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We study the phase diagram and quantum critical properties of a resistively shunted Josephson junction array
in one dimension from a strong coupling analysis. After mapping the dissipative quantum phase model to an
effective sine-Gordon model we study the renormalization group flow and the phase diagram. We try to bridge
the phase diagrams obtained from the weak and the strong coupling renormalization group calculations to
extract a more comprehensive picture of the complete phase diagram. The relevance of our theory to experi-
ments in nanowires is discussed.
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I. INTRODUCTION

Ohmic dissipation was shown to be of critical importance
in the macroscopic quantum coherence of a double-well
system.1,2 This zero-dimensional problem undergoes a spon-
taneous symmetry-breaking transition in the ground state if
the resistor causing the dissipation is smaller than the quan-
tum of resistance RQ=h /4e2�6.5 k�; h is the Planck’s con-
stant and e the electronic charge. It is perhaps the simplest
example of a quantum critical point �QCP�.3 Soon after-
wards, it was also shown4 that a resistively shunted Joseph-
son junction undergoes a similar phase transition from a me-
tallic state �because there is always an ohmic shunt present in
the model�, in which the phase difference between the super-
conductors is delocalized, to a superconducting state �in
which a supercurrent can flow below the critical current�,
where the phase difference is localized in a minimum of the
cosine potential of the effective classical Hamiltonian de-
rived by Josephson. The root of this remarkable QCP is loga-
rithmic interactions between the instantons5 representing the
tunneling events, resulting in a dramatic failure of the dilute
instanton gas approximation, so successful in the macro-
scopic quantum tunneling problem.6,7 The only difference
between the two systems is the specific ordering of the
instantons,5 but in both cases the underlying cause is the
orthogonality catastrophe8 of an infrared divergent heat bath
that is necessary to model the ohmic shunt resistor. Since
then, numerous suggestions have been made that such an
essentially dynamic zero temperature �T=0� phase transition
may be embedded in many condensed matter systems, and
this may explain the ubiquity of dissipation in many ultralow
temperature phenomena. Instead of enumerating here an in-
complete list of references, we refer to Ref. 9.

What about experiments regarding these predictions? We
do not merely mean a reduction of the quantum tunneling
rate due to dissipation, but a sharp phase transition or a QCP.
Surprisingly, experimental evidence is sparse. The closest
experiment that indicates symmetry breaking in a double
well is an indirect experiment involving a superconducting
quantum interference device.10 In contrast, in a more direct
experiment on a single resistively shunted Josephson junc-
tion such a dynamic phase transition has been apparently

experimentally observed.11 However, it seems that the theo-
retical situation is more subtle than that assumed in the
past.12 An attempt to observe such a transition in supercon-
ducting nanowires was also made.13 Unfortunately, the
present experimental situation appears to be unclear.14–17

Sometimes the simplest theoretical concept is not the sim-
plest from the experimental perspective. From the very be-
ginning it was realized that such a dynamic transition may
have important consequences in many body problems,18–21 in
particular in resistively shunted Josephson junction arrays
�RSJJA�. Beginning with the pioneering work of Orr et al.22

experiments have been few and far in between. A brief recent
review is provided by Goldman.23 Of importance to us here
are the experiments of Rimberg et al.,24 Takahide et al.,25

and Miyazaki et al.26 On the theoretical side, many important
contributions have been made, but we list here only the pa-
pers that are germane to our present work; these are Refs.
27–33.

RSJJA is a simple but nontrivial model, almost a para-
digm to use a well-worn word, where both dynamics and
statics can simultaneously play an important role in a quan-
tum phase transition, as opposed to a classical phase transi-
tion. Compared to a dissipative single junction problem,
RSJJA is theoretically more challenging because of the inter-
play of both spatial and temporal fluctuations. Indeed it is
shocking that a recent theoretical work34,35 has found that the
ground state of RSJJA is a state where the state of the �0
+1�-dimensional elements �single Josephson junctions� can
slide past each other despite couplings between them. This is
despite arbitrarily long-ranged spatial couplings. Such a
phase, called the floating phase, was derived from a renor-
malization group analysis that is perturbative in the Joseph-
son coupling. Given the striking nature of a lower-
dimensional quantum criticality embedded in a higher
dimensional manifold, it behooves us to examine the phe-
nomena in the strong coupling limit and to see how the two
limits are reconciled. From the earlier hints,19 the strong cou-
pling analysis should show that when the Josephson coupling
is gradually increased, the quantum phase transition changes
its nature and ceases to be entirely dynamic—topology,
quantum mechanics, dissipation, and the collective nature of
the problem, all become equally important unlike the weak
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coupling limit. Motivated by the theoretical challenge, recent
experiments, and the paradigmatic nature of RSJJA, we ana-
lyze it in one dimension from the strong coupling limit. As
the conceptually important issues are already present in the
one-dimensional case, there is no need to examine more
complicated higher dimensional situations.

