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Higher-order terms of the transformed electron-phonon Hamiltonian He-ph, obtained by performing the
Fröhlich transformation, are investigated. The influence of terms discarded by Fröhlich �in particular those
proportional to the third power of electron-phonon coupling� on the effective Hamiltonian is examined. To this
end a second Fröhlich-type transformation is performed, which yields, among others, an effective four-electron
interaction. This interaction is reduced to a form admitting solution of thermodynamics. The form of the
coupling of the four-electron interaction is found. By applying standard approximations, it is shown that this
interaction is attractive with the interaction coupling given by −DkF

6 /�kF

5 , where Dk is electron-phonon cou-
pling, �k is the phonon energy, and kF is the Fermi momentum. The form of higher-order terms of the original
Fröhlich-transformed He-ph is also found, up to terms proportional to the sixth power of the coupling—that is,
up to those which yield the effective four-electron interactions.
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I. INTRODUCTION

The BCS theory1 proved extremely effective as a theory
of superconductivity. The key idea of this theory—the attrac-
tive interaction which binds electrons into Cooper pairs—has
its essential origins in earlier conclusions drawn Fröhlich,2

who performed a unitary transformation U of the electron-
phonon Hamiltonian He-ph. U was adjusted so as to eliminate
the electron-phonon interaction as far as possible and replace
it by an effective interaction Vef f between electrons dressed
in the phonon field. Vef f proved to be attractive for one-
electron energies close to �F. A reduced form of Vef f was
subsequently used by Bardeen, Cooper, and Schrieffer in
their theory.1

It is worth emphasizing that the Fröhlich transformation is
not strictly unitary, because the less significant terms of the
resulting expansion of UHe-phU

−1 were discarded. Correct-
ness of the remaining terms, included into the Hamiltonian
of a superconductor, was confirmed by the success of the
BCS theory.

Unfortunately, BCS theory proved incapable of explain-
ing superconductivity in type-II superconductors, heavy fer-
mions, and high-Tc superconductors �HTSC’s�. The search
for an alternative theory of superconductivity proceeds in
various directions, and one of them exploits the idea of ex-
tending BCS theory by adding to the BCS Hamiltonian HBCS
further interactions. Rickayzen3 suggested the incorporation
of a four-fermion interaction, motivating such a choice by
analogies between the theory of superconductivity and
nuclear theory, where such interactions had been considered.
This idea was also mentioned by Volovik,4 but remained in
the realm of theoretical concepts until the late 1990s, when
Maćkowiak and Tarasewicz5–11 �MT� proposed a Hamil-
tonian HMT=HBCS+W+VMT, where

HBCS = T + VBCS = �
k�

�knk� − ���−1�
kk�

Gkk�ak+
* a−k−

* a−k�−ak�+,

�1�

W = �
k

�knk+nk−, �2�

VMT = ���−1 �
k,k�

gkk�ak−
* ak+

* a−k−
* a−k+

* a−k�+a−k�−ak�+ak�−,

�3�

and ��� in Eqs. �1�–�3� denotes the system’s volume, whereas
gkk� and Gkk� are bounded functions and �k, gkk�, and Gkk�
are invariant under time reversal k→−k or k�→−k�.

Considerations which led to the introduction of W were
founded on the analysis of the HTSC normal state. There are
grounds to believe that this is not a normal Fermi-liquid
state. The interaction W, first added to HBCS by
Czerwonko,12,13 guaranteed normal-state behavior character-
istic of the so-called statistical spin liquid, considered earlier
by Spałek and Wójcik.14,15

W is a two-electron interaction. This raises the question
whether it can be obtained by a reduction procedure �differ-
ent than the BCS one� of the interaction derived by Fröhlich.
It can be easily verified that this is impossible. More pre-
cisely, for the unique possible reduction of momenta, the
coupling vanishes, meaning that the nature of W is not
phononic.

The introduction of the four-fermion interaction VMT was
justified in Ref. 5 by its possible role as an attraction be-
tween pairs in HTSC’s, mediated by phonons or other
quanta.8 A conjecture put forward in Ref. 5 suggested also
that VMT could be expected to arise as one of the higher-order
terms of Fröhlich’s expansion of UHe-phU

−1. An alternative
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justification was given in Ref. 8, where VMT was viewed as a
BCS-type interaction between quasiparticles of a free gas
represented by W written in the form �k�kck

*ck, with ck
=ak+ak−. Both of these ideas essentially exploit the concept
of phonon-type mediation of interactions. The significance of
this mediation in HTSC was stressed by Wysokiński.16

The question of the form of higher-order terms of Fröhli-
ch’s expansion is interesting itself, not only as providing a
possible explanation of the MT extension, but first of all,
because these terms could throw some light on further pos-
sible extensions of HBCS related to the effects of electron-
lattice interactions. Since Fermi-liquid theory will remain the
foundation of our formalism, we shall focus our interest on
effective electron interactions.

It is worth noting that the possible presence of fermion
quadruples in superconductors and superfluids was consid-
ered in a number of papers. Schneider and Keller17 measured
the various characteristics of some cuprates and Chevrel-
phase superconductors, especially concentrating on the rela-
tion between the critical temperature and zero-temperature
condensate density. They noticed that the experimental data
for, e.g., YBa2Cu3O6.602 point to similarities with the behav-
ior of a dilute Bose gas. As a result they suggested Bose
condensation of weakly interacting fermion pairs as a mecha-
nism of transition from the normal to superconducting state.
Bunkov et al.18 pointed to the presence of fermion qua-
druples in 3He. Their work was devoted to the problem of the
influence of spatial disorder on the order parameter in super-
fluid 3He. By resorting to the work of Volovik,4 they sug-
gested that the unusual spectra of 3He in aerogel could be
explained by a process in which impurities tend to destroy
the anisotropic correlations of the order parameter, while cor-
relations of higher symmetry can survive �e.g., four-particle
correlations�. Recently Schneider et al.19 discovered half-
h /2e magnetic flux in superconducting quantum interference
devices �SQUID’s� fabricated of bicrystalline YBa2Cu3O7−�

films. This situation corresponds to the presence of fermion
quadruples in the system. Based on this observation, Aligia
et al.20 investigated a model of the interface between two
superconductors, based on a one-dimensional boson lattice
model and proposed formation of quartets of electrons.

In Sec. II higher-order terms of the expansion of Fröhli-
ch’s transformation UHe-phU

−1 are discussed qualitatively in
order to exhibit the emerging structure. Owing to the com-
plexity of this procedure, only terms proportional to the third
power of the electron-phonon coupling are found in Sec. III.
The resulting extended Fröhlich Hamiltonian is transformed
in the next section by a second Fröhlich-type transformation,
which produces four-electron terms. These are discussed in
detail in Sec. V. In particular, a reduction similar to the BCS
one is performed, which yields an interaction of the form
VMT in Eq. �3�. The expression for gkk� is derived. A detailed
analysis of this expression is performed in the next section;
in particular, we show, by applying some approximations,
that this expression is negative—i.e., VMT is attractive. The
original Fröhlich transformation and the resulting terms, up
to the sixth power of the coupling, are commented on in Sec.
VII. The final section contains a discussion, summary, and
open questions.

II. HIGHER-ORDER TERMS OF THE FRÖHLICH
TRANSFORMATION

Following Fröhlich2 �see Appendix A for details�, let us
consider the electron-phonon Hamiltonian

He-ph = H0 + Hint = �
k�

�kak�
* ak� + �

w
�wbw

* bw

+ i�
w

Dw�bw�w
* − bw

* �w� , �4�

where

�w = �
k�

ak−w�
* ak� �5�

and ak� �bk� are fermion �boson� operators. The coupling Dw
will be assumed small and 	�1.

Since the interaction is spin independent, the spin index
will be suppressed. Summation over electron momenta will
include summation over spins.

Fröhlich performed a unitary transformation of He-ph in
order to eliminate �as far as possible� the interaction term.
The transformed Hamiltonian is

H = eS*
He-phe

S = He-ph − �S,He-ph� +
1

2
�S,�S,He-ph�� + ¯ ,

�6�

where

S = �
q

Sq = �
q

��q
*bq

* − �qbq� = − S*, �7�

�q = �
k


�k,q�ak
*ak−q, �8�

and the unknown function 
�k ,q� :R3�R3→C1 is adjusted
to achieve the cancellation.

Subsequently, a term which is a combination of products,
each with f fermion operators and b boson operators, will be
written as �f ,b�. Clearly, f will always be even. For example,
H0 consists of terms �2,0� and �0,2�.

The right-hand side �RHS� of Eq. �6� is expressed in
terms of commutators ��f1 ,b1� , �f2 ,b2��. One easily finds that

��f1,b1�,�f2,b2�� = �f1, f2�b1b2 + f2f1�b1,b2� = �f1, f2�b2b1

+ f1f2�b1,b2� . �9�

The necessary commutators �f1 , f2�, �b1 ,b2� are given in Ap-
pendix C.

According to Eq. �6�, the transformation can be per-
formed, given commutators of the form occurring in Eq. �9�
with the first argument equal S. The latter is a �2,1� expres-
sion, hence

�S,�f ,b�� = ��2,1�,�f ,b�� = �f ,b + 1� + �f + 2,b − 1� ,

�10�

by virtue of Eqs. �9� and �C1�. Clearly �f ,b−1�=0 for b=0.
Based on these grounds, Fröhlich obtained the trans-

formed Hamiltonian �see Appendix A�
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HF = �
k

�knk −
1

2 �
kqw

Dw
2 �1 + ��k,w���1 − ��q,w��

�q−w − �q + �w

��ak
*ak−waq−w

* aq + c.c.� .

The second term represents an effective interaction between
electrons dressed in the phonon field. If �q−w−�q+�w0,
this interaction is attractive.

Omission of higher terms in Eq. �6� results in violation of
unitarity. The question thus arises whether partial inclusion
of these terms �first of all those of third order in the cou-
pling� could improve the agreement between theory and ex-
periment.

