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We report an atomic-scale study on the ferromagnetic insulator manganite LaMnO3.12 using �-� perturbed
angular correlation spectroscopy. Data analysis reveals a nanoscopic transition from an undistorted to a Jahn-
Teller �JT� distorted local environment upon cooling. The percolation thresholds of the two local environments
enclose a macroscopic structural transition �rhombohedral-orthorhombic�. Two distinct regimes of JT distor-
tions were found: a high-temperature regime where uncorrelated polaron clusters with severe distortions of the
Mn3+O6 octahedra survive up to T�800 K and a low-temperature regime where correlated regions have a
weaker JT-distorted symmetry.
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Intense experimental and theoretical work has been de-
voted to manganite systems due to their colossal magnetore-
sistance �CMR�, polaron dynamics, and charge-orbital order-
ing phenomena. The undoped manganites �AMnO3 where A
is a trivalent ion of La, Pr, . . .� typically show antiferromag-
netic insulator behavior and cooperative Jahn-Teller �JT� dis-
tortion of MnO6 octahedra. Oxygen excess or the presence of
divalent ions at A sites reduce the static JT distortion by the
creation of Mn4+ ions. This effect favors the ferromagnetic
interaction via dynamic electron transfer between Mn3+ and
Mn4+, the so-called double-exchange �DE� interaction.1 Al-
though DE interaction explains qualitatively the CMR, it
does not fully account for the large resistivity of the para-
magnetic and ferromagnetic insulator phases. Polaron forma-
tion must certainly play an important role in this respect.2–5

Polarons are formed due to the strong electron-lattice cou-
pling that leads to charge localization via JT distortions. Re-
cently, the nature of such local distortions, their dynamics
and correlations have been addressed by several authors.6–11

In spite of such an effort, several issues as the detailed struc-
ture of polarons, the temperature evolution of polaron clus-
ters, or the effect of such evolution on the average macro-
scopic lattice structure still remain as open questions.

Local distortions and their dynamics can be studied by
using �-� perturbed angular correlation spectroscopy �PAC�,
a nuclear hyperfine method specially effective to sample
atomic-scale environments. PAC efficiency is T independent,
allowing us to explore a wide range of temperatures. To gain
further insight on the microscopic nature of polaronic distor-
tions, their spatial correlations, and the role of polarons in
ferromagnetic insulator manganites �FMI�, we have studied
in detail the compound LaMnO3.12 using the PAC technique.
This compound is a prototypical FMI manganite that
undergoes a rhombohedral �R�-orthorhombic �O� structural
transition around room temperature, which provides us with
an ideal scenario to probe the evolution of local lattice dis-
tortions through different average lattice symmetries. In par-

ticular, we show that random distributed polaron clusters sur-
vive in the undistorted R phase up to temperatures as high as
776 K. These distortions are as strong as those observed in
the orbital ordered LaMnO3. Lowering T, the clusters con-
tinuously expand until a microscopic transition takes place at
Ts�170 K. Below the transition, the distortions are accom-
modated into a weaker JT-distorted phase.

LaMnO3+� ��=0.00�2�, 0.08�1�, and 0.12�1�� polycrys-
talline samples were produced by the solid-state reaction
method. Powder x-ray diffraction measurements show that
the samples are chemically homogeneous. In agreement with
Refs. 12 and 13, we find an antiferromagnetic insulator
ground state for the orthorhombic JT-distorted �=0 com-
pound �TN�139 K�, a ferromagnetic insulator behavior for
the weakly distorted �=0.08 sample �Tc�150 K�, and a fer-
romagnetic insulator state for the compound with �=0.12
�Tc�145 K�. This latter system presents as well an O-R
phase transition around room temperature. As shown in Refs.
12 and 14, the oxygen excess � results in equivalent amounts
of La and Mn vacancies, with the fraction of Mn4+ equal to
2�. �-� PAC measurements were performed using a high-
efficiency 6-BaF2 detector spectrometer.15 PAC samples �one
per measurement� were implanted at room temperature with
111mCd to a homogeneous low dose of 1012 cm−2 at 60 keV
in the ISOLDE/CERN facility. Remaining point defects cre-
ated during implantation were eliminated by annealing at
700 °C under an O2 controlled atmosphere for 20 min. The
peak density of probing Cd only attains 1 ppm of the La
concentration. Consequently, the implanted Cd atoms are
simply incorporated into La vacancies. The perovskite A �La�
site is specially appropriate to detect lattice distortions in the
surrounding MnO6 octahedra, because slight changes in the
charge geometry will significantly alter the electric field gra-
dient �EFG� parameters.