We use Villain mapping to investigate the strong coupling
phase diagram and the critical properties. Villain mapping
has been used previously to map the phase slip processes to
a neutral gas of charges that have anisotropic logarithmic
interactions in imaginary time and spatial directions because
of dissipation.28,29,32,33 We improve upon the previous work
and show that the resulting phase diagram is remarkably dif-
ferent. In a Josephson junction array in the absence of dissi-
pation, quantum phase slips are the topological excitations
whose classical counterparts are vortices of the classical XY
model. One of the basic concepts behind this mapping is a
conservation law. Due to tunneling, the number of Cooper
pairs will change on the superconducting grains. In the ab-
sence of any source or a sink this leads to a continuity equa-
tion on the lattice which serves as a constraint on the integer
tunneling current. This constraint is resolved in terms of a
single integer field defined on a dual space-time lattice,
resulting in familiar vortices. Thus the superconductor-
insulator transition due to unbinding of vortices can be
described by a one-component sine-Gordon model. The pres-
ence of shunt resistances, or dissipation, alters this picture.
Since we need to include the current through the shunts in
addition to the tunneling current, we get a different conser-
vation law with a source term. �This point was missed in the
past.� The presence of the source term does not allow us to
resolve the current constraint in terms of a single integer
field on the dual lattice, and we are left with a neutral gas of
two-flavored charges and anisotropic long-range interactions
in space time. Consequently, our phase diagram is different
from those derived in the past.

The renormalization group equations are obtained by
mapping the two-component neutral charge gas system to a
two-component sine-Gordon model. A two-component sine-
Gordon model was used previously by Refael et al. in the
context of two resistively shunted Josephson junctions.36

There are therefore some similarities in the phase diagrams.
Apart from fully superconducting and metallic states some
partially ordered phases are found. Surprisingly, the two-
component sine-Gordon model also arises in the context of a
classical two-dimensional XY model in the presence of an
in-plane magnetic field.37 The magnetic field spoils the zero
divergence condition by introducing a source term. Though it
is clear that RSJJA and the XY model in an in-plane mag-
netic field describe different physics, there are some similari-
ties between the RG analyses of both problems.

Our paper is organized as follows. In Sec. II we describe
the microscopic model and provide briefly the weak coupling
results. In Sec. III we perform a detailed strong coupling
analysis employing Villain mapping. To perform RG calcu-
lations we map the two flavored neutral charge gas problem
arising from Villain mapping to a two-component sine-
Gordon model. In Sec. IV we describe the fixed point analy-
sis of the RG recursion relations. In Sec. V we construct the
strong coupling phase diagram and contrast the results with

those of the previous authors. In Sec. VI we briefly mention
the relation between a superconducting nanowire and a
RSJJA. Finally we summarize our results in Sec. VII. We
present all the technical details of the RG calculations for the
two component sine-Gordon model in the Appendix. Al-
though this is relegated to the Appendix to preserve a smooth
flow of the text, this Appendix is the heart of our theoretical
work.

II. THE MODEL

We consider the quantum action given by

S = �
0

�

d��
i

�̇i
2

2E0
+

��

4�
�
i,n

��n���x�i�n��2

− �
0

�

d�V�
i

cos��x�i� . �1�

� is the inverse temparature, E0=2e2 /C is the charging en-
ergy, where C is the capaciatance of a single island. �n is the
Matsubara frequency and �=h /4e2R is the dissipation
strength, where R is the shunt resistance. �x�i=�i−�i+1, and
V is the Josephson coupling between the grains.