Following the general rule for the action of S in consecu-
tive orders, expressed by Eq. �10�, one easily finds the form
of subsequent terms:

��2,0�
�0,2� 	→

S

�2,1�→
S ��4,0�

�2,2� 	→
S

�4,1�→
S ��6,0�

�4,2� 	→
S

�6,1�

→
S ��8,0�

�6,2� 	 . �11�

In each consecutive step one obtains terms proportional to
the next power of the coupling.

From the viewpoint of Fermi-liquid theory, the terms rep-
resenting effective interelectron interactions are most inter-
esting. According to Eq. �11�, new terms �6,0� �proportional
to Dw

4 �, describing three-electron interactions, and �8,0� �pro-
portional to Dw

6 �, representing four-electron interactions, ap-
pear. Attractive interactions of this type leading to the forma-
tion of fermion triples and quadruples could affect the
behavior of a superconductor. However, the total spin of an
electron triple is nonzero, so such clusters are unstable, as
they are not invariant under time inversion. So far, there has
been no experimental evidence of such objects.

Most electrons in a superconductor below Tc are paired,
so the four-electron interaction between Cooper pairs can be
expected to prevail. Furthermore, quadruples with a total
spin equal to zero and appropriate one-electron momenta are
stable under time inversion. On the other hand, under Fröhli-
ch’s conditions for the convergence of series �6�, the effect of
the terms �6,0� and �8,0� is weaker.

Evaluation of these terms is a complicated procedure. Be-
fore doing this, let us first examine the third-order correc-
tions.

III. THIRD ORDER OF THE TRANSFORMATION

Let us consider the effect of the first higher orders dis-
carded by Fröhlich—i.e., terms proportional to Dw

3 . Then the
corrected Hamiltonian takes the form

H� = H0 − ��S,H0� − Hint� + 
1

2
�S,�S,H0�� − �S,Hint��

− 
1

6
�S,�S,�S,H0��� −

1

2
�S,�S,Hint��� + ¯ . �12�

The additional two terms in the last pair of brackets are
equal, explicitly,

1

2
�S,�S,Hint�� −

1

6
�S,�S,�S,H0��� = �

qk
Akqbq

*nk�q
*

+ �
qkwk�

bw
* �Bkqwk�ak−w

* ak−qak�−q
* ak�

+ Ckqwk�ak�
* ak�−qak−q

* ak+w + c.c. ª He, �13�

where

2Akq = iDq
*�k,q� + iDq
�k + q,q�

+
1

3
��k−q − �k + �q��
�k,q��2

−
1

3
��k − �k+q + �q��
�k + q,q��2 + c.c., �14�

2Bkqwk� = iDq�
*�k�,q�
*�k − q,w� − 
*�k�,q�
*�k,w�

+ 
*�k,w�
�k,q� − 
*�k − q,w�
�k − w,q�

+
1

3

*�k�,q��
�k,q�
*�k,w�

���k − �k−q + �k�−q − �k�� + 
�k − w,q�

�
*�k − q,w���k−w−q − �k−w − �k�−q + �k�� ,

�15�

2Ckqwk� = iDq�
�k�,q�
*�k + w − q,w� − 
�k�,q�

�
*�k + w,w� − 
*�k + w − q,w�
*�k + w,q�

+ 
*�k + w,w�
*�k,q� +
1

3

�k�,q�

��
*�k + w,q�
*�k + w − q,w�

���k�−q − �k� − �k+w−q + �k+w� + 
*�k,q�

�
*�k + w,w���k−q − �k − �k�−q + �k�� . �16�

It can be seen that a new phonon index w has appeared in
Eq. �13�. It results from the commutator of S with the terms
�4,0�, so the harmonic approximation has not been violated.

Substitution of the expression �13� into H� yields

H� = Ha + Hb + Hc + Hd + He,

where

Ha =
1

2�
k

�knk +
1

2�
q

�qbq
*bq + c.c.,

Hb = �
qk

bq
*bqnk�iDq�
�k + q,q� − 
�k,q��

−
1

2
��k − �k+q + �q��
�k + q,q��2

+
1

2
��k−q − �k + �q��
�k,q��2	 + c.c., �17�

EXTENSION OF THE FRÖHLICH METHOD TO 4-¼ PHYSICAL REVIEW B 73, 094524 �2006�

094524-3



Hc = �
qk

bq�iDq + ��k−q − �k + �q�
�k,q��ak
*ak−q + c.c.,

�18�

Hd = �
qkk�


iDq
�k,q� +
1

2
��k−q − �k + �q�
�k,q�

�
*�k�,q��ak
*ak−qak�−q

* ak� + c.c. �19�

Hb is linear in bq
*bq but differs from Ha, Hc is part of Hint

which had been excluded from the transformation to avoid
convergence problems, and Hd is the two-electron interaction
obtained, whereas He contains terms of the form �4, 1� which
represent the obtained correction to Fröhlich’s Hamiltonian.

The function 
�k ,q� remains in the form �A7�, which
guarantees minimization of the contribution Hc.

IV. SECOND TRANSFORMATION

The structure of H� bears similarities to that of He-ph. Both
H� and He-ph contain terms describing the interaction of elec-
trons with phonons: the counterpart of Hint in He-ph is He in
H�. To estimate the effect of He, let us repeatedly apply
Fröhlich’s method and perform a second unitary transforma-
tion adjusted to eliminate He as far as possible. The form of
He suggests to take

S� = �
u

��u
*bu

* − �ubu + �u
*bu

* − �ubu + �u
*bu

* − �ubu� ,

where

�u
* = �

lm
�*�l,m,u�al

*alam−u
* am, �20�

�u
* = �

lmt
�*�l,m,t,u�al−u

* al−tam−t
* am, �21�

�u
* = �

lmt
�*�l,m,t,u�al

*al−tam−t
* am+u. �22�

The explicit form of the functions �, �, and � will be found
below.

The interaction He is third order in Dq; therefore, bearing
in mind Fröhlich’s approach, we shall restrict the expansion
of exp�S�*�H� exp�S��= Ĥ to terms which are sixth order in
Dq. These terms are

Ĥ = H� − �S�,H�� +
1

2
�S�,�S�,Ha�� + ¯ . �23�

To evaluate the RHS, one needs the commutators

�S�,Ha� = �
ukl

bu
*�*�l,k,u���k − �k−u − �u�al

*alak−u
* ak

+ �
uklt

bu
*�*�l,k,t,u���k − �k−t + �l−t − �l−u − �u�

�al−u
* al−tak−t

* ak + �
uklt

bu
*�*�l,k,t,u�

���k+u − �k−t + �l−t − �l − �u�al
*al−tak−t

* ak+u + c.c.,

�S�,Hb� = − �
qk

bq
*nk��q

* + �q
* + �q

*��Dkq + Dkq
* � + c.c.,

where Dkq is defined by Hb=�qbq
*bqnkDkq+c.c. in Eq. �17�,

�S�,Hc� = − �
qk

Ek,qak
*ak−q��q

* + �q
* + �q

*� + �
qkl

Ek,qbq
*bq��*�l,k,q�nl�nk−q − nk� + ��*�k,l,q� − �*�k − q,l,q��ak

*ak−qal−q
* al

+ �
qklt

bq
*bq��Ek,q�*�l,k,t,q� − Ek−t,q�*�l,k − q,t,q��al−q

* al−tak−t
* ak−q + �Ek+q−t,q�*�k + q,l,t,q�

− Ek,q�*�k,l,t,q��ak
*ak−tal−t

* al + �Ek+q+t,q�*�l,k + t,t,q� − Ek,q�*�l,k + t − q,t,q��al
*al−tak

*ak+t + �Ek,q�*�k + t,l,t,q�

− Ek+t,q�*�k + t − q,l,t,q��ak+t
* ak−qal−t

* al+q + c.c.,

where Ek,q is defined by Hc=�qkbqak
*ak−qEk,q+c.c. in Eq. �18�,

�S�,Hd� = �
uqkk�

bu
*�Fk,k�,q + Fk�,k,q

* ��ak
*ak−q��u

*,ak�−q
* ak�� + ��u

*,ak
*ak−q�ak�−q

* ak� + ak
*ak−q��u

*,ak�−q
* ak�� + ��u

*,ak
*ak−q�ak�−q

* ak�

+ ak
*ak−q��u

*,ak�−q
* ak�� + ��u

*,ak
*ak−q�ak�−q

* ak� + c.c.,

where Fk,k�,q is defined by Hd=�qkk�Fk,k�,qak
*ak−qak�−q

* ak�+c.c. in Eq. �19�,

�S�,He� = − �
qk

Ak,qbq
*bq���q,nk�q

*� + ��q,nk�q
*� + ��q,nk�q

*� − �
qwkk�

Bk,q,w,k�bw
* bw���w,ak−w

* ak−qak�−q
* ak��

+ ��w,ak−w
* ak−qak�−q

* ak�� + ��w,ak−w
* ak−qak�−q

* ak�� − �
qwkk�

Ck,q,w,k�bw
* bw���w,ak�

* ak�−qak−q
* ak+w�

+ ��w,ak�
* ak�−qak−q

* ak+w� + ��w,ak�
* ak�−qak−q

* ak+w� − �
qk

Ak,q��qnk�q
* + �qnk�q

* + �qnk�q
*
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− �
qwkk�

Bk,q,w,k���wak−w
* ak−qak�−q

* ak� + �wak−w
* ak−qak�−q

* ak� + �wak−w
* ak−qak�−q

* ak�

− �
qwkk�

Ck,q,w,k���wak�
* ak�−qak−q

* ak+w + �wak�
* ak�−qak−q

* ak+w + �wak�
* ak�−qak−q

* ak+w + c.c.,

where Ak,q, Bk,q,w,k�, and Ck,q,w,k� are given, respectively, by Eqs. �14�–�16�,

�S�,�S�,Ha�� = − �
qkk�

Gk,k�,qbq
*bq���q,ak�

* ak�ak−q
* ak� + ��q,ak�

* ak�ak−q
* ak� + ��q,ak�

* ak�ak−q
* ak�

− �
qkk�t

Hk,k�,t,qbq
*bq���q,ak�−q

* ak�−tak−t
* ak� + ��q,ak�−q

* ak�−tak−t
* ak� + ��q,ak�−q

* ak�−tak−t
* ak�

− �
qkk�t

Ik,k�,t,qbq
*bq���q,ak�

* ak�−tak−t
* ak+q� + ��q,ak�

* ak�−tak−t
* ak+q� + ��q,ak�

* ak�−tak−t
* ak+q�

− �
qkk�

Gk,k�,q��qnk�ak−q
* ak + �qnk�ak−q

* ak + �qnk�ak−q
* ak − �

qkk�t

Hk,k�,t,q��qak�−q
* ak�−tak−t

* ak + �qak�−q
* ak�−tak−t

* ak

+ �qak�−q
* ak�−tak−t

* ak − �
qkk�t

Ik,k�,t,q��qak�
* ak�−tak−t

* ak+q + �qak�
* ak�−tak−t

* ak+q + �qak�
* ak�−tak−t

* ak+q + c.c., �24�

where

Gk,k�,q = �*�k�,k,q���k − �k−q − �q� , �25�

Hk,k�,t,q = �*�k�,k,t,q���k − �k−t + �k�−t − �k�−q − �q� ,

�26�

Ik,k�,t,q = �*�k�,k,t,q���k+q − �k−t + �k�−t − �k� − �q� .

