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Magnetic excitations are studied in gapped quantum spin systems, for which spontaneous two-magnon
decays are allowed by symmetry. Interaction between one- and two-particle states acquires nonanalytic fre-
quency and momentum dependence near the boundary of two-magnon continuum. This leads to a termination
point of the single-particle branch for one-dimensional systems and to strong suppression of quasiparticle
weight in two dimensions. The momentum dependence of the decay rate is calculated in arbitrary dimensions
and the effect of external magnetic field is discussed.
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A number of magnetic materials with quantum disordered,
or spin-liquid, ground states have been discovered in the past
two decades. The well-known examples include the spin-
Peierls compound CuGeO3 �Ref. 1�, dimer systems
Cs3Cr2Br9 �Ref. 2� and TlCuCl3 �Ref. 3�, integer-spin anti-
ferromagnetic chains,4 and many others. A common property
of all these systems is the presence of a spin gap in the
excitation spectrum, which separates a singlet, S=0 ground
state from S=1 quasiparticles. The low-energy triplet of
magnons can be split due to intrinsic anisotropies or under
applied magnetic field. Recent neutron experiments5,6 on two
organic spin-gap materials, piperazinium hexachlorodicu-
prate �PHCC� and IPA-CuCl3, have revealed drastic transfor-
mation of triplet quasiparticles undergoing at high energies.
Upon entering two-magnon continuum �see Fig. 1�, sponta-
neous �T=0� decay of a magnon into a pair of quasiparticles
becomes possible, which leads to a rapid decrease in the
quasiparticle lifetime in the former case5 and complete dis-
appearance of the single-particle branch in the latter system.6

Quasiparticle instability is well documented for another
type of quantum liquid—superfluid 4He. Predicted by Pitae-
vskii nearly 50 years ago,7–9 this instability was later con-
firmed by neutron scattering measurements.10,11 In liquid he-
lium, interaction between one- and two-particle states is
enhanced in the vicinity of a decay threshold by a large den-
sity of roton states and leads to avoided crossing: the single-
particle branch flattens at energies below twice the roton en-
ergy and ceases to exist completely above that energy scale.
The aim of the present work is to investigate the role of
spontaneous two-magnon decays in quantum spin liquids.
Note, that an analogy with 4He has been previously invoked
in Ref. 5 for an interpretation of the neutron scattering results
for PHCC.

We consider an isotropic spin system with a quantum dis-
ordered ground state, which is separated by a finite gap �
from low-energy spin-1 excitations. A bare dispersion of
propagating triplets, sometimes also called triplons, is given
by ��p�. Bosonic operators tp� and tp�

† destroy and create a
quasiparticle with momentum p in one of the three polariza-
tions �=x ,y ,z. Interaction between one- and two-particle
states is, generally, described by two types of cubic vertices
shown in Figs. 2�a� and 2�b�. In superfluid 4He the presence
of such particle nonconserving processes is determined by a

Bose condensate, which absorbs or emits an extra
particle.8,12 In quantum spin systems with singlet ground
states one finds a more diverse situation. Symmetry of a
majority of low-dimensional dimer systems, such as, for ex-
ample, a dimerized chain,13 an asymmetric ladder, and a pla-
nar array of dimers,14 allows for the presence of cubic verti-
ces. These should be contrasted with a symmetric ladder,15

where one- and two-magnon states belong to sectors with
different parity under permutation of two legs and, conse-
quently, do not interact. There is also a suggestion that cubic
vertices exist in a Heisenberg antiferromagnetic spin-1 chain
beyond the nonlinear sigma-model description.16 In the fol-
lowing, we shall assume the presence of interaction between
one- and two-particle states and consider its consequences
for the dynamic properties of a spin liquid.

In Heisenberg magnets, rotational symmetry in the spin
space fixes uniquely the tensor structure of cubic vertices.
Specifically, the decay vertex, Fig. 2�a�, has the following
form:

V̂3 =
1

2�
k,q

��k,q�����tk�
† tq�

† tk+q�. �1�

Conservation of the total spin during the decay process re-
quires that two created spin-1 quasiparticles must form an
S=1 state, which is imposed by the antisymmetric tensor
����. The vertex is, consequently, antisymmetric under per-
mutation of the two momenta ��k ,q�=−��q ,k�. Similar
consideration applies to the source-type vertex, Fig. 2�b�,
which is antisymmetric under permutation of any two of
three outgoing lines.