In the weak coupling regime � V
E0

	1�, which is dominated
by strong quantum fluctuations, RG calculations lead to the
following recursion relations up to order O�V2�

dV

dl
= �1 −

1

�
�V ,

d�

dl
= 0. �2�

So, �=1 is a fixed line in the weak coupling limit. For �

1, the system is ordered �superconducting�, and V is a
relevant operator. For ��1 the system is disordered �metal-
lic�, and V is irrelevant. Recently Tewari et al.34,35 have ex-
tended this calculation to the order O�V3� and have shown
that for a one-dimensional array the above set of RG equa-
tions are correct up to third order. They also demonstrated
that including longer ranged couplings that when V is irrel-
evant all longer range Josephson couplings are also irrel-
evant. They become simultaneously relevant with V when
�
1. So, around the critical line �=1, the chain of Joseph-
son junctions decouples and behaves as independent single
junctions. For these reasons the disordered phase �metallic�
has been characterized as a floating phase. It is important to
understand how far in the V−� plane is this weak coupling
RG picture valid.

III. A STRONG COUPLING ANALYSIS

In the strong coupling limit, that is V /E0�1, the phase
difference between the neighboring grains will be localized
around the minima of the periodic cosine potential and the
tunneling events between the minima will govern the low
energy physics. We analyze these tunneling events using Vil-
lain mapping. To employ Villain mapping we first discretize
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the imaginary time into N slices so that �=N� where � is
the lattice spacing in imaginary time direction. After dis-
cretizing, the partition function becomes

Z =� 	D�
exp�J��
l�

	1 − cos ����l��


− �
q�

�

4�
����f�k����q���2� , �3�

where the summation over repeated indices is implied. �
�� ,x� represents the components on the space-time lattice

and l� stands for the space-time coordinates of the lattice
points. Here J�=1/E0�, Jx=V�, and f�k�=2	1−cos�ka�
.
For both J� and Jx large we can replace the cosine by a
periodic Gaussian, as follows:

Z =� 	D�
 �
m��l��

exp�−
J�

2 �
l�

	����l�� − 2�m��l��
2

− �
q�

�

4�
����f�k����q���2� . �4�

Here m��i ,�� are integers and represent tunneling between
minima of the cosine potential.

Before we proceed further with the action described by
Eq. �4�, we explicitly demonstrate the difference of the con-
servation laws in nondissipative and a dissipative Josephson
junction array as have been mentioned in the Introduction.
First we choose the nondissipative case, and we set �=0 in
Eq. �4�. We also introduce two auxiliary fields B� to de-
couple the periodic Gaussian terms as

Z �� 	D�
	DB�
 �
m��l��

exp�− �
�,l�

�B�
2 �l��

2J�

+ iB��l��

� 	����l�� − 2�m��l��
�� . �5�

Summation over the integer field m� restricts the continuous
fields B� to integer values and integrating out � we obtain

Z � �
B�

���B�,0 exp�− �
�,l�

B�
2 �l��

2J�
� . �6�

So, we obtained the conservation law ��B�=0 in the form of
a constraint on the configurations of B�. If we choose Bx
=��h, B�=−�xh where h is a single component integer field
the constraint is resolved. For any nonzero �, we introduce
an additional auxiliary field � to decouple the quadratic dis-
sipative term:

exp�− �
q�

�

4�
����f�k����q���2�

=� 	D�
exp�− �
q�

���q���2

� �

4�
����f�k�� + i�

l�
��l����l��� .

�7�

Now integrating out � we obtain the modified conservation
law

��B� + � = 0 �8�

which directly demonstrates that the zero divergence condi-
tion is destroyed and the auxiliary field � serves as a source
term.

We proceed with an analysis of Eq. �4�. Integrating out �
from the partition function and doing the following transfor-
mations,

p1�i,�� = m��i + 1,�� − m��i,�� , �9�

p2�i,�� = mx�i,� + �� − mx�i,�� , �10�

we obtain

Z = ZSW �
p��l��

exp�− 2�2�
q�

p��q��G�,��q��p��− q��� . �11�

In the above step we have rescaled time direction as ��
=��VE0a. So, we have rewritten the partition function in
terms of two kinds of interacting charges p1 and p2 which by
construction form a neutral gas of charges. Interactions of the
charges are encoded in the G�,��q�� which are given by