�27�

The commutators in the terms containing phonon operators
have not been evaluated, as we are interested first of all in
expressions containing exclusively electron operators.

Given the transformed Hamiltonian Ĥ, we are now in po-
sition to minimize the effect of He by imposing, similarly as
Fröhlich, the condition He− �S� ,Ha�=0. This leads to equa-
tions for �, �, and �, which determine these functions
uniquely—viz.,

�*�k�,k,q� =

*�k,q�Ak�,q

�k − �k−q − �q
. �28�

After substituting 
 and A given by Eqs. �A7� and �14�, one
obtains

�*�k�,k,q� =
2iDq

3�1 − ��k,q��
3��k−q − �k + �q�2
 1 − ��k�,q�

�k�−q − �k� + �q

−
1 − ��k� + q,q�
�k� − �k�+q + �q

� . �29�

The introduction of additional functions in order to preserve
convergence is not necessary here, as � already guarantees
this property.

As for � and �, additional functions preserving conver-
gence are indispensable—viz.,

�*�k�,k,t,q� =
Bk�,t,q,k

�k − �k−t + �k�−t − �k�−q − �q

��1 − �̃�k,k�,t,q�� , �30�

where

�̃�k,k�,t,q�

=�1, if ��k − �k−t + �k�−t − �k�−q − �q� � �̃q,

0, if ��k − �k−t + �k�−t − �k�−q − �q�  �̃q.
	

�31�

Taking into account Eqs. �A7� and �15�, one obtains
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�*�k�,k,t,q� =
iDt

2Dq

6��k − �k−t + �k�−t − �k�−q − �q�
� 
 �1 − ��k,t���1 − ��k�,q��

��k−t − �k + �t���k�−q − �k� + �q�
�2 + ��k�,t��

−
�1 − ��k,t���1 − ��k� − t,q��

��k−t − �k + �t���k�−t−q − �k�−t + �q�
�2 + ��k� − q,t�� +

�1 − ��k�,t���1 − ��k�,q��
��k�−t − �k� + �t���k�−q − �k� + �q�

�4 − ��k,t��

−
�1 − ��k� − q,t���1 − ��k� − t,q��

��k�−q−t − �k�−q + �t���k�−t−q − �k�−t + �q�
�4 − ��k,t����1 − �̃�k,k�,t,q�� , �32�

�*�k�,k,t,q� =
Ck,t,q,k�

�k+q − �k−t + �k�−t − �k� − �q
�1 − �̂�k,k�,t,q�� , �33�

where

�̂�k,k�,t,q� =�1, if ��k+q − �k−t + �k�−t − �k� − �q� � �̂q,

0, if ��k+q − �k−t + �k�−t − �k� − �q�  �̂q,
	 �34�

and substitution of 
 and Ck,t,q,k� from Eqs. �A7� and �16� yields

�*�k�,k,t,q� =
iDt

2Dq

6��k+q − �k−t + �k�−t − �k� − �q�
� 
 �1 − ��k�,t���1 − ��k + q − t,q��

��k�−t − �k� + �t���k−t − �k+q−t + �q�
�2 + ��k + q,t��

−
�1 − ��k�,t���1 − ��k + q,q��

��k�−t − �k� + �t���k − �k+q + �q�
�2 + ��k,t�� +

�1 − ��k + q,t���1 − ��k + q − t,q��
��k+q−t − �k+q + �t���k−t − �k+q−t + �q�

�4 − ��k�,t��

−
�1 − ��k,t���1 − ��k + q,q��

��k−t − �k + �t���k − �k+q + �q�
�4 − ��k�,t����1 − �̂�k,k�,t,q�� . �35�

Having established �, �, and �, let us average Ĥ over the phonon vacuum:

Ĥav =
1

2�
k

�knk + �
qkk�

Fk,k�,qak
*ak−qak�−q

* ak� + �
qk

Ek,qak
*ak−q��q

* + �q
* + �q

*� + �
qkk�


Ak�,q
*�k,q� −
1

2
Gk,k�,q���qnk�ak−q

* ak

+ �qnk�ak−q
* ak + �qnk�ak−q

* ak + �
qkk�t


Bk�,t,q,k −
1

2
Hk,k�,t,q���qak�−q

* ak�−tak−t
* ak + �qak�−q

* ak�−tak−t
* ak + �qak�−q

* ak�−tak−t
* ak

+ �
qkk�t


Ck,t,q,k� −
1

2
Ik,k�,t,q���qak�

* ak�−tak−t
* ak+q + �qak�

* ak�−tak−t
* ak+q + �qak�

* ak�−tak−t
* ak+q + c.c., �36�

Ĥav contains the free-electron term, the two-electron
Fröhlich interaction, and terms representing three-electron
and four-electron interactions. The three-electron terms were
generated by the second transformation of Hc. The source of
these terms is thus the nontransformed part of the original
interaction, discarded by BCS theory. If higher-order correc-
tions to BCS theory are of interest, all terms arising from that
part—i.e., the three-electron ones—can be therefore ne-
glected. The same conclusion was drawn above on the
grounds of unstability.

V. FOUR-FERMION INTERACTIONS

The Hamiltonian Ĥav contains several terms representing
four-fermion interactions. Using Eqs. �25�, �28�, �30�, and
�33�, one finds

Ak�,q
*�k,q� −
1

2
Gk,k�,q =

1

2
Gk,k�,q =

1

2

*�k,q�Ak�,q.

Additionally, taking into account Eqs. �26� and �27�, we get

Bk�,t,q,k −
1

2
Hk,k�,t,q =

1

2
Hk,k�,t,q =

1

2
Bk�,t,q,t�1 − �̃�k,k�,t,q�� ,

Ck,t,q,k� −
1

2
Ik,k�,t,q =

1

2
Ik,k�,t,q =

1

2
Ck,t,q,k��1 − �̂�k,k�,t,q�� .

In terms of Gk,k�,q, Hk,k�,t,q, and Ik,k�,t,q the four-fermion

interactions present in Ĥav are expressed as
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H4
1 = �

qkk�lm

1

2
Gk,k�,q��l,m,q�am

* am−qnlnk�ak−q
* ak + c.c.,

�37�

H4
2 = �

qkk�lmt

1

2
Gk,k�,q��l,m,t,q�am

* am−tal−t
* al−qnk�ak−q

* ak

+ c.c., �38�

H4
3 = �

qkk�lmt

1

2
Gk,k�,q��l,m,t,q�am+q

* am−tal−t
* alnk�ak−q

* ak

+ c.c., �39�

H4
4 = �

qkk�lmt

1

2
Hk,k�,t,q��l,m,q�am

* am−qnlak�−q
* ak�−tak−t

* ak

+ c.c., �40�

H4
5 = �

qkk�lmtw

1

2
Hk,k�,t,q��l,m,w,q�am

* am−wal−w
* al−q

�ak�−q
* ak�−tak−t

* ak + c.c., �41�

H4
6 = �

qkk�lmtw

1

2
Hk,k�,t,q��l,m,w,q�am+q

* am−wal−w
* al

�ak�−q
* ak�−tak−t

* ak + c.c., �42�

H4
7 = �

qkk�lmt

1

2
Ik,k�,t,q��l,m,q�am

* am−qnlak�
* ak�−tak−t

* ak+q

+ c.c., �43�

H4
8 = �

qkk�lmtw

1

2
Ik,k�,t,q��l,m,w,q�am

* am−wal−w
* al−qak�

* ak�−t

�ak−t
* ak+q + c.c., �44�

H4
9 = �

qkk�lmtw

1

2
Ik,k�,t,q��l,m,w,q�am+q

* am−wal−w
* alak�

* ak�−t

�ak−t
* ak+q + c.c. �45�

Five of these interactions—viz., H4
1, H4

2, H4
3, H4

4, and
H4

7—contain the operator nk; therefore, they are not reduc-
ible to the four-fermion MT potential �3�. This potential is
particularly interesting not only for its possible relevance to
the physics of superconductors, but also because the thermo-
dynamics of the Hamiltonian HBCS+W+VMT is exactly solv-
able �Brankov et al.21�.

Let us consider the eight-fold product of operators in H4
5

with explicit spin indices:

am��
* am−w��al−w��

* al−q��ak�−q�
* ak�−t�ak−t��

* ak��.

With respect to one-fermion momenta these are nine possible
reductions to the form �3�, and each of them allows two or
four possibilities related to spin reduction. The values as-
sumed by each momentum index are collected in Table I. In
four cases q=0 and the coupling vanishes, since
��l ,m ,w ,0�=0, for all l, m, w. As a consequence, H4

5 as-
sumes the reduced form

H4�red�
5 = �

k�m
�2Hk,2k+m,k+m,2k+2m

���2m + k,m,k + m,2k + 2m�

− Hk,m,k+m,2m���2m + k,m,k + m,2m�

+ ��2m − k,m,m − k,2m�� − ��k,m,k + m,2k�

��Hk,2k+m,k+m,2k + Hk,2k−m,k−m,2k�

�am−
* am+

* a−m−
* a−m+

* a−k+a−k−ak+ak− + c.c. �46�

Terms with k=m have been excluded, similarly as in VBCS.
Their contribution is accounted for by a shift of one-fermion
energies. The coefficients on the RHS result after performing
summation over spins.