An important kinematic property of the energy spectrum
��p� is a type of instability at a decay threshold momentum
pc, beyond which the energy conservation

��p� = ��q� + ��p − q� �2�

is satisfied and two-magnon decays become possible. The
extremum condition imposed on the right-hand side of Eq.
�2� yields that two quasiparticles at the bottom of continuum
always have equal velocities vQ=vp−Q, where vk=�k��k�.
Then, the simplest possibility is that both momenta are also
equal with Q= 1

2 �p+G�, where G is a reciprocal lattice vec-
tor. We have verified the above assertion for several model
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dispersion curves17,18 as well as for a few experimental
fits.5,6,19 The common feature of all analyzed cases is the
presence of two regimes: for a small total momentum p of a
magnon pair the minimum energy corresponds to equal mo-
menta of two quasiparticles, whereas for p near the
Brillouin-zone boundary two particles of the lowest-energy
pair have different momenta. Such a bifurcation is closely
related to the appearance of bound pairs of magnons at large
momenta for one-dimensional spin systems.13,20 Kinematic
instability at the decay threshold in all considered cases cor-
responds, however, to a decay into a pair of quasiparticles
with equal momenta. In the following we shall focus on such
type of a model-independent instability.

Let us consider the second-order contribution to the nor-
mal self-energy from the decay processes shown in Fig. 2�c�.
Standard calculation yields

�11�	,p� =� dDq

�2
�D

��q,p − q�2

	 − ��q� − ��p − q� + i0
, �3�

where D is the number of dimensions. We shall be interested
in the behavior of the energy spectrum at small �p=p−pc
and �	=	−�c and expand accordingly all functions under
integral in �q=q−Q, where Q= 1

2 �p+G�. The main differ-
ence with the Pitaevskii’s analysis8 is that the antisymmetric
vertex vanishes at the decay threshold such that

��Q + �q,Q − �q� � �2�q · �k��k,q��k,q=Q. �4�

Including all dimensional constants in the vertex g3
���k��k ,q�� and performing angular integration we obtain
in D�1

�11�	,p� � − g3
2�

0

� qD+1dq

q2 + v2�p − �	 − i0
, �5�

where v2= ��k��k��k=Q and � is a lattice cutoff. The self-
energy remains finite as �	 , ��p�→0, though it contains an

important nonanalytic contribution �̃�	 ,p�. We shall absorb
a regular part of �11�	 ,p� into ��p� and determine a new
corrected spectrum from the Dyson’s equation: G−1�	 ,p�
=	−��p�− �̃�	 ,p�=0.

Two other second-order diagrams constructed from cubic
vertices are presented in Figs. 2�d� and 2�e�. Correction to
the normal self-energy shown in Fig. 2�d� is an analytic func-
tion of frequency and momentum and can be absorbed into
��p�. The anomalous self-energy �12�	 ,p�, Fig. 2�e�, has the
same dependence on 	 and p as the one-loop diagram �5�.
Using the Belyaev’s expression for the normal Green’s func-
tion of a Bose gas,8,12

G−1�	,p� = 	 − ��p� − �11�	,p�

+
�12�	,p��21�	,p�

	 + ��− p� + �11�− 	,− p�
, �6�

one can conclude that inclusion of the anomalous self-energy
simply modifies a coefficient in front of the nonanalytic con-
tribution �5� without changing its functional dependence. A
similar result applies to the vertex correction from multiple
two-particle scattering processes. Since a one-loop diagram
is finite for 	=�c, p=pc, the renormalized vertex g̃3 also
remains finite and the vertex correction amounts to replace-
ment g3

2→g3g̃3 in front of the integral in Eq. �5�. Thus, the
following analysis based on analytic properties of the one-
particle Green’s function is not restricted to the lowest-order
perturbation theory used in the derivation of Eq. �3� and is
quite general.