G11�k,��� =
J

��a�k2 + ��2�
+

�

2���

����
�k2 + ��2�

, �12�

G22�k,��� =
J

��a�k2 + ��2�
+

�

2�

1

����

−
�

2�

1

��

����
�k2 + ��2�

, �13�

G12�k,��� = −
J

��a�k2 + ��2�
= G21. �14�

In the long-wavelength and low-frequency limit,

Gij = �− 1�i+j J

��a�k2 + ��2�
+ �i,2� j,2

�

2�

1

����
, �15�

where J=�JxJ�=�V /E0. From this interaction matrix it be-
comes clear that because of dissipation spatial kinks, i.e., p2,
have an additional anisotropic on-site logarithmic interaction
in imaginary time in addition to isotropic logarithmic inter-
action in space time. Charges of opposite sign for a given
flavor attract and for different flavors charges of same sign
attract. In the presence of dissipation we cannot reduce the
partition function in terms of a single set of charges or vor-
tices given by p3= p2− p1=�����m�. So, we have to work
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with a two-component neutral charge gas, and the corre-
sponding sine-Gordon theory will be a two-component field
theory. For convenience we shall choose �=1/�VE0, which
leads to ��=a. With this choice, the space-time lattice be-
comes isotropic and the anisotropy of the problem is cap-
tured only through the anisotropy of the interaction terms.

We introduce two fugacities y1 ,y2 corresponding to p1 , p2
to control the charge fluctuations. As usual, for small y1 ,y2
we can restrict p1 , p2 to 0 , ±1. Thus the sine-Gordon action
is

S =
1

2�
k,�

�� *G̃−1�� − �
i=1

2
2yi

a2 � dx� cos�2��i�

− �
±

2y±

a2 � dx� cos�2��1 ± 2��2� . �16�

We are using the vector notation x� = �x ,�� and �dx� =�dxd�.
y+ ,y− are combinations of y1 ,y2. At second order in fugaci-
ties, the RG procedures generate cos�2��1±2��2� terms,
and that is the reason for extending the coupling constant
space. yi controls the formation dipoles between different
signs of charges for ith flavor. When the charges are bound
as dipoles, the fugacities become irrelevant and flow to zero,
implying order; when they become relevant free charges pro-
liferate. y+ controls the density of dipoles between charges of
same sign but of different flavors, and y− controls the density
of dipoles between charges of opposite sign and different

flavors; see Fig. 1. G̃−1 is the matrix inverse of the interaction
matrix for the charges. This 2�2 matrix is given by

Gij
−1 = �i,1� j,1

k2 + �2

J
+

2�

�
��� . �17�

Interestingly, the presence of the divergent 1
��� term in the

propagator requires that we formulate the RG �thinning out
the degrees of freedom� by integrating only in a given fre-

quency shell. Then a dimensional analysis with the scaling
prescription k→ke−l/z, �→�e−l, where l is the length rescal-
ing factor, shows that

d�

dl
= 0, �18�

as � is dimensionless. Since ��� is nonanalytic and we have
to maintain the periodicity of the cosine terms, the above RG
equation for � is exact.38,39 The following recursion relations
up to second order are derived in the Appendix:

dy1

dl
= �1 +

1

z
− �J�y1 + �y2y+ + �2�J + ��y2y−, �19�

dy2

dl
= �1 +

1

z
− �J − ��y2 + 2�Jy1y−, �20�

dy+

dl
= �1 +

1

z
− ��y+ + �Jy1y2, �21�

dy−

dl
= �1 +

1

z
− 2�J − ��y− − �Jy1y2, �22�

dJ

dl
= J��1 −

1

z
� − J�A1y1

2 + A+y+
2 + A−y−

2�� . �23�

To keep the coefficient of k2 fixed we need

1

z
= 1 −

A+y+
2

2
. �24�

Here A1, A+, and A− are regularization dependent constants.

IV. THE FIXED POINTS

From first order RG equations, the following picture
emerges: 1

z =1 and the entire J−� plane is broken into six
regions. In the region �J
2, �
2 all the fugacities are
irrelevant, and the system is fully superconducting and in the
region �4�J+��2� all the fugacities are relevant, and the
system is fully metallic. The other four regions are mixed
phases where one or more fugacities become relevant thus
implying special kinds of charge proliferation processes.
These four phases therefore have partial or mixed order.