This procedure has been also applied to H4
6, H4

8, and H4
9.

The corresponding values of one-fermion momenta are given
in Tables II–IV. The additional remark k→k−2m �or simi-

TABLE I. Reductions of H4
5.

H4
5 l k� q t w Spins

1 2m+k 2k+m 2k+2m k+m k+m ��=−�� ,�=−��
2 2m+k m 2m k+m k+m ��=−��=−�=��
3 2m−k m 2m k+m m−k ��=−��=�=−��
4 k 2k+m 2k k+m k+m ��=−�=−��=��
5 k m 0 k+m k+m ��=−� ,��=−��
6 −k m 0 k+m m−k ��=−�=��=−��
7 k 2k−m 2k k−m k+m ��=−��=�=−��
8 k −m 0 k−m k+m ��=−��=−�=��
9 −k −m 0 k−m m−k ��=−�� ,��=−�
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lar� indicates that a translation of one momentum index is
necessary after reduction. After reduction, H4

6, H4
8, and H4

9

take the following forms:

H4�red�
6 = �

k�m
�2Hk,2k+m,k+m,2k+2m

���− k,− 2k − m,− k − m,2k + 2m�

− Hk,m,k+m,2m���k,− m,k − m,2m�

+ ��− k,− m,− m − k,2m��

− ��− k,m − 2k,− k + m,2k�

��Hk,2k+m,k+m,2k + Hk,2k−m,k−m,2k�

�am−
* am+

* a−m−
* a−m+

* a−k+a−k−ak+ak− + c.c.,

�47�

H4�red�
8 = �

k�m
�2I−k−2m,−m,−k−m,2k+2m

���k + 2m,m,k + m,2k + 2m�

− Ik−2m,−m,k−m,2m���k + 2m,m,k + m,2m�

+ ��− k + 2m,m,m − k,2m�� − ��k,m,k + m,2k�

��I−k,m,−k+m,2k + I−k,−m,−k−m,2k�

�am−
* am+

* a−m−
* a−m+

* a−k+a−k−ak+ak− + c.c., �48�

H4�red�
9 = �

k�m
�2I−k−2m,−m,−k−m,2k+2m

���− k,− 2k − m,− k − m,2k + 2m�

− Ik−2m,−m,k−m,2m���k,− m,k − m,2m�

+ ��− k,− m,− k − m,2m��

− ��− k,− 2k + m,− k + m,2k�

��I−k,m,−k+m,2k + I−k,−m,−k−m,2k�

�am−
* am+

* a−m−
* a−m+

* a−k+a−k−ak+ak− + c.c. �49�

Collecting all terms in Eqs. �46�–�49�, one obtains a VMT
interaction as in Eq. �3� with

gmk = − 4�2k+2m�km�mk
* + 2�km + 2�mk

* , �50�

where

�km = �*�2k + m,k,k + m,2k + 2m�

+ �*�− m,− k − 2m,− k − m,2k + 2m� , �51�

�km = �m��*�m,k,k + m,2m�

+ �*�− m,k − 2m,k − m,2m��

����2m + k,m,k + m,2m� + ��2m − k,m,m

− k,2m�

TABLE II. Reductions of H4
6.

H4
6 l k� q t w Spins

1 −k −m −2k−2m −k−m k+m ��=−�� ,�=−�� m→m−2k

2 k −m −2m k−m k+m ��=−��=−�=��
3 −k −m −2m k−m m−k ��=−��=�=−��
4 −k 4k+m 2k 3k+m k+m ��=−�=−��=�� m→m−2k

5 k m 0 k+m k+m ��=−� ,��=−��
6 −k m 0 k+m m−k ��=−�=��=−��
7 −k −m 2k −k−m k+m ��=−��=�=−�� m→m−2k

8 k −m 0 k−m k+m ��=−��=−�=��
9 −k −m 0 k−m m−k ��=−�� ,��=−�

TABLE III. Reductions of H4
8.

H4
8 l k� q t w Spins

1 −k −m −2k−2m k+m −k−m ��=−�� ,�=−�� k→k−2m

2 k+4m −m 2m k+m k+3m ��=−��=−�=�� k→k−2m

3 −k −m 2m k+m −m−k ��=−��=�=−�� k→k−2m

4 −k m −2k k+m −k+m ��=−�=��=−��
5 k m 0 k+m k+m ��=−� ,��=−��
6 −k m 0 k+m m−k ��=−�=−��=��
7 −k −m −2k k−m −k+m ��=−��=�=−��
8 k −m 0 k−m k+m ��=−��=−�=��
9 −k −m 0 k−m m−k ��=−�� ,��=−�
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+ ��k,− m,k − m,2m� + ��− k,− m,− k − m,2m�� .

�52�

VI. FOUR-FERMION INTERACTION COUPLING

The most important question about the four-fermion inter-
action is the positive or negative valuedness of gmk. In par-
ticular, it would be of interest to determine the domain of
gmk in momentum space where it is attractive. Unfortunately,
the form of gmk given by Eq. �50� is extremely complicated,
so this problem cannot be resolved in general.

First, let us specify the quantities occurring in Eq. �50�.
We assume that �k=ak2, �k=bk, �̃k=ck, �k=dk, and �̂k
=ek, where a, b, c, d, and e are real, positive constants.

Following Davydov,22 we apply some approximations in
order to estimate gmk. We assume that the most significant
contribution to the four-fermion interaction �analogously as
in the BCS theory� comes from one-electron momenta m and
k which satisfy the condition m�k.

The case of exact equality is, of course, excluded �in ac-
cordance with the restriction on summation in Eqs.
�46�–�49��, so we use gkk only as an abbreviation for gmk
under our approximation m�k.

Thus, the interaction coupling gkk is given by

gkk = − 4�4k�kk�kk
* + 2�kk + 2�kk

* . �53�

We take into account only vectors with almost compatible
directions; otherwise, gkk vanishes.

We can thus rewrite Eq. �53� in the form

gkk = − 16�k��kk�2 + 4 Re �kk, �54�

where the first term is always nonpositive and “Re” means
the real part. The second term requires detailed analysis. De-
tailed calculations are performed in Appendix B. We have
found gkk in all cases for different values of the constants a,
b, c, d, and e. Most interesting is the cases bc, be, and
bd, because the essential part of initial Hamiltonian is
transformed under these conditions. Under a further approxi-
mation, we find the form of gkk for k�kF, where kF is Fermi
momentum. Additionally we put c=d=e and �kF

��kF
�this

is at least true for metals�. Under these assumptions,

�kFkF
�

− DkF

6

4�kF

5 , �kFkF
�

iDkF

3

12�kF

2 �kF

,

which implies

gkFkF
�

− DkF

6

�kF

5 � 0.

Now we can compare the magnitudes of the coupling con-
stants of the four-fermion interaction and two-fermion inter-
action �under the same assumptions�. It is shown in Appen-
dix A that GkFkF

=−DkF

2 /�kF
. Thus the interaction coupling

for four- and two-fermion �BCS� interactions fulfills the re-
lation gkFkF

=GkFkF

3 /�kF

2 . As a consequence, for a strong pair-
ing, there is a significant contribution from four-fermion in-
teractions.

Moreover, the four-fermion interaction coupling gkk is
also negative in most cases without imposing the approxima-
tions c=d=e and k�kF. This is shown in Appendix B.

VII. FOUR-FERMION INTERACTIONS IN FRÖHLICH’S
EXPANSION

As demonstrated in Sec. III, four-fermion interaction
terms appear in sixth order of the expansion of Fröhlich’s
original transformation. These terms are derived in Appendix
C. The various resulting four-fermion terms considerably
outnumber those obtained by applying a second transforma-
tion in Sec. V. Again a reduction procedure to VMT is possible
for all four-fermion expressions �C5�, which do not contain
the particle number operator and possess three phonon indi-
ces. However, the resulting couplings are also complicated
functions and, therefore, will not be examined in detail.

The disadvantage of this method is appearance of three-
fermion interactions, which in the double transformation
method gave a small contribution. Here additional arguments
must be used to discard these terms.

VIII. CONCLUDING REMARKS

We have extended Fröhlich’s transformation of He-ph to
higher-order terms. This has been done by performing a sec-

TABLE IV. Reductions of H4
9.

H4
9 l k� q t w Spins

1
−

1

3
k+

2

3
m

2

3
k−

1

3
m −

2

3
k−

2

3
m

1

3
k+

1

3
m

1

3
k+

1

3
m

��=−�� ,�=−�� k→3k+2m ,m→m−2k

2 k−2m m −2m k−m k−m ��=−��=−�=�� k→k+2m

3 2m−k m −2m k−m 3m−k ��=−��=�=−�� k→k+2m

4 k −2k+m −2k −k+m −k+m ��=−�=��=−�� m→m+2k

5 k m 0 k+m k+m ��=−� ,��=−��
6 −k m 0 k+m m−k ��=−�=−��=��
7 k 2k−m −2k 3k−m −k+m ��=−��=�=−�� m→m+2k

8 k −m 0 k−m k+m ��=−��=−�=��
9 −k −m 0 k−m m−k ��=−�� ,��=−�
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ond transform of the first terms discarded by Fröhlich. The
resulting interactions are of three- and four-fermion type.
The three-fermion terms can be expected to be inessential in
superconductivity because of their instability under time in-
version. The four-fermion terms are, in general, reducible to
VMT, a BCS-type four-fermion interaction. The resulting
four-fermion coupling is extremely complicated, but under
reasonable approximations it is negative valued. Moreover,
for one-fermion momenta in the neighborhood of Fermi mo-
mentum, it has the simple form −DkF

6 /�kF

5 =GkFkF

3 /�kF

2 ,
where GkFkF

is the two-fermion coupling. This fact implies
that four-fermion interactions are significant for systems with
strong pairing and allows us to estimate �relative to two-
fermion coupling and phonon energy at Fermi momentum�
their magnitude.