The 111mCd probes decay to 111mCd through an intermedi-
ate state by the emission of two consecutive � rays. The
half-life for the 111mCd isomeric state is T1/2=48 min, while
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for the intermediate state is T1/2=84 ns. The angular correla-
tion between the two � rays can be perturbed by both the
EFG and the magnetic hyperfine field �MHF�. These fields
respectively couple to the nuclear electric quadrupole �Q�
and the magnetic dipole ��� � moments of the intermediate
nuclear state. The Hamiltonian for such static interactions, in
the proper reference frame of the EFG tensor Vij with
�Vzz � � �Vyy � � �Vxx�, reads

H =
��0

6
�3Iz

2 − I�I + 1� +
1

2
��I+

2 + I−
2�� + �� · B� hf , �1�

where �0=3eQVzz / �2I�2I−1�� � is the fundamental preces-
sion frequency, I represents the nuclear spin of the probe
intermediate state �I=5/2 for 111Cd�, �= �Vxx−Vyy� /Vzz is the

EFG asymmetry parameter, and B� hf is the magnetic hyperfine
field.16 The perturbation of the �-� directional correlation is
described by the experimental R�t� function, where t is the
time spent by the nucleus in the 111Cd intermediate state. For
a hyperfine interaction, R�t� may be expanded as R�t�
=	AkkGkk�t� with Akk being the angular correlation coeffi-
cients. The perturbation factor Gkk�t� is the signature of the
fields interacting with the probes: MHF and an EFG in the
ferromagnetic phase and EFG alone for T	Tc. Below Tc, in
the presence of the two fields, we apply combined interaction
theory to obtain the MHF and EFG parameters. Above Tc, on
the other hand, Gkk�t� may be expressed as16

Gkk�t� = Sk0
+ 	

n

Skn
cos��nt�e−�n
t �2�

considering only pure electric quadrupole interactions. The
frequencies �n and amplitudes Skn

are determined by the H
diagonalization. For spin I=5/2, three frequencies are ob-
servable that are functions of �0 and �.17 The exponential
term in Eq. �2� accounts for an attenuation of the R�t� func-
tion that appears in all spectra. This effect is due to randomly
distributed intrinsic vacancies and defects that produce a
Lorentzian distribution of static EFGs with central value �0
and relative width 
. Independently, in manganites, short-
range charge diffusion coupled to lattice distortions �po-
larons� can lead to EFG fluctuations. These fluctuations con-
tribute to further attenuate R�t� when their time scale is
comparable to the lifetime of the PAC probe intermediate
state. When the characteristic fluctuation time ��� is shorter
than the nuclear spin precession time �2� /�0�, the R�t� func-
tion can be satisfactorily approximated by a single exponen-
tial damping term e−t multiplying the static expression �2�
with ��0

2�.18

Some experimental R�t� curves are displayed in Fig. 1 for
the compound with �=0.12. We find in the temperature
range from 10 to 776 K the coexistence of three main local
environments �u ,d ,r�, i.e., three fractions of probes
�fu , fd , fr� interacting with different local EFG distributions.
The environment r is detected by a low residual fraction of
the Cd probes �5%�, which is temperature independent. Its
EFG parameters are approximately Vzz

r �102 V/Å2 and
�r�0.9 at room temperature. This highly axial asymmetric
EFG might be related to probes located at the vicinity of

Mn/La vacancies and/or other defects. Actually, assuming
that the positions of the vacancies are not correlated, the
probability that a Cd siting in a La vacancy has in its sur-
roundings a Mn or next shell La vacancy is roughly 2%.