To find the fixed points of the second order equations, we
first note the structure of the equation for y+. Since all the
fugacities and J are always positive, when 1+ 1

z −�
0, y+
and Jy1y2 have to be zero. For Lorentz invariant fixed points
corresponding to 1

z =1 and the coupling constant space speci-
fied by 1+ 1

z −�
0, which we can also write as A+y+
2 /2+�

�2, we find the following fixed point solution:

FP1: y1 = y2 = y+ = y− = 0, J = J*, � = �* � 2. �25�

When 1+ 1
z −��0, i.e., A+y+

2 /2+�
2, we get

FP2: y1 = y2 = y+ = y− = 0, J = J*, � = �* 
 2. �26�

It is interesting to note that FP2 also corresponds to 1
z =1. It

is also worth emphasizing FP1 and FP2 describe different

FIG. 1. �Color online� Configurations of space-time dipoles and
quadrupoles of different flavors. Note that equivalent pictures can
be drawn by charge conjugations.
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parts of the J−� plane. They are not critical points; there are
lines of critical points in the surfaces containing these fixed
points, which are the same as those found from the first order
RG equations.

Consider now 1+ 1
z −�=0. For the results to be sensible, z

must be positive and therefore �
1. The fixed points are
now non-Lorentz invariant, and they are given by

FP3: y1 � = y2
* = y−

* = 0, J* = 0, A+y+
*2 + 2�* = 4,

�27�

FP4: y1
* = y2

* = y−
* = 0, A+y+

*2 + 2�* = 4, J* =
1

2
, �28�

FP5: y2
* = y−

* = 0, A+y+
*2 + 2�* = 4, J* =

�*

�
,

y1
*2 =

�2 − �*��� − 2�*�
A1�* , 1 � �* �

�

2
. �29�

These three sets of fixed points have continuously varying
dynamic scaling exponents. However, despite the presence of
nonuniversal constants, z is universally determined by �*.
The only nonuniversality is in the location of the fixed
points. Importantly FP4 and FP5 are the sought after inter-
mediate coupling fixed points controlling the crossover be-
tween the local criticality and the global criticality, which are
not accessible in weak coupling calculations.

V. THE PHASE DIAGRAM

In this section we construct the phase diagram, which is
determined by FP1 and FP2. This is illustrated in Fig. 2. In
the region, ��J
2, �
2�, all the fugacities are irrelevant
and hence this phase is fully superconducting and is labeled

as superconducting. Here, each flavor of charges are bound
in dipoles and the dipoles are formed between charges of
opposite sign. Also, y+ is irrelevant, implying a quadrupolar
order: dipoles formed between two different flavors of
charges, but of the same sign, are controlled by y+ and hence
in this region the interflavor dipoles are bound in quadru-
poles. Following the similar argument for y−, we can con-
clude that interflavor dipoles formed between charges of dif-
ferent flavors and opposite signs are bound as quadrupoles.
These different dipolar and quadrupolar orders are shown in
Fig. 2. In the region, �4�J+��2�, all the fugacities, y1, y2,
y+, y− are relevant, and this is fully disordered or the metallic
phase. Both flavors of charges proliferate and also the inter-
flavor dipoles proliferate and we label this as metallic. In the
region, ��J
2, ��2�, only y1, y2, y− are irrelevant and only
y+ is relevant. This implies that each flavor of charges exhib-
its dipolar order but interflavor dipoles controlled by y+ pro-
liferate. Hence this is a mixed phase. This phase is labeled as
mixed 1. So, the transition between the phases mixed 1 and
superconducting is between a dipole gas and quadrupolar
order. In the region, ��J�2, �
2�, p2 charges are bound in
dipoles and there is also quadrupolar order. But, p1 charges
proliferate. These facts are reflected by the irrelevance of y2,
y+, y− and the relevance of y1. For this reason this is a phase
of mixed order and we label this as mixed 2. In the region,
��J+�
2, �J�2, ��2�, y2, y− are irrelevant, and y1, y+
are relevant. p2 charges are bound in dipoles and interflavor
dipoles controlled by y− are bound as quadrupoles. But both
the p1 charges as well as the interflavor dipoles controlled by
y+ proliferate, which is also an example of mixed order. This
region is labeled as mixed 3. In the region, �4�J+�
2,
�J+��2�, only y− is irrelevant and all other fugacities are
relevant. So, interflavor dipoles controlled by y− are bound as
quadrupoles but p1, p2 charges and interflavor dipoles con-
trolled by y+ proliferate. This is also an example of mixed
order and is labeled as mixed 4.