One-dimensional gapped spin systems. Let us begin with
a stable region, where spontaneous decays are forbidden:
�	
0, �p�0, such that �v2�p−�	��0. Separating the
nonanalytic part in the integral �5� and expanding ��p���c

+v1�p we obtain for the inverse Green’s function

G−1�	,p� = �	 − v1�p − �	v2�p − �	 , �7�

with �=
g3
2 /2. The one-particle Green’s function with such

a dependence on 	 and p has been briefly discussed in Ref.
8. In the following we give more details relevant for the case
of Eq. �7�.

The condition for a pole G−1�	 , p�=0 is transformed to a
quadratic equation, which yields

�̄�p� = �c + v1�p −
�2

2
+	�4

4
+ �2�v2 − v1��p . �8�

Away from the crossing point for �p��2 / �v2−v1�, the slope
of the single-particle branch coincides with the bare magnon

FIG. 1. Schematic structure of the energy spectrum of a quan-
tum magnet with spin-liquid ground state. The thin solid line is a
bare spectrum of triplet quasiparticles ��p�, the full solid line is a
renormalized single-particle branch, and the shaded region is two-
particle continuum. The decay instability threshold is denoted by pc.

FIG. 2. Two cubic vertices of the �a� decay and �b� source types
and their contributions to the �c� and �d� normal and �e� anomalous
self-energies.
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velocity d�̄�p� /dp�v1
0, whereas for �p→0 the slope
changes sign to d�̄�p� /dp=v2�0. In the crossover region
�p��2 / �v2−v1� the quasiparticle weight Z,

Z−1 = 
 �G−1

�	



	=�̄

= 1 +
�2 + 	�4 + 4�2�v2 − v1��p

4�v2 − v1��p
, �9�

is continuously suppressed and vanishes, once the single-
particle branch touches the two-magnon continuum.

On the opposite side of the crossing point, �p
0, �	
�0, and ��	−v2�p��0, the nonanalytic part of the self-

energy becomes purely imaginary �̃=−i�	�	−v2�p. For-
mally, condition G−1�	 , p�=0 yields after transformation to a
quadratic equation the same solution as in the stable region.
For small negative �p the root �8� is real and satisfies �	
−v1�p
0 and �	−v2�p
0. The latter of the above two
relations contradicts the assumption made in the beginning
of the paragraph for the decay region, whereas the former is
inconsistent with zero of G−1�	 , p� in the region, where
v2�p−�	�0, see Eq. �7�. Thus, inside the continuum, a
physical pole of the one-particle Green’s function reappears
only at a finite distance from the crossing point, where
Re��	��v2�p or

�p 
 −
�2

2�v2 − v1�
. �10�

Disappearance of single-magnon excitations inside the con-
tinuum is quite similar to the termination point in the energy
spectrum of superfluid 4He �Refs. 7–11�. In both cases the
single-particle branch approaches tangentially the boundary
of the two-particle continuum.

Further away from the lower edge of the continuum in the
region, where �̄�p���c+v1�p, one can find for the inverse
quasiparticle lifetime

�p � 2�	�v2 − v1���p� . �11�

Such a square-root dependence of the decay rate follows also
from a simple golden rule consideration.16 We have seen,
however, that the full dependence of the self-energy on fre-
quency and momentum must be kept in the vicinity of the
decay threshold. Besides, if the cubic vertices have no spe-
cial smallness, i.e., � is of the order of the bandwidth of ��p�,
the perturbative regime, where Eq. �11� applies, is never re-
alized. Such a situation apparently occurs in the quasi-one-
dimensional gapped spin system IPA-CuCl3, where no trace
of single-magnon excitations has been observed inside the
continuum.6

Two-dimensional gapped spin systems. Below decay
threshold in the stable region, where �v2�p−�	��0, the
nonanalytic part of the self-energy becomes

�̃�	,p� = ��v2�p − �	�ln
R

v2�p − �	
, �12�

where �=g3
2 /2 and R is an energy cutoff. Although a pole of

the Green’s function cannot be found analytically, it is easy
to verify that the solution of G−1�	 ,p�=0 exists all the way
down to the crossing point. The quasiparticle branch touches
tangentially the boundary of the continuum �p�̄�p�=v2 for

p=pc, whereas the quasiparticle weight is gradually dimin-
ished and vanishes at the boundary.