In Fig. 2, the temperature dependence of the EFG asym-
metry parameter � �top� and principal component Vzz �bot-
tom� for the u and d environments is displayed. For compari-
son, the EFG parameters found in �=0.08 and �=0 samples
are also included in the same figure. The u environment that
is dominant at high T shows an almost axially symmetric

FIG. 1. Representative R�t� experimental functions and the cor-
respondent fits for LaMnO3.12. Corresponding Fourier transforms
are displayed on the right side.

FIG. 2. Asymmetry parameter � �top� and EFG principal com-
ponent Vzz �bottom� for LaMnO3.12 as a function of T. EFG param-
eters for �=0.08 and �=0 are also shown. Inset: T dependence of
the MHF for the d environment.
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EFG ��u�0�. This value characterizes an EFG with an axis
of threefold or higher rotational symmetry, which is compat-
ible with the rhombohedral lattice structure observed at high
temperatures. The MnO6 octahedra in the R structure are
constrained by symmetry to be JT undistorted �equal Mn-O
bond lengths�, thus we will name this local environment un-
distorted. In contrast, the d �distorted� environment is char-
acterized by a weaker Vzz �Ref. 19� and highly axial asym-
metric EFG ��d	0.45�. At high T, the values of �d and Vzz

d

coincide with the ones observed for the undoped fully JT-
distorted orthorhombic system, �=0, �full circles in Fig. 2�.
Consequently, at high temperatures, the d local environment
must be characterized by a distortion involving several
�minimum eight� Mn3+O6 octahedra similar to the collective
JT-distorted lattice of the orbital-ordered LaMnO3.20 Lower-
ing T below 312 K, the asymmetry parameter �d decreases
stabilizing at a value close to that observed for the �=0.08
sample �solid stars in Fig. 2�. This behavior suggests that the
JT distortions are weakening till they reach a similar degree
as in the �=0.08 sample. The EFG principal components Vzz

u

and Vzz
d slightly increase with decreasing temperature. This is

a typical feature of perovskite and related systems.21 Below
Tc�145 K both d and u local environments experience
increasing magnetic hyperfine fields upon decreasing
temperature �inset of Fig. 2�, presenting at 10 K values of
Bhf

d =3.8�2�T and Bhf
u =4.0�3�T compatible with a full ferro-

magnetic environment of the surrounding Mn ions.22,23

Further insight into the behavior of d and u environments
may be achieved by studying the T dependence of the
volume fractions fu and fd. As may be seen in Fig. 3, the u
environment is dominant at very high temperatures
�fu�86% at T=776 K�, though d regions survive up to that
T �fd�9% �. This confirms the high stability of the inhomo-
geneous phase-segregated state. Our data, at high T, are com-
patible with a scenario where random distributed JT-distorted
nanoclusters are embedded in an undistorted matrix as pre-
dicted by Refs. 10 and 24, setting a lower bound for the
temperature where the polaron clusters start to form

�Tclusters	776 K�. At very low T, the fraction of the u envi-
ronment reaches a remanent value �fu

o�10% �, which is typi-
cally observed in CMR manganites25 and is a signature of the
ferromagnetic-metallic �FMM� and FMI phase coexistence.
When the temperature changes, fu �symmetrically fd� suffers
a smooth variation leading from an undistorted to a JT-
distorted dominant microscopic environment. If we assume
that this variation is a continuous phase transition, the order
parameter would be fu− fu

o and must follow a power law
behavior fu− fu

o
�T−Ts�� when the critical temperature Ts is
approached from above. To check this possibility, we display
fu in a log-log plot in Fig. 3 �inset�. The data adjust pretty
well to a power law with Ts�170±10 K �relatively close to
Tc� and ��0.42±0.02. Associated with the transition, there
must also exist a correlation length, a correlation of the d
spatial distribution, that must diverge at Ts. As may be seen
in Fig. 2, when T decreases �d starts to fall as the d compo-
nent percolates �at fd�31.16% �Ref. 26�� and only stabilizes
around Ts. Macroscopically, on the other hand, x-ray mea-
surements detect a structural transition �R-O� that lies ex-
actly between the temperatures corresponding to the perco-
lation thresholds of the two main nanoscopic components.
These are precisely the temperatures in which the minority
invading cluster suffers a sudden size divergence becoming
macroscopically observable.