VI. CONCLUSIONS

In this section we note our observations in regard to the
recent weak coupling analysis of the floating phase and
briefly describe the relevance of our theoretical work to vari-
ous experiments that we have alluded to in the Introduction.
In the near future, we hope to fully discuss the experimental
consequences of our theory. For nanowires, a number of im-
portant issues need to be addressed, such as the effect
of the external circuit for short wires, dissipative effects
due to external circuit and the resistance of the phase slip
cores, boundary effects due to the leads,36,40–42 and
inhomogenities.16 For experiments involving arrays, the real
time dynamics and the current-voltage characteristics would
be a major theoretical project. Presently, we can make only
qualitative remarks that follow from our thermodynamic
phase diagram.

A. Floating phase and the local quantum criticality

From the RG calculations at the second order, we found
that 1 /z depends on the fugacity y+. Therefore the locations

FIG. 2. �Color online� Phase diagram. Other than fully metallic
and superconducting phases, there are four mixed phases character-
ized by the fugacities that are irrelevant. The strong coupling phase
diagram should not be valid for �J	1. The local critical boundary
at �=1, at weak coupling, requires a separate analysis, as described
in the text.
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of the nontrivial fixed points FP3, FP4, and FP5 found above
depend on y+. These fixed points can be accessed by tuning
of y+, in addition to tuning J and �. This is the reason why
they do not appear in the phase diagram, which is a cut in the
J−� plane. To recover the local quantum criticality observed
in the weak coupling limit we note that as J is decreased
below 2/�, the fugacity y1 becomes relevant, and we can no
longer use the flows derived from small fugacity expansions
after a certain value of J. However, we observe that the
growth of y1 implies that p1 charges proliferate, and this fact
allows us to restrict �1�0. Because of the anisotropic imagi-
nary time interaction, p2 charges may not proliferate at the
same time. Using this approximation, the two-component
sine-Gordon problem reduces now to a one-component sine-
Gordon problem described by the action

S �
1

2�
k,�

2�

�
�����2�2 − 2

y2

a2 � dx� cos�2��2� . �30�

Since the propagator depends now only on ���, the problem
is effectively zero dimensional. Note that this action by itself
has an approximate duality with the weak coupling action in
terms of the junction variables �i=�i−�i+1 under the identi-
fication y2→V and �→1/�. The self-duality at �=1 is iden-
tical to the single junction problem. Thus, as the weak cou-
pling limit is approached, at an intermediate coupling
strength there is a change in the behavior from a global criti-
cality to a local criticality. This can be easily recognized
from the lack of self-duality of the Josephson junction chain.
By a simple RG calculation we will get

dy2

dl
= �1 − ��y2,

d�

dl
= 0. �31�

If �
1, y2 becomes irrelevant implying ordered state and as
��1 the system becomes disordered. Here the ordering is a
local ordering of the individual junctions.

B. Josephson junction array

In this section we describe the relevance of our theoretical
analysis regarding the experiments on resistively shunted Jo-
sephson junction arrays in one dimension. We have found
that the phase boundary between superconducting and fully
metallic phase depends on the strength of the Josephson cou-
pling of the superconducting grains. In our analysis we have
predicted a complicated phase diagram involving mixed
phases in addition to fully superconducting and fully metallic
states, depending on the strength of J. Only two transitions
�between mixed 1 and superconducting and between mixed 2
and mixed 3� take place which are independent of the
strength of J. The experimentally determined phase diagram
due to Miyazaki et al.26 confirms the strong coupling predic-
tion that the phase boundary between ordered and disordered
phase depends on J and it also shows that in the weak cou-
pling limit there is a part of the phase boundary at �=1
which is independent of J. More detailed experiments are

necessary to establish the complete phase diagram on a quan-
titative level for the entire J−� plane and would be possible
when we establish the signature of many of the mixed
phases, which are mainly dynamical.

Apart from the region in which the system is fully metal-
lic, all other regions correspond to either fully superconduct-
ing or mixed phases. We expect these superconducting and
mixed phases to demonstrate power law behaviors for the
temperature dependence of zero bias resistance: different
mixed phases and the fully superconducting phase can be
distinguished by their different temperature exponents. Simi-
lar power law behaviors are also expected for the I-V char-
acteristic. These power law exponents will depend on J and
� which can be inferred from the linearized RG equations
about the fixed points.