As in BCS theory, where the relation between the gap
parameter � and coupling constant G of the BCS interaction
allows one to estimate the magnitude of G, it can be ex-
pected that the detailed thermodynamics of HMT will provide
a relation between �gmk� and other parameters of the theory,
thereby allowing one to estimate the magnitude of gmk. An-
other emerging question is Cooper’s problem23 for a bound
quadruple in the presence of VMT or VBCS+VMT. Kamei and
Miyake deal with this question in a recent work.24

The double transformation has unveiled the structure of
three-, four-, and five-fermion interactions. Since they are
proportional to the fourth, sixth, and eighth power of Dw,
they are relatively weak, so inclusion of these terms, apart
from four-fermion ones, appears unjustified at present, al-
though Schneider et al.19 suggest the existence of both qua-
druples and sextets in some HTSC’s.

The higher-order expansion terms of the transformed
He-ph, including quadruple, sextet, etc., interactions can be
expected to reveal themselves in materials with extremely
strong pairing correlations between spin-1 /2 fermions, since
the presence of strongly correlated pairs implies at least
some kind of weak interaction between them.

On the other hand, our extension of Fröhlich’s transfor-
mation shows that if phonon mediation exists in a supercon-
ductor, the four-fermion and six-fermion interactions are al-
ways present as supplementary to the BCS one.
Unfortunately, the Hamiltonian HBCS+VMT, although exactly
solvable, leads to intricate mean-field equations.

Our results obtained can be generalized in many respects.
First of all, the process of averaging over phonon vacuum
could be replaced by averaging over the phonon equilibrium
state, which could be justified at higher temperatures. This
would already lead to an additional one-fermion term in
Fröhlich’s Hamiltonian and modification of two-fermion and
three-fermion terms in our method. Another extension would
result by going beyond the harmonic approximation and in-
cluding all products of phonon operators. Method of
Bogoliubov25 could be applied to “dangerous terms” �diver-
gent�, omitted in Fröhlich’s method. These questions will be
dealt with in further investigations.
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APPENDIX A: FRÖHLICH’S TRANSFORMATION

Let us recall Fröhlich’s method,2 using in some details the
more elegant approach due to Davydov.22

Consider the electron-phonon Hamiltonian

He-ph = H0 + Hint = �
k�

�kak�
* ak� + �

w
�wbw

* bw

+ i�
w

Dw�bw�w
* − bw

* �w� ,

where

�w = �
k�

ak−w�
* ak�

and ak� �bk� are fermion �boson� operators. The coupling Dw
will be assumed small and 	�1.

The form of the interaction term of He-ph arises under a
number of assumptions: the ions of the lattice move collec-
tively, the coupling depends only on w, and electrons interact
only with longitudinal phonons for which �w=ws, s denot-
ing the velocity of sound. Our interest is focused on the
behavior of electrons; therefore, variations of the phonon
spectrum will be accounted for only through s.

Fröhlich performed a unitary transformation of He-ph in
order to eliminate �as far as possible� the interaction term.
The transformed Hamiltonian is

H = eS*
He-phe

S = He-ph − �S,He-ph� +
1

2
�S,�S,He-ph�� + ¯ ,

�A1�

where

S = �
q

Sq = �
q

��q
*bq

* − �qbq� = − S*,

�q = �
k


�k,q�ak
*ak−q,

and the unknown function 
�k ,q� :R3�R3→C1 is adjusted
to achieve the cancellation.

Collecting terms of the same order in the coupling Dw,
one obtains Fröhlich’s expansion:

H = H0 − ��S,H0� − Hint� + 
1

2
�S,�S,H0�� − �S,Hint�� + ¯ .

�A2�

Subsequently, a term which is a combination of products,
each with f fermion operators and b boson operators will be
written as �f ,b�. Clearly, f will always be even. For example,
H0 consists of terms �2,0� and �0,2�.

The RHS of Eq. �A2� is expressed in terms of commuta-
tors ��f1 ,b1� , �f2 ,b2��. One easily finds that

��f1,b1�,�f2,b2�� = �f1, f2�b1b2 + f2f1�b1,b2�

= �f1, f2�b2b1 + f1f2�b1,b2� . �A3�

The necessary commutators �f1 , f2�, �b1 ,b2� are given in Ap-
pendix C.
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According to Eq. �A1�, the transformation can be per-
formed, given commutators of the form occurring in Eq.
�A3� with the first argument equal S. The latter is a �2,1�
expression, hence

�S,�f ,b�� = ��2,1�,�f ,b�� = �f ,b + 1� + �f + 2,b − 1� ,

by virtue of Eqs. �A3� and �C1�. Clearly �f ,b−1�=0 for b
=0.

One finds

�S,H0� = ��2,1�,�2,0�� + ��2,1�,�0,2�� = �2,1� ,

so the term arising from H0 in first order has the same form
as the one arising from Hint in zeroth order. These terms are
used to eliminate the interaction in He-ph.

Similarly, for Hint,

�S,Hint� = ��2,1�,�2,1�� = �2,2� + �4,0� .

Fröhlich additionally assumed that introduction of experi-
mentally measured velocity of sound s allows to discard all
terms containing bw

2 , �bw
* �2, bwbv, bw

* bv if w�v, etc. In other
words, all �f ,b� terms for b�3 and part of �f ,2� terms are
neglected. As a consequence, the expansion �A1� up to sec-
ond order reduces to2

�S,H0� = �
kq

bq��k − �k−q − �q�
�k,q�ak
*ak−q + c.c.,

�A4�

�S,Hint� = �
q

iDq�q�q + �
kq

iDqbq
*bq
�k,q��nk − nk−q� + c.c.,

�A5�

�S,�S,H0�� = �
kq

��k−q − �k + �q�bq
*bq�
�k,q��2�nk − nk−q�

+ �
kq

��k−q − �k + �q�
�k,q�ak
*ak−q�q

* + c.c.

�A6�


 is now adjusted so as to minimize the contribution of terms
�2,1�. This is achieved by the choice2


�k,q� =
− iDq

�k−q − �k + �q
�1 − ��k,q�� , �A7�

where

��k,q� = �1, if ��k−q − �k + �q� � �q,

0, if ��k−q − �k + �q�  �q.
	 �A8�

��k ,q� is introduced to avoid divergence of the series �A1�
and �q is positive energy choosing for convergence.

Equations �A4� to �A7� yield

H = �
k

�kak
*ak + �

w
�wbw

* bw + �
wk

bw
* bw�nk − nk−w�

�
1

2
��k−w − �k + �w��
�k,w��2 − iDw
�k,w� + c.c.�

+ i�
kw

Dw�bwak
*ak−w − bw

* ak−w
* ak���k,w�

−
1

2 �
kqw

Dw
2 �1 + ��k,w���1 − ��q,w��

�q−w − �q + �w

��ak
*ak−waq−w

* aq + c.c.� . �A9�

Discarding the nontransformed part of the initial interac-
tion �fourth sum on the RHS� and taking the average in pho-
non vacuum, one obtains the Fröhlich Hamiltonian

HF = �
k

�knk

−
1

2 �
kqw

Dw
2 �1 + ��k,w���1 − ��q,w��

�q−w − �q + �w
�ak

*ak−waq−w
* aq

+ c.c.� . �A10�

The second term represents an effective interaction between
electrons dressed in the phonon field. If �q−w−�q+�w0,
this interaction is attractive.

APPENDIX B. CALCULATION OF gkk

Our objective is to find the explicit form of the following
expression:

gkk = − 16�k��kk�2 + 4 Re �kk. �B1�

Taking into account Eq. �52�, we have

�kk = �k��*�k,k,2k,2k� + �*�− k,− k,0,2k��

� ���3k,k,2k,2k� + ��k,k,0,2k� + ��k,− k,0,2k�

+ ��− k,− k,− 2k,2k�� = �k�*�k,k,2k,2k�

����3k,k,2k,2k� + ��− k,− k,− 2k,2k�� , �B2�

because �*�−k ,−k ,0 ,2k�=��k ,k ,0 ,2k�=��k ,−k ,0 ,2k�
=0, as can be seen from the explicit form, e.g., of the first of
these functions �see Eq. �33��:

�*�− k,− k,0,2k� =
− iD0

2D2k

6�k
2�0

��1 − �̂�− k,− k,0,2k���1 − ��k,2k��

���1 − ��− k,0���− 4 + ��k,0��

+ �1 − ��k,0���4 − ��− k,0�� = 0,

because ��−k ,0�=��k ,0�=1, for all k �see Eq. �A8��, simi-
larly for ��k ,k ,0 ,2k� and ��k ,−k ,0 ,2k�.

Similarly, from Eq. �51�, we get

�kk = �*�3k,k,2k,4k� + �*�− k,− 3k,− 2k,4k� . �B3�

On the grounds of Eq. �30�, we obtain
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�*�k,k,2k,2k� =
− i�2Dk

3

12�k
�1 − �̃�k,k,2k,2k��

��3�1 − ��k,2k��
�k

2

−
�1 − ��k,2k���1 − ��− k,2k��

2�k�4�k + �k�

��2 + ��− k,2k�� −
1 − ��− k,2k�
2�4�k + �k�2

��4 − ��k,2k��	 . �B4�

The functions �̃ and � are equal 0 or 1, depending on their
argument �see Eqs. �31� and �A8��, so we obtain several con-
ditions. The most important one is

�̃�k,k,2k,2k� = 0 Û �k  �̃k Û b  c �B5�

and �*�k ,k ,2k ,2k�=0 otherwise. Other conditions are not
so strong, because they do not destroy all of parts of Eq.
�B4�. We have

��k,2k� = 0 Û �k  �k Û b  d , �B6�

��− k,2k� = 0 Û �4�k + �k�  �k Û k 
d − b

4a
. �B7�

Taking into account Eqs. �B5�–�B7� we get the following.
If b�c, then �*�k ,k ,2k ,2k�=0.
If bc and bd, then

�*�k,k,2k,2k� =
− i�2Dk

3�k�5�k + 12�k�
3�k

3��k + 4�k�2 .

If bc, b�d, and k� �0, d−b
4a

�, then �*�k ,k ,2k ,2k�=0.
If bc, b�d, and k� � d−b

4a ,��, then

�*�k,k,2k,2k� =
i�2Dk

3

8�k��k + 4�k�2 .

