�
0




dEQ�E�EDb�E� � fb/�E

�
0




dEEDb�E� � fb/�E

, �3�

Db�E��Ed/2−1 is the density of states of a d-dimensional bi-
polaron spectrum, E=K2 / �2mb�, gb=2e /mb, and fb�E� is the
equilibrium distribution function. Polaronic coefficients are
obtained by replacing super/subscripts b for p, double el-
ementary charge 2e for e and � for � /2 in all kinetic coef-
ficients, and mb for 2mp in aij and cij. The kinetic energy of
bipolarons, E, should be replaced by E+T*, where E
=k2 / �2mp� is the polaron kinetic energy and T* is half of the
bipolaron binding energy �i.e., the pseudogap temperature in
the theory10�.

The in-plane resistivity, �, the Hall number, RH, and the
Hall-Lorenz number, LH, are expressed in terms of the ki-
netic coefficients as �−1=2eaxx, RH=ayx /2eB�axx�2, and

LH =
e��dyxaxx − cyxbxx�axx − cxx�bxxayx − byxaxx��

2Tayxaxx
2 , �4�

respectively, where a ,b ,c ,d=ap+ab ,bp+bb ,cp+cb ,dp+db.
The in-plane resistivity, the temperature-dependent para-

magnetic susceptibility, and the Hall ratio have already been
described by the bipolaron model taking into account ther-
mally activated single polarons.12–15 The bipolaron model

has also offered a simple explanation of c-axis transport and
the anisotropy of cuprates.14,16–18 The crucial point is that
single polarons dominate in c-axis transport at finite tem-
peratures because they are much lighter than bipolarons in
the c direction. Bipolarons can propagate across the planes
only via a simultaneous two-particle tunneling, which is
much less probable than a single polaron tunneling. How-
ever, along the planes polarons and intersite bipolarons
propagate with comparable effective masses.10 Hence in the
mixture of nondegenerate quasi-two-dimensional �2D�
bosons and thermally excited three-dimensional �3D� fermi-
ons, only fermions contribute to c-axis transport, if the tem-
perature is not very low, which leads to the thermally acti-
vated c-axis transport and to the huge anisotropy of
cuprates.16

We have also shown7 that by the necessary inclusion of
thermally activated polarons, the model, Eq. �4�, predicts a
breakdown of the WF law with the small near linear in tem-
perature Hall-Lorenz number, as observed experimentally by
Zhang et al.5 �see Fig. 1�. Let us now show that the bipolaron
model describes the contrasting observations of Ref. 8 as
well, if the ratio of bipolaron and polaron mobilities, 

=2�bmp /�pmb, becomes relatively small.

Both polaronic and bipolaronic carriers are not degen-
erate above Tc, so the classical distribution functions fb
=y exp�−E /T� and fp=y1/2 exp�−�E+T*� /T� are applied with
y=exp�� /T�. The chemical potential is evaluated using 2nb

+np=x /v0, where x is the number of itinerant holes in the
unit-cell volume v0 not localized by disorder. The bipolaron
density remains large compared with the polaron density in a
wide temperature range, so that nbv0	x /2 and y
	�x / �mba2T� for quasi-2D bipolarons. Then the atomic
density of 3D polarons is npv0=Tmpa2 exp�−T* /T�
��xmp /2�2mb�1/2 �a is the lattice constant�. The ratio �
=np /2nb remains small at any pseudogap temperature T* and

FIG. 1. �Color online� The Hall-Lorenz number LH in under-
doped twinned EuBa2Cu3O6.65 �circles� �Ref. 8� compared with the
theory, Eq. �7�, when 
�1 �upper line�, and the significantly dif-
ferent Hall-Lorenz number in detwinned YBa2Cu3O6.95 �triangles�
�Ref. 5� described by the same theory �Ref. 7� with a moderate
value of 
=0.44 �lower line�.
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any relevant doping level x�0.05, �	T exp�−T* /T�
��18mp /�2xmb�1/2 /W�1, if the temperature T is small
compared with the polaron bandwidth W=6/mpa2. Hence, if
the mobility ratio 
 is of the order of unity, both longitudinal
and transverse in-plane magnetotransport is dominated by
bipolarons, which explains a remarkably low LH in high-
quality detwinned crystals used in Ref. 5, Fig. 1.

On the other hand, twinned crystals used in Ref. 8 had the
in-plane resistivity several times larger than that in Ref. 5
presumably resulting from twin boundaries and long-term
aging. The twin boundaries and other defects are strong scat-
terers for slow 2D bipolarons �see below�, while lighter
quasi-3D polarons are mainly scattered by real optical
phonons, which are similar in all crystals. Hence, one can
expect that 
 becomes small in twinned crystals of Ref. 8. If
the condition 
2�� is met, then only polarons contribute to
the transverse electric and thermal magnetotransport. It ex-
plains about the same thermal Hall conductivities ��xy 	2.5
�10−3B W/Km at T=100 K� dominated by polarons in both
crystals of YBa2Cu3O6.95 used in Refs. 5 and 8, and at the
same time a substantial difference of their electrical Hall
conductivities, �xy, as bipolarons virtually do not contribute
to �xy in the twinned samples.