C. Superconducting nanowires

There is also a broad relevance of the dissipative Joseph-
son junction array in the context of the experiments on su-
perconducting nanowires.13–17 At T=0 quantum phase slips
should play the key role in determining if the system will be
superconducting or resistive. An experiment by Bezryadin et
al.13 on a superconducting nanowire observed a dissipative
phase transition similar to a single junction problem when
the total normal resistance of the wire RN exceeded RQ. Later
work14 implied that it is rather the resistance per unit length,
hence the diameter of the wire, that is of significance.

Quantum phase slips are topological excitations in which
the phase of the superconducting order parameter slips by a
quantized amount and can be viewed as a vortex in the
space-time manifold at T=0. If, for the moment, we can
ignore dissipation and model the wire at T=0 as a
�1+1�-dimensional XY model, it is well-known that such a
system cannot exhibit a sharp phase transition �Kosterlitz-
Thouless� without consideration of topology or vortex un-
binding; smooth Gaussian fluctuations, “spin waves,” cannot
destroy superconductivity. The finite temperature properties
in the proximity of the QCP can be understood in terms of
universal scaling functions, and for a finite wire, a finite size
scaling analysis becomes necessary.

For a quantum system, the above picture must be modi-
fied because statics and dynamics are intricately intertwined.
So, one must specify an appropriate dynamical model. In one
such model Cooper pairs are allowed to disappear in a pool
of normal electrons.40 Thus it is the actual phase of a super-
conducting grain that is coupled to an ohmic heat bath.
While this may be sensible for a system of superconducting
grains embedded in a normal metal,43,44 it does not seem to
reflect the physical situation in a superconducting nanowire.

The RSJJA is another model for a superconducting nano-
wire, at least as far as the global T=0 phase diagram is
concerned. The Josephson energy V provides an energy bar-
rier for phase slips for currents up to the critical current, and
the topological excitations that are so essential are automati-
cally built in the model. At a coarse grained level, on the
scale of a coherence length �, we can think of the wire to be
partitioned into superconducting segments interrupted by the
cores of the phase slips forming Josephson junctions. The
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characteristic frequency of the phase slips is given by the gap
at which the conductivities of the normal metal and the su-
perconductor are the same. So, the system will have three
coupling constants �, E0, and V corresponding to the degree
of dissipation, the charging energy of the grains, and the
Josephson coupling strength. Here, the dissipation strength
�=RQ /R� and R�=�� /�r2, where � is the resistivity and r is
the wire radius. Importantly, we believe that the correct
model for the dissipative coupling is the one in which the
phase difference across the phase slip is coupled to an ohmic
heat bath, as for RSJJA, unlike the model of Ref. 40.

To determine the charging energy and the Josephson cou-
pling strength, we consider the continuum action that de-
scribes the Mooij-Schön45 mode �gapless plasmon mode
arising out of incomplete screening in one dimension� and is
given by

S =
�

2�
�

0

�

d��
−L/2

L/2

dx�cs��x��2 +
1

cs
�����2� , �32�

where � and cs are the dimensionless kinetic admittance of
the superconducting nanowire and the speed of propagation
of the plasmon mode, respectively. We have set �=1. � and
cs are related to the superfluid density and the capacitance of

the wire by the relations
�cs

2� =
�s

2 =
nsA

4m and �
2�cs

= C̃
8e2 . A is the

cross section, C̃ is the capacitance per unit length, and ns the
bulk superfluid density. If we discretize this action on the
scale of a lattice spacing a, of the order of the superconduct-
ing coherence length �, we get the action of a Josephson
junction chain with its parameters fixed by those of the
Mooij-Schön mode. For the Josephson junction chain we get
the following coupling constant relations: V=