The temperature dependence of the attenuation of R�t�
provides additional information about the dynamics of the u
and d environments. A complete sketch of the dynamic and
static attenuation for R�t� in both environments is depicted in
Fig. 4. The best fit to the R�t� spectra discards the presence
of time-dependent interactions for the u environment
�
u�4% independently of T and u=0�. Thus, in all tem-
perature ranges, the charge transfer between Mn3+ and Mn4+

�activated hopping� in this environment should occur with a
frequency higher than we can probe. For the d environment,
on the other side, the best fits were obtained admitting a
fluctuating EFG �d�0 and 
d=2%� in the temperature re-
gion spanning from T=266 to T=350 K. Notice that these
time-dependent effects cannot be attributed to Cd/O and/or
defects diffusion because they would be detected in both

FIG. 3. Temperature dependence of the probe volume fractions
fu, fd, and fr. Triangles: orthorhombic phase percentage from x-ray
diffraction. The shadowed region is limited by the temperatures
where the percolation thresholds occur and the dashed horizontal
line stands for the percolation threshold. Inset: log-log plot of
�fu− fu

0� vs �T−Ts�.

FIG. 4. Temperature dependence of static 
d��� and dynamic
d��� attenuation parameters to the R�t� function for the d environ-
ment. Static attenuation 
u��� for the u environment. Inset:
Arrhenius plot of d to estimate the activation energy.
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fractions. The temperature dependence of the dynamic at-
tenuation parameter, d, allows us to estimate an activation
energy Ea. This energy is obtained from d=�eEa/kT, and
was found to be Ea�0.31 eV �see the inset of Fig. 4�, close
to the polaron binding energy reported in the literature for
low-doped manganites.27,28 We identify such EFG fluctua-
tions with polaron diffusion related to charge �hole� trans-
port. The EFG fluctuation time ��� can be estimated from the
maximum of d�T�.29 Considering that a carrier �hole� can
hop to any of the eight octahedra around a La site �eight
possible EFG states�, we find �=0.5 �s at T=266 K corre-
sponding to ultraslow polaron diffusion. Similar polaron resi-
dence times have been recently reported in Ref. 22, although
the Ea measured there was smaller possibly due to the in-
tense magnetic field �7 T� needed to perform the NMR mea-
surements. The competition of the distinct dynamics of the u
�fast hopping� and d �related to polaronic conduction� envi-
ronments is responsible for the macroscopic ferromagnetic
insulator behavior observed in these systems.25 Below Tc,
both local environments become ferromagnetic and a phase
coexistence between metallic �u� and insulator �d� regions
exists. However, the majority fraction �d� is characterized by
the ultraslow diffusion of charge carriers imposing an overall
insulator behavior.

In conclusion, we report an extensive nanoscopic analysis
on the prototypical FMI manganite LaMnO3.12 using �-�

PAC spectroscopy. The undeniable separation of two distinct
local environments, consistent with a phase coexistence sce-
nario, allowed us to study the detailed structure, stability, and
evolution of the JT-polaron clusters in manganites. We find
that uncorrelated JT-polaron clusters survive up to a remark-
ably high T within the R crystallographic phase. Our results
define a lower bound for the polaron cluster formation tem-
perature �Tclusters�776 K�. When T is lowered, PAC mea-
surements reveal a smooth increase in the JT-distorted nano-
scopic environment density until it becomes dominant. This
change may be described as a continuous phase transition
with the transition temperature Ts marking the point where
the polaron cluster correlation length diverges. In parallel, a
macroscopically O-R structural transition takes place as a
consequence of the microscopic changes; actually it occurs
between the percolation thresholds of the two main local
components.
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