To arrive at simple analytical results and illustrate their
quantitative agreement with the experiment8 let us assume
that 
2��, but 
��, and neglect an energy dependence of
the transport relaxation rates of all carriers. In such condi-
tions bipolarons do not contribute to transverse heat and
electric flows, but determine the in-plane conductivity. Ki-
netic responses are grossly simplified as

� =
mbv0

2e2x�b
, �5�

RH =
v0�

ex
2 =
e3np�p

2

mp
2 �2, �6�

LH = 4.75 + 3T*/T + �T*/T�2. �7�

As in the case of 
2��, discussed in Ref. 7, the recom-
bination of a pair of polarons into bipolaronic bound states at
the cold end of the sample results in the breakdown of the
WF law, as described by two temperature-dependent terms in
Eq. �7�. The breakdown is reminiscent of the one in conven-
tional semiconductors caused by the recombination of
electron-hole pairs at the cold end.11 However, the tempera-
ture dependence and the value of LH�T� turn out remarkably
different. When 
2��, The Hall-Lorenz number is more
than an order of magnitude larger than in the opposite re-
gime, 
2��. It increases with temperature lowering rather
than decreases fitting well the experimental observation8 in
twinned underdoped single crystals of EuBa2Cu3O6.65 with
T*=100 K, Fig. 1. Hence by varying the bipolaron to polaron
mobility ratio, 
, the model accounts for qualitatively differ-
ent behaviors of LH�T� in twinned and detwinned cuprates.
The energy dependence of relaxation rates might somewhat
change numerical coefficients in Eq. �7�, but it does not
qualitatively change the temperature dependence and the
value of LH�T�.

The Hall-Lorenz number is the ratio of different kinetic
coefficients rather than a proper kinetic response function.
However, its significant departure from the Sommerfeld
value L0	3.3 clearly indicates a non-Fermi liquid behavior
since the relaxation mechanism virtually cancels in the ratio.
The partially gapped Fermi liquid model used to explain
large LH in Ref. 8 predicts a quadratic decrease of LH�T� with
temperature lowering, rather than a steep increase as ob-
served, Fig. 1. To account for an unexpected rise of LH�T�
below T	160 K in underdoped samples, Matusiak et al.8

suggested an opening of another narrower gap. However, the
gapped Fermi liquid model is clearly incompatible with the
near temperature-independent resistivity and with the sharp
maximum of the normal-state Hall ratio at 100 K, as mea-
sured in Ref. 8, Fig. 2. It is also hard to accept the claim of
Refs. 8 and 9 that the research team of Ref. 5 could so badly
manipulate their data to arrive at an erroneous LH more than
one order of magnitude smaller in identical cuprates.

On the contrary our model explains the near temperature-
independent resistivity and the unusual Hall ratio, Fig. 2. If
we assume that in EuBa2Cu3O6.65 slow bipolarons are mainly
scattered by neutral defects and twin boundaries, their relax-
ation rate depends on the temperature as �b0 /�b=1
+ �T /T0�1/2, where �b0 is a constant. The temperature-
independent contribution comes from the scattering rate off
neutral impurities with the carrier exchange11 similar to the
scattering of slow electrons by hydrogen atoms. The square-
root term originates in the scattering of slow bipolarons by
point defects and twin boundaries with a temperature-
independent mean-free pass. The scale T0 thus depends on
the relative strength of two scattering mechanisms. The the-
oretical resistivity

��T�
�0

= 1 + �T/T0�1/2 �8�

fits well the experimental ��T� in the entire normal-state
region with �0=mbv0 / �2e2x�b0�=1.3�10−5 �m and T0

=321 K �Fig. 2�. Lighter 3D polarons are scattered by
defects and optical phonons, so that �p0 /�p= �T /W�1/2

FIG. 2. �Color online� The in-plane resistivity � �triangles� and
the Hall ratio RH �circles� of underdoped twinned EuBa2Cu3O6.65

�Ref. 8�, compared with the theory �lines�.
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+B exp�−� /T� with a temperature-independent �p0. Then,
using np�T exp�−T* /T�, Eq. �6� yields

RH�T� = �2�T�
AT exp�− T*/T�

�T1/2 + b exp�− �/T��2 . �9�

This expression fits extremely well the experimental
RH�T� with temperature-independent constants A
=e3�p0

2 �18xmp /�2mb�1/2 / �v0mp
2�=275 m/�2 C and b

=BW1/2=122 K1/2, the reasonable value of the characteristic
optical-phonon frequency �=470 K, and the same
pseudogap T*=100 K as in the Hall-Lorenz number in Fig.
1. It appears almost perfect even in the critical region very
close to Tc �Fig. 2�, if one uses the experimental ��T� in Eq.
�9�. However, the maximum of the Hall ratio is a normal-
state feature lying well above the critical region by about
30 K �Fig. 2�, as in underdoped YBa2Cu3Oy �Ref. 15�. At
temperatures below T* the Hall ratio drops as the number of
thermally activated polarons decreases, and at temperatures
above T* it drops since the polaron relaxation time decreases.