Above the decay threshold 
�v2�p−�	�
0� the self-
energy acquires the imaginary part

�̃�	,p� = − ���	 − v2�p��ln
R

�	 − v2�p
+ i
� . �13�

In the perturbative regime, where �̄�p���c+v1�p, the decay
rate of magnons grows linearly inside the continuum

�p � 2
��v1 − v2��p . �14�

In the close vicinity of the crossing point we write instead
�̄�p��v2�p+a with Re a�0 and transform the equation on
the pole of the Green’s function to

a�ln
R

a
+ i
� =

�v1 − v2��p

�
= b � 0. �15�

With logarithmic accuracy the solution of the above equation
is

Re a =
b

	ln2 R/b + 
2
, Im a =

− 
b

ln2 R/b + 
2 . �16�

A single-particle branch of a two-dimensional gapped spin
system can be, therefore, continued inside the decay region.
However, the quasiparticle weight is suppressed in a range of
momenta near the crossing point,

��v1 − v2��p� � Re−1/�. �17�

Suppression of the quasiparticle peak has been experimen-
tally observed in two-dimensional quantum-disordered anti-
ferromagnet PHCC �Ref. 5�.

Three-dimensional gapped spin systems. The nonanalytic
part of the self-energy is given in this case by

�̃�	,p� = − ��v2�p − �	�3/2, �	 
 v2�p ,

�̃�	,p� = − i���	 − v2�p�3/2, �	 � v2�p ,

where �=
g3
2 /2. Such a weakly nonanalytic term can be

treated perturbatively near the crossing point. In particular,
the quasiparticle weight is not suppressed as p→pc and �̄�p�
does not change its slope at the crossing. The magnon decay
rate in the three-dimensional case is

�p � 2�
�v1 − v2��p�3/2. �18�

An experimentally relevant question is how an external
magnetic field affects the decay processes. If the Zeeman
energy is smaller than the spin gap g�BH
�, the role of an
applied field reduces to splitting a triplet of low-energy ex-
citations. This can, in principle, lead to breaking the reso-
nance condition �2�. To study such a possibility one should
transform from the vector basis tp� to states with a definite
spin projection on the field direction

tp0 = tpz, tp± = �
1
	2

�tpx � itpy� . �19�

The decay vertex �1� taken in the new basis has the following
form:
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i����tp�
† tq�

† tk� = �tp+
† tq−

† − tp+
† tq−

† �tkz + �tp+
† tqz

† − tpz
† tq+

† �tk+

+ �tpz
† tq−

† − tp−
† tqz

† �tk−. �20�

In all decay channels a destroyed one-particle and a created
two-particle states experience the same energy shifts. There-
fore, the decay threshold momentum pc does not change for
all three split branches of the spin-1 excitations.

Once the Zeeman energy exceeds the triplet gap, H�Hc
=� /g�B, a Bose condensation of magnons takes place in
D�1 �Ref. 21�. The ground state acquires a nonzero mag-
netization and a long-range order of transverse spin compo-
nents. Such a canted antiferromagnetic structure opens an
additional channel for spontaneous decays of low-energy ex-
citations in the gapless branch, similar to the prediction made
for ordered antiferromagnets in the vicinity of the saturation
field.22

Intrinsic magnetic anisotropies, which become important
in materials with spins S�1, can also affect the decay pro-
cesses. Anisotropy changes differently the dispersion of trip-
let excitations and modifies the resonance condition �2�. The

decay rate of spin-1 excitations depends, then, on a polariza-
tion, as was experimentally observed in bond-alternating
quasi-one-dimensional antiferromagnet NTENP �Ref. 23�.
The tensor structure of the decay vertex �1� can be also
modified due to the absence of spin-rotational symmetry. Dy-
namic properties of spin liquids with different types of
anisotropies deserve further theoretical investigations.

In conclusion, by studying analytic properties of the one-
particle Green’s function near the decay threshold we have
found that crossing of a single-particle branch into two-
magnon continuum is described solely by a growing line-
width of magnons only for three-dimensional quantum spin
liquids. In two dimensions there is, in addition, strong sup-
pression of a one-magnon peak near the crossing point,
whereas in one dimension a single-magnon branch termi-
nates at the continuum boundary.
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