Proceeding similarly, we get the form of other functions
occurring in Eqs. �B2� and �B3�. For ��3k ,k ,2k ,2k�, we
have the following.

If b�c, then ��3k ,k ,2k ,2k�=0.
If bc, bd, and k� �0, b−d

4a
�� � b+d

4a ,��, then

��3k,k,2k,2k� =
i�2Dk

3�k�5�k − 12�k�
3�k

3��k − 4�k�2 .

If bc, bd, and k�� b−d
4a , b+d

4a
�, then

��3k,k,2k,2k� = −
i�2Dk

3

4�k
3 .

If bc, b�d, and k��0, b+d
4a

�, then ��3k ,k ,2k ,2k�=0.
If bc, b�d, and k� � b+d

4a ,��, then

��3k,k,2k,2k� =
i�2Dk

3

8�k��k − 4�k�2 .

For ��−k ,−k ,−2k ,2k�, we have the following.
If b�e, then ��−k ,−k ,−2k ,2k�=0.
If be, bd, and k� �0, b−d

4a
�� � b+d

4a ,��, then

��− k,− k,− 2k,2k� =
i�2Dk

3�k��k + 12�k�
3�k

3��k
2 − 16�k

2�
.

If be, bd, and k�� b−d
4a , b+d

4a
�, then

��− k,− k,− 2k,2k� = −
i�2Dk

3

4�k
3 .

If be, b�d, and k��0, b+d
4a

�, then ��−k ,−k ,−2k ,2k�
=0.

If be, b�d, and k�� b+d
4a ,��, then

��− k,− k,− 2k,2k� =
i�2Dk

3

8�k��k
2 − 16�k

2�
.

For �*�3k ,k ,2k ,4k�, we have the following.
If b�c, then �*�3k ,k ,2k ,4k�=0.
If bc, b�d /3, and k� �0, d−b

2a
�, then �*�3k ,k ,2k ,4k�

=0.
If bc, b�d /3, and k� � d−b

2a , d+b
2a

�, then

�*�3k,k,2k,4k� =
iDk

3

16�k��k + 2�k���k + 4�k�
ª ��1�.

If bc, b�d /3, and k� � d+b
2a ,��, then

�*�3k,k,2k,4k� =
− 3iDk

3�k

4��k
2 − 16�k

2���k
2 − 4�k

2�
ª ��2�.

If bc, d /3�b�d, and k� �0, d−b
2a

� , then �*�3k ,k ,
2k ,4k�=0.

If bc, d /3�b�d, and k� � d−b
2a , d+b

2a
�, then �*�3k ,k ,

2k ,4k�=��1�.
If bc, d /3�b�d, and k� � d+b

2a ,��, then �*�3k ,k ,
2k ,4k�=��2�.

If bc, d�b�3d, and k� �0, b−d
4a

�� � b+d
2a ,��, then

�*�3k,k,2k,4k� =
− iDk

3�k�7�k
2 − 16�k

2�
6�k

2��k
2 − 16�k

2���k
2 − 4�k

2�
ª ��3�.

If bc, d�b�3d, and k�� b−d
4a , b−d

2a
�, then

�*�3k,k,2k,4k� =
− iDk

3�− 3�k
2 + 40�k

2 + 22�k�k�
48�k

2��k
2 − 4�k

2���k + 4�k�
ª ��4�.

If bc, d�b�3d, and k�� b−d
2a , b+d

2a
�, then

�*�3k,k,2k,4k� =
iDk

3�3�k + 4�k�
24�k

2��k + 2�k���k + 4�k�
ª ��5�.

If bc, b3d, and k� �0, b−d
4a

�� � b+d
4a , b−d

2a
�� � b+d

2a ,��,
then �*�3k ,k ,2k ,4k�=��3�.

If bc, b3d, and k�� b−d
4a , b+d

4a
�, then �*�3k ,k ,

2k ,4k�=��4�.
If bc, b3d, and k�� b−d

2a , b+d
2a

�, then �*�3k ,k ,
2k ,4k�=��5�.

For �*�−k ,−3k ,−2k ,4k�, we have the following.
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If b�e, then �*�−k ,−3k ,−2k ,4k�=0.
If be, b�d /3, and k� �0, d−b

2a
�, then �*�−k ,−3k ,

−2k ,4k�=0.
If be, b�d /3, and k� � d−b

2a , d+b
2a

�, then

�*�− k,− 3k,− 2k,4k� =
iDk

3

16�k��k + 2�k���k − 4�k�
ª ��1�.

If be, b�d /3, and k� � d+b
2a ,��, then

�*�− k,− 3k,− 2k,4k� =
iDk

3�k

4��k
2 − 16�k

2���k
2 − 4�k

2�
ª ��2�.

If be, d /3�b�d, and k� �0, d+b
4a

�, then �*�−k ,−3k ,
−2k ,4k�=0.

If be, d /3�b�d, and k� � d+b
4a , d+b

2a
�, then �*�−k ,

−3k ,−2k ,4k�=��1�.
If be, d /3�b�d, and k� � d+b

2a ,��, then �*�−k ,−3k ,
−2k ,4k�=��2�.

If be, d�b�3d, and k� �0, b−d
4a

��� b+d
2a ,��, then

�*�− k,− 3k,− 2k,4k� =
iDk

3�k��k
2 + 16�k

2�
6�k

2��k
2 − 4�k

2���k
2 − 16�k

2�
ª ��3�.

If be, d�b�3d, and k�� b−d
4a , b−d

2a
�, then

�*�− k,− 3k,− 2k,4k� =
− iDk

3�3�k
2 + 14�k�k + 40�k

2�
48�k

2��k
2 − 4�k

2���k + 4�k�

ª ��4�.

If be, d�b�3d, and k�� b−d
2a , b+d

4a
�, then

�*�− k,− 3k,− 2k,4k� =
iDk

3

16�k
2��k + 2�k�

.

If be, d�b�3d, and k� � b+d
4a , b+d

2a
�, then

�*�− k,− 3k,− 2k,4k� =
iDk

3�3�k − 4�k�
24�k

2��k + 2�k���k − 4�k�
ª ��5�.

If be, 3d�b, and k� �0, b−d
4a

�� � b+d
4a , b−d

2a
�� � b+d

2a ,��,
then �*�−k ,−3k ,−2k ,4k�=��3�.

If be, 3d�b, and k�� b−d
4a , b+d

4a
�, then �*�−k ,−3k ,

−2k ,4k�=��4�.
If be, 3d�b, and k�� b−d

2a , b+d
2a

�, then �*�−k ,−3k ,
−2k ,4k�=��5�.

On the basis of this results and Eq. �B1�, we get the four-
fermion interaction coupling gkk:

If b�c and b�e, then gkk=0.
If b�c, be, b�d /3, and k� �0, d−b

2a
�, then gkk=0.

If b�c, be, b�d /3, and k� � d−b
2a , d+b

2a
�, then

gkk =
− Dk

6

16�k��k + 2�k�2��k − 4�k�2 ª gkk
�1� � 0.

If b�c, be, b�d /3, and k� � d+b
2a ,��, then

gkk =
− Dk

6�k�k
2

��k
2 − 4�k

2�2��k
2 − 16�k

2�2 ª gkk
�2� � 0.

If b�c, be, d /3�b�d, and k� �0, d+b
4a

�, then gkk=0.

If b�c, be, d /3�b�d, and k� � d+b
4a , d+b

2a
�, then gkk

=gkk
�1�.
If b�c, be, d /3�b�d, and k� � d+b

2a ,��, then gkk

=gkk
�2�.
If b�c, be, d�b�3d, and k� �0, b−d

4a
��� b+d

2a ,��, then

gkk = −
4Dk

6�k
2��k

2 + 16�k
2�2

9�k
3��k

2 − 4�k
2�2��k

2 − 16�k
2�2 ª gkk

�3� � 0.

If b�c, be, d�b�3d, and k�� b−d
4a , b−d

2a
�, then

gkk =
− Dk

6�3�k
2 + 14�k�k + 40�k

2�2

144�k
3��k

2 − 4�k
2�2��k + 4�k�2 ª gkk

�4� � 0.

If b�c, be, d�b�3d, and k�� b−d
2a , b+d

4a
�, then

gkk = −
Dk

6

16�k
3��k + 2�k�2 � 0.

If b�c, be, d�b�3d, and k� � b+d
4a , b+d

2a
�, then

gkk =
− Dk

6�3�k − 4�k�2

36�k
3��k + 2�k�2��k − 4�k�2 ª gkk

�5� � 0.

If b�c, be, 3d�b, and k
� �0, b−d

4a
�� � b+d

4a , b−d
2a

�� � b+d
2a ,��, then gkk=gkk

�3�.
If b�c, be, 3d�b, and k�� b−d

4a , b+d
4a

�, then gkk=gkk
�4�.

If b�c, be, 3d�b, and k�� b−d
2a , b+d

2a
�, then gkk=gkk

�5�.
If bc, b�e, b�d /3, and k� �0, b+d

4a
�, then gkk=0.

If bc, b�e, b�d /3, and k� � b+d
4a , d−b

2a
�, then

gkk =
− Dk

6

8�k��k
2 − 16�k

2�2 � 0.

If bc, b�e, b�d /3, and k� � d−b
2a , b+d

2a
�, then

gkk =
− 3Dk

6��k
2 + 8�k

2�
16�k��k + 2�k�2��k

2 − 16�k
2�2 ª gkk

�6� � 0.

If bc, b�e, b�d /3, and k� � d+b
2a ,��, then

gkk =
− Dk

6��k
4 + 64�k

2�k
2 + 16�k

4�
8�k��k

2 − 16�k
2�2��k

2 − 4�k
2�2 ª gkk

�7� � 0.

If bc, b�e, d /3�b�d, and k� �0, d−b
2a

�, then gkk=0.
If bc, b�e, d /3�b�d, and k� � d−b

2a , d+b
4a

�, then

gkk =
− Dk

6

16�k��k + 2�k�2��k + 4�k�2 ª gkk
�8� � 0.