To verify the self-consistency of the model let us estimate

 and �. In the optimally doped samples one expects 
2 of
the order of �, so the Hall ratio approximately measures the
itinerant carrier density, RH

opt	v0 /exopt. Then using the ex-

perimental values8 of RH in optimally doped EuBa2Cu3O7
and underdoped EuBa2Cu3O6.65 one estimates 
2 /�
	RH

optxopt /xRH�0.1 in underdoped EuBa2Cu3O6.65, which
justifies one of our assumptions. To get 
�� we have to
assume that ��0.1, which is indeed the case in the whole
temperature range, if the polaron band is wide enough, W
�5000 K. Finally, using the values of �0 and A and taking
x=0.1, mp=5me, v0=0.2 nm3, and mb=2mp the polaron and
bipolaron mean-free pass is estimated as lp	4 nm and lb
	0.3�mb /me�1/2 nm, respectively �here me is the free-
electron mass�. Their values are large compared with the
lattice constant justifying the Boltzmann approximation for
all carriers.

To sum up, the bipolaron theory resolves the paradox of
very different Hall-Lorenz numbers found in two indepen-
dent measurements5,8 in cuprate single crystals. It explains a
flat temperature dependence of the in-plane resistivity and
the sharp maximum in the normal-state Hall number of un-
derdoped cuprates as well.

The author acknowledges support of this work by EPSRC
�UK� �Grant No. EP/C518365/1� and enlightening discus-
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sey.

1 K. Takenaka, Y. Fukuzumi, K. Mizuhashi, S. Uchida, H. Asaoka,
and H. Takei, Phys. Rev. B 56, 5654 �1997�.

2 R. W. Hill, C. Proust, L. Taillefer, P. Fournier, and R. L. Greene,
Nature �London� 414, 711 �2001�.

3 C. Proust, E. Boaknin, R. W. Hill, L. Taillefer, and A. P. Mack-
enzie, Phys. Rev. Lett. 89, 147003 �2002�.

4 M. F. Smith, J. Paglione, M. B. Walker, and L. Taillefer, Phys.
Rev. B 71, 014506 �2005�.

5 Y. Zhang, N. P. Ong, Z. A. Xu, K. Krishana, R. Gagnon, and L.
Taillefer, Phys. Rev. Lett. 84, 2219 �2000�; �unpublished�.

6 A. S. Alexandrov and N. F. Mott, Phys. Rev. Lett. 71, 1075
�1993�.

7 K. K. Lee, A. S. Alexandrov, and W. Y. Liang, Phys. Rev. Lett.
90, 217001 �2003�; Eur. Phys. J. B 30, 459 �2004�.

8 M. Matusiak and Th. Wolf, Phys. Rev. B 72, 054508�R� �2005�;
M. Matusiak, K. Rogacki, T. Plackowski, and B. Veal, cond-mat/
0412175 �unpublished�.

9 M. R. Li, Phys. Rev. B 65, 184515 �2002�.

10 A. S. Alexandrov, Theory of Superconductivity: From Weak to
Strong Coupling �IOP, Bristol and Philadelphia, 2003�.

11 A. Anselm, Introduction of Semiconductor Theory �Prentice-Hall,
New Jersey, 1981�.

12 A. S. Alexandrov, A. M. Bratkovsky, and N. F. Mott, Phys. Rev.
Lett. 72, 1734 �1994�.

13 W. M. Chen, J. P. Franck, and J. Jung, Physica C 341, 1875
�2000�.

14 X. H. Chen, M. Yu, K. Q. Ruan, S. Y. Li, Z. Gui, G. C. Zhang,
and L. Z. Cao, Phys. Rev. B 58, 14219 �1998�.

15 A. S. Alexandrov, V. N. Zavaritsky, and S. Dzhumanov, Phys.
Rev. B 69, 052505 �2004�.

16 A. S. Alexandrov, V. V. Kabanov, and N. F. Mott, Phys. Rev. Lett.
77, 4796 �1996�.

17 J. Hofer, J. Karpinski, M. Willemin, G. I. Meijer, E. M. Kopnin,
R. Molinski, H. Schwer, C. Rossel, and H. Keller, Physica C
297, 103 �1998�.

18 V. N. Zverev and D. V. Shovkun, JETP Lett. 72, 73 �2000�.

A. S. ALEXANDROV PHYSICAL REVIEW B 73, 100501�R� �2006�

RAPID COMMUNICATIONS

100501-4