If bc, b�e, d /3�b�d, and k� � d+b
4a , d+b

2a
�, then gkk

=gkk
�6�.
If bc, b�e, d /3�b�d, and k� � d+b

2a ,��, then gkk

=gkk
�7�.
If bc, b�e, d�b�3d, and k� �0, b−d

4a
�� � b+d

2a ,��, then

gkk = −
4Dk

6�k
2�− �k

6 + 464�k
4�k

2 − 2848�k
2�k

4 + 4608�k
6�

9�k
5��k

2 − 4�k
2�2��k

2 − 16�k
2�2

ª gkk
�9�.

We see that gkk
�9��0 iff
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�k
6 + 464�k

4�k
2 − 2848�k

2�k
4 + 4608�k

6  0.

Taking into account �k=bk and �k=ak2, we obtain a third-
order algebraic inequality

4608l3 − 2848xl2 + 464x2l − x3  0,

for l=a2k2, x=b2. This can be easily solved26—there exists
only one real root l0

�9��0,002x, so

gkk
�9� � 0 iff k  k0

�9� � 0.047b/a � b/4a .

If bc, b�e, d�b�3d, and k�� b−d
4a , b−d

2a
�, then

gkk = −
Dk

6

144�k
5��k

2 − 4�k
2�2��k + 4�k�2

��9�k
6 + 348�k

5�k + 1396�k
4�k

2 − 2080�k
3�k

3

− 7616�k
2�k

4 + 7680�k�k
5 + 18432�k

6� ª gkk
�10�.

It turns out that gkk
�10��0 for all k0, because �l=ak� the

equation

18432l6 + 7680bl5 − 7616b2l4 − 2080b3l3 + 1396b4l2

+ 348b5l + 9b6 = 0

has only two real roots and both are negative: l1
�10��

−0.208b and l1
�10�=−0.029b.

If bc, b�e, d�b�3d, and k�� b−d
2a , b+d

4a
�, then

gkk = −
Dk

6�9�k
4 + 144�k

3�k + 784�k
2�k

2 + 1632�k�k
3 + 1152�k

4�
36�k

5��k + 2�k�2��k + 4�k�2 � 0.

If bc, b�e, d�b�3d, and k� � b+d
4a , b+d

2a
�, then

gkk = −
Dk

6

36�k
5��k + 2�k�2��k

2 − 16�k
2�2

��9�k
6 − 48�k

5�k − 832�k
4�k

2 − 2944�k
3�k

3

+ 1664�k
2�k

4 + 18432�k�k
5 + 18432�k

6� ª gkk
�11�.

gkk
�11��0 iff k� �0,0.073b /a�� �0.412b /a ,��.

If bc, b�e, b3d, and k� �0, b−d
4a

�
� � b+d

4a , b−d
2a

�� � b+d
2a ,��, then gkk=gkk

�9�.
If bc, b�e, b3d, and k�� b−d

4a , b+d
4a

�, then gkk=gkk
�10�.

If bc, b�e, b3d, and k�� b−d
2a , b+d

2a
�, then gkk=gkk

�11�.
If bc, be, b�d /3, and k� �0, b+d

4a
�, then gkk=0.

If bc, be, b�d /3, and k� � b+d
4a , d−b

2a
�, then

gkk = −
Dk

6

4��k + 4�k�3��k − 4�k�2 � 0.

If bc, be, b�d /3, and k�� d−b
2a , b+d

2a
�, then

gkk = −
Dk

6��k
2 + 4�k�k + 2�k

2�
2��k

2 − 16�k
2�2��k + 2�k�2��k + 4�k�

ª gkk
�12� � 0.

If bc, be, b�d /3, and k� � d+b
2a ,��, then

gkk = −
Dk

6��k
4 − 4�k

2�k
2 + 16�k�k

3 + 16�k
4�

4��k
2 − 16�k

2�2��k
2 − 4�k

2�2��k + 4�k�
ª gkk

�13�.

gkk
�13��0 for all k0.

If bc, be, d /3�b�d, and k� �0, d−b
2a

�, then gkk=0.
If bc, be, d /3�b�d, and k� � d−b

2a , d+b
4a

�, then gkk

=gkk
�8�.
If bc, be, d /3�b�d, and k� � d+b

4a , d+b
2a

�, then gkk

=gkk
�12�.
If bc, be, d /3�b�d, and k� � d+b

2a ,��, then gkk

=gkk
�13�.
If bc, be, d�b�3d, and k� �0, b−d

4a
�, then

gkk = −
32Dk

6�k
2

9�k
5��k

2 − 16�k
2�2��k

2 − 4�k
2�2��k + 4�k�

��− 3�k
7 − 20�k

6�k + 84�k
5�k

2 + 400�k
4�k

3 − 568�k
3�k

4

− 2400�k
2�k

5 + 1152�k�k
6 + 4608�k

7� ª gkk
�14�.

gkk
�14��0 iff k� �0.268b /a ,��.

If bc, be, d�b�3d, and k�� b−d
4a , b−d

2a
�, then

gkk = −
16Dk

6�k�60�k
5 + 225�k

4�k − 120�k
3�k

2 − 752�k
2�k

3 + 960�k�k
4 + 2304�k

5�
9�k

5��k
2 − 4�k

2�2��k + 4�k�2 ª gkk
�15�.

gkk
�15��0 for all k0.

If bc, be, d�b�3d, and k�� b−d
2a , b+d

4a
�, then
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gkk = −
Dk

6�81�k
4 + 1320�k

3�k + 6544�k
2�k

2 + 13056�k�k
3 + 9216�k

4�
9�k

5��k + 4�k�2��k + 2�k�2 � 0.

If bc, be, d�b�3d, and k� � b+d
4a , b+d

2a
�, then

gkk = −
Dk

6

9�k
5��k

2 − 16�k
2�2��k + 4�k���k + 2�k�2

��9�k
7 + 36�k

6�k − 336�k
5�k

2 − 2560�k
4�k

3

− 3264�k
3�k

4 + 14592�k
2�k

5 + 46080�k�k
6 + 36864�k

7�

ª gkk
�16�.

gkk
�16��0 iff k� �0,0.142b /a�� �0.345b /a ,��.

If bc, be, d�b�3d, and k� � b+d
2a ,��, then gkk

=gkk
�14�.
If bc, be, b3d, and k� �0, b−d

4a
�� � b+d

4a , b−d
2a

�
� � b+d

2a ,��, then gkk=gkk
�14�.

If bc, be, b3d, and k�� b−d
4a , b+d

4a
�, then gkk=gkk

�15�.
If bc, be, b3d, and k�� b−d

2a , b+d
2a

�, then gkk=gkk
�16�.

APPENDIX C: HIGHER-ORDER TERMS OF FRÖHLICH’S
TRANSFORMATION

Evaluation of successive commutators of the expansion
�A1� is a time-consuming task. Below the final results are
given for the relevant orders.

Since S=B−B* in Eq. �7�, all expansion terms have the
form g+g*. We focus on the first summand.

The following formulas for boson operators,

�b1,b2b3� = �b1,b2�b3 + b2�b1,b3� ,

�b1b2,b3b4� = b1b3�b2,b4� + b1�b2,b3�b4 + b3�b1,b4�b2

+ �b1,b3�b4b2,

and fermion operators,

�f1, f2f3� = �f1, f2f3 − f2�f1, f3 ,

�f1f2, f3f4� = �f1, f3f4f2 − f3�f1, f4f2 + f1�f2, f3f4

− f1f3�f2, f4 ,

will be used. In particular, for fermion creation and annihi-
lation operators,

�ak
*al,aq

*ar� = �lqak
*ar − �kraq

*al. �C1�

1. Fourth order

To calculate fourth-order terms, let us rewrite the third-
order expression �13� as a sum of Hint

�3�= 1
2 �S , �S ,Hint�� and

H0
�3�=− 1

6 �S , �S , �S ,H0���:

Hint,0
�3� = �

qk
Akq

int,0bq
*nk�q

* + �
qkwk�

bw
* �Bkqwk�

int,0 ak−w
* ak−qak�−q

* ak�

+ Ckqwk�
int,0 ak�

* ak�−qak−q
* ak+w + c.c.,

with

Akq
int =

1

2
iDq�
*�k,q� + 
�k + q,q�� + c.c.,

Akq
0 =

1

6
��k−q − �k + �q��
�k,q��2

−
1

6
��k − �k+q + �q��
�k + q,q��2 + c.c.,

Bkqwk�
int =

1

2
iDq�
*�k�,q�
*�k − q,w� − 
*�k�,q�
*�k,w�

+ 
*�k,w�
�k,q� − 
*�k − q,w�
�k − w,q�� ,

Bkqwk�
0 =

1

6

*�k�,q��
�k,q�
*�k,w���k − �k−q + �k�−q − �k��

+ 
�k − w,q�
*�k − q,w���k−w−q − �k−w − �k�−q

+ �k�� ,

Ckqwk�
int =

1

2
iDq�
�k�,q�
*�k + w − q,w�

− 
�k�,q�
*�k + w,w� − 
*�k + w − q,w�

�
*�k + w,q� + 
*�k + w,w�
*�k,q�� ,

Ckqwk�
0 =

1

6

�k�,q��
*�k + w,q�
*�k + w − q,w�

���k�−q − �k� − �k+w−q + �k+w�

+ 
*�k,q�
*�k + w,w���k−q − �k − �k�−q + �k�� .

The fourth-order term in Eq. �6� equals

H�4� = −
1

6
�S,�S,�S,Hint��� +

1

24
�S,�S,�S,�S,H0���� =

−
1

3
�S,Hint

�3�� −
1

4
�S,H0

�3�� ª Hint
�4� + H0

�4�.

Explicitly,
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Hint,0
�4� = �

kq
Aint,0

�4� �qnk�q
* + �

kqk�w

Bint,0
�4� �wak−w

* ak−qak�−q
* ak�

+ �
kqk�w

Cint,0
�4� �wak�

* ak�−qak−q
* ak+w

+ �
kqk�

Dint,0
�4� bq

*bqnknk� + �
kq

Eint,0
�4� bq

*bqak
*ak−q�q

*

+ �
kqk�w

Fint,0
�4� bw

* bwak−w
* ak−qak�−q

* ak�−w

+ �
kqwk�

Gint,0
�4� bw

* bwak�+w
* ak�−qak−q

* ak+w

+ �
kqwk�

Iint,0
�4� bw

* bwak
*ak−qak�−q

* ak� + c.c., �C2�

where

Aint
�4� =

1

3
Akq

int, A0
�4� =

1

4
Akq

0 , Bint
�4� =

1

3
Bkqwk�

int , B0
�4�

=
1

4
Bkqwk�

0 .

Other coefficients in Eq. �C2� arise according to the same
scheme—viz.,

Cint
�4� =

1

3
Ckqwk�

int , Dint
�4� =

1

3
Akq

int��
�k�,q��2 − �
�k� + q,q��2� ,

Eint
�4� =

1

3
�Ak−q,q

int − Akq
int�
�k,q�,

Fint
�4� =

1

3
�Bk,q,w,k�−w

int 
�k� − q,w� − Bk,q,w,k�
int 
�k�,w�� ,

Gint
�4� =

1

3
�Ck,q,w,k�

int 
�k� + w,w�

− Ck,q,w,k�+w
int 
�k� + w − q,w�� ,

Iint
�4� =

1

3
�Bk,q,w,k�

int 
�k,w� − Bk+w,q,w,k�
int 
�k + w − q,w�

+ Ck�−w,q,w,k
int 
�k� − q,w� − Ck�,q,w,k

int 
�k� + w,w��

and similarly for C0
�4�, D0

�4�, etc.

2. Fifth order

Proceeding analogously as with the fourth order, one
obtains

H�5� =
1

24
�S,�S,�S,�S,Hint���� −

1

120
�S,�S,�S,�S,�S,H0����� = −

1

4
�S,Hint

�4�� −
1

5
�S,H0

�4�� ª Hint
�5� + H0

�5�,

Hint,0
�5� = �

qkwk�

Aint,0
�5� bw

* �qnkak�−w
* ak�+q + �

qkw
Bint,0

�5� bw
* �qak

*ak−w�q
* + �

qkwk�

Cint,0
�5� bw

* ak�−wak�−qnk�q
*

+ �
qkwk�u

Dint,0
�5� bu

*�wak−w
* ak−qak�−q

* ak�+u + �
qkwk�u

Eint,0
�5� bu

*�wak−w−u
* ak−qak�−q

* ak� + �
qkwk�ul

Fint,0
�5� bu

*al−u
* al−wak−w

* ak−qak�−q
* ak�

+ �
qkwk�u

Gint,0
�5� bu�wak−w

* ak−qak�−q
* ak�−u + �

qkwk�u

Iint,0
�5� bu�wak−w

* ak−q−uak�−q
* ak� + �

qkwk�ul

Jint,0
�5� bual+w

* al−uak−w
* ak−qak�−q

* ak�

+ �
qkwk�u

Kint,0
�5� bu

*�wak�
* ak�−qak−q−u

* ak+w + �
qkwk�u

Lint,0
�5� bu

*�wak�−u
* ak�−qak−q

* ak+w + �
qkwk�ul

Mint,0
�5� bu

*al−u
* al−qak�

* ak�−qak−q
* ak�+w

+ �
qkwk�u

Nint,0
�5� bu�wak�

* ak�−qak−q
* ak+w−u + �

qkwk�u

Oint,0
�5� bu�wak�+u

* ak�−qak−q
* ak+w + �

qkwk�ul

Pint,0
�5� bual+w

* al−uak�
* ak�−qak−q

* ak+w

+ �
qkk�

Rint,0
�5� bq

*nknk��q
* + �

qk
Sint,0

�5� bq
*ak

*ak−q�q
*�q

* + �
qk

Sint,0
�5� bq�qak

*ak−q�q
* + �

qkwk�

Tint,0
�5� bw

* ak−w
* ak−qak�−q

* ak�−w�w
*

+ �
qkwk�

Uint,0
�5� bw

* ak�+w
* ak�−qak−q

* ak+w�w
* + �

qkwk�

Wint,0
�5� bw

* ak
*ak−qak�−q

* ak��w
* + c.c., �C3�
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where

Aint,0
�5� = − �1

4
,
1

5
	�Aint,0

�4� + Aint,0
�4�*� � �
*�k�,w�
*�k� + q,q� − 
*�k� + q,w�
*�k� + q − w,q�� ,

Bint,0
�5� = − �1

4
,
1

5
	�Aint,0

�4� + Aint,0
�4�* − Aint,0

�4�k→k−w − Aint,0
�4�*k→k−w�
*�k,w� ,

Cint,0
�5� = − �1

4
,
1

5
	�Aint,0

�4� + Aint,0
�4�*��
*�k�,w�
*�k�,q� − 
*�k� − q,w�
*�k� − w,q�� ,

Dint,0
�5� = − �1

4
,
1

5
	�Bint,0

�4�k�→k�+u
*�k� + u − q,u� − Bint,0
�4� 
*�k� + u,u�� ,

Eint,0
�5� = − �1

4
,
1

5
	�Bint,0

�4� 
*�k − w,u� − Bint,0
�4�k→k−u
*�k − q,u�� ,

Fint,0
�5� = − �1

4
,
1

5
	Bint,0

�4� �
*�l,u�
�l,w� − 
*�l − w,u�
�l − u,w�� ,

Gint,0
�5� = �1

4
,
1

5
	�Bint,0

�4�k�→k�−u
�k� − q,u� − Bint,0
�4� 
�k�,u�� ,

Iint,0
�5� = �1

4
,
1

5
	�Bint,0

�4�k→k−u
�k − w,u� − Bint,0
�4� 
�k − q,u�� ,

Jint,0
�5� = �1

4
,
1

5
	Bint,0

�4� �
�l + w,u�
�l − u + w,w� − 
�l,u�
�l + w,w�� ,

Kint,0
�5� = − �1

4
,
1

5
	�Cint,0

�4� 
*�k − q,u� − Cint,0
�4�k→k−u
*�k + w,u�� ,

Lint,0
�5� = − �1

4
,
1

5
	�Cint,0

�4� 
*�k�,u� − Cint,0
�4�k�→k�−u
*�k� − q,u�� ,

Mint,0
�5� = − �1

4
,
1

5
	Cint,0

�4� �
*�l,u�
�l,w� − 
*�l − w,u�
�l − u,w�� ,

Nint,0
�5� = �1

4
,
1

5
	�Cint,0

�4�k→k−u
�k − q,u� − Cint,0
�4� 
�k + w,u�� ,

Oint,0
�5� = �1

4
,
1

5
	�Cint,0

�4� 
�k� + u,u� − Cint,0
�4�k�→k�+u
�k� + u − q,u�� ,

Pint,0
�5� = �1

4
,
1

5
	Cint,0

�4� �
�l + w,u�
�l − u + w,w� − 
�l,u�
�l + w,w�� ,

Rint,0
�5� = �1

4
,
1

5
	�Dint,0

�4� + Dint,0
�4�*�, Sint,0

�5� = �1

4
,
1

5
	Eint,0

�4� ,

Tint,0
�5� = �1

4
,
1

5
	�Fint,0

�4� + Fint,0
�4�*k�k��, Uint,0

�5� = �1

4
,
1

5
	�Gint,0

�4� + Gint,0
�4�*k�k�� ,
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Wint,0
�5� = �1

4
,
1

5
	�Iint,0

�4� + Iint,0
�4�*k�k�� .

Here 1/4 in the curly brackets refers to int terms and 1/5 to 0 terms.

3. Sixth order

Proceeding analogously as with the fourth, and the fifth orders, one obtains

H�6� = −
1

120
�S,�S,�S,�S,�S,Hint����� +

1

720
�S,�S,�S,�S,�S,�S,H0������ = −

1

5
�S,Hint

�5�� −
1

6
�S,H0

�5�� ª Hint
�6� + H0

�6�, �C4�

Hint,0
�6� = �1

5
,
1

6
	� �

qkwk�

Aint,0
�5� �w�qnkak�−w

* ak�+q + �
qkw

Bint,0
�5� �w�qak

*ak−w�q
* + �

qkwk�

Cint,0
�5� �wak�−wak�−qnk�q

*

+ �
qkwk�u

Dint,0
�5� �u�wak−w

* ak−qak�−q
* ak�+u + �

qkwk�u

Eint,0
�5� �u�wak−w−u

* ak−qak�−q
* ak� + �

qkwk�ul

Fint,0
�5� �ual−u

* al−wak−w
* ak−qak�−q

* ak�

+ �
qkwk�u

Gint,0
�5� �wak−w

* ak−qak�−q
* ak�−u�u

* + �
qkwk�u

Iint,0
�5� �wak−w

* ak−q−uak�−q
* ak��u

* + �
qkwk�ul

Jint,0
�5� al+w

* al−uak−w
* ak−qak�−q

* ak��u
*

+ �
qkwk�u

Kint,0
�5� �u�wak�

* ak�−qak−q−u
* ak+w + �

qkwk�u

Lint,0
�5� �u�wak�−u

* ak�−qak−q
* ak+w

+ �
qkwk�ul

Mint,0
�5� �ual−u

* al−qak�
* ak�−qak−q

* ak�+w + �
qkwk�u

Nint,0
�5� �wak�

* ak�−qak−q
* ak+w−u�u

*

+ �
qkwk�u

Oint,0
�5� �wak�+u

* ak�−qak−q
* ak+w�u

* + �
qkwk�ul

Pint,0
�5� al+w

* al−uak�
* ak�−qak−q

* ak+w�u
* + �

qkk�

Rint,0
�5� �qnknk��q

*

+ �
qk

Sint,0
�5� �qak

*ak−q�q
*�q

* + �
qk

Sint,0
�5� �qak

*ak−q�q
*�q

* + �
qkwk�

Tint,0
�5� �wak−w

* ak−qak�−q
* ak�−w�w

*

+ �
qkwk�

Uint,0
�5� �wak�+w

* ak�−qak−q
* ak+w�w

* + �
qkwk�

Wint,0
�5� �wak

*ak−qak�−q
* ak��w

* + b*b�  + c.c.	 . �C5�

The last term denotes all �6, 2� expressions which are irrelevant after averaging over the phonon vacuum. The coefficients are
the same as in the fifth-order terms, except for the factors 1 /5 and 1/6.
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