�cs

�a and �a
cs

= 1
E0

. For the strong coupling limit of the Josephson junction
array the dimensionless parameter J=� /�. If we define ki-

netic inductance per unit length of the wire as L̃=1/e2�s we

get �=RQ /�L̃ / C̃. Kinetic inductance per unit length can be

expressed in terms of London penetration depth �L as L̃

=
�0�L

2�

Al0
where l0 is the mean free path of the electrons. Con-

verting this in terms of the normal resistance per unit length

of the wire R̃ we get L̃� �R̃
1.76�kBTc

where we have restored �.
We should note that, to leading order, we have J�r, as the

capacitance per unit length has only a weak logarithmic de-
pendence on r. So, a phase transition dependent on J or �
implies a dependence on the radius of the wire, that is, it tells
us a critical radius beyond which superconductivity can be
destroyed and these facts are in qualitative agreement with
the results of Zaikin et al.46 and Refs. 41 and 42. This fact is
also in qualitative agreement with the experimental results
when the resistance per unit length is plotted against the
temperature.14 In recent experiments on single-crystal Sn
nanowires, Tian et al.17 have also emphasized the role of the
diameter of the wire for very low temperature measurements,
well below Tc.

Up to now it might seem that there are no differences
between our results and those of Zaikin et al. and Büchler et
al. If we go through the data of Lau et al.14 carefully, we will
find that for the MoGe wires used in the experiments �
2.

So, in these experiments only control parameter is dimen-
sionless admittance. This is the reason why our quantitative
prediction �=2 is the same. But, significant differences will
arise if the diameter and other system parameters can be
adjusted such that ��2; in this regime, we will observe
transitions between the mixed phases and also between the
metallic and the mixed phases, depending on the coupling
strengths. In the mixed phases, the resistance will follow
various power laws as a function of temperature. For ��2,
these exponents will depend on both � and � in contrast to
the situation when �
2, where the exponent depends only
on �. So, only if � as well as � can be made sufficiently
small, a local quantum criticality can be observed. Prediction
of the transitions is the outcome of treating the wire as an
effective RSJJA and we believe can be verified in a more
elaborate set of experiments on thinner wires and different
materials.

Before concluding this section we should mention that we
did not take into account a few effects. One is the boundary
effects due to the leads36,40–42 and the second is the possibil-
ity of inhomogeneities resulting in weak links. That inhomo-
geneities can play an important role is evident from the re-
cent experiments of Bollinger et al.16 Another experimentally
relevant issue is the effect of disorder on quantum phase
slips. In a recent paper Khlebnikov and Pryadko47 considered
the effect of disorder and demonstrated that disorder can
bind the spatial coordinates of the phase slips and antiphase
slips and hence convert the problem to an effective
�0+1�-dimensional problem. They found that the phase tran-
sition takes place at �=1 and belongs to the dissipative uni-
versality class which we have defined to be the local quan-
tum criticality. We hope to return to these interesting effects
relevant to the experiments in a future work.
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APPENDIX: THE DERIVATION OF THE
RENORMALIZATION GROUP EQUATIONS

In the small fugacity limit we can expand the partition
function in powers of fugacities and truncate at the quadratic
order. If �i has frequency and momentum components in the
shell a−1e−l���a−1 and a−1e−l/z�k�a−1, we define it to be
the fast mode, �i

f; otherwise, a mode is defined to be slow
�i

s. For a fixed frequency shell, we integrate out the mo-
menta, and then rescale both frequency and momentum in
the resulting action for the slow part �see Fig. 3�. The dy-
namic exponent z is necessary to capture the effects of the
anisotropic interaction. The reason for this special order of
integration is because of 1 / ��� in the propagator for �2. If we
reversed the order of integration, we would have encountered
spurious infrared divergence from the frequency integration.
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While rescaling we must maintain the periodicity of the co-
sine terms, which implies that the field renormalization con-
stant is unity. Cosine averages are being calculated with re-
spect to the fast degrees of freedom being integrated out and
it is denoted as �¯� f. For any operator O	�1 ,�2
, the aver-
age �O� f is defined as

�O� f =� D	�� f
exp†− S	�� f
‡O	�1,�2
 . �A1�

We then arrive at the following action for the slow degrees of
freedom:

S	�� s
 =
1

2�
k,�

�� s
*G̃−1�� s

− �
i

2yi

a2 � dx��cos�2��i�� f

− �
�=±

2y�

a2 � dx��cos	2���1 + ��2�
� f − �
i,j=1

2

Iij

− �
i=1,2,�=±

Ii� − �
�,�=±

I��, �A2�

where Iij, Ii�, and I�� represent the following second order
contributions:

Ii,j = �2yiyj

a4 ��
x�1,x�2

�cos	2��i�x�1�
cos	2�� j�x�2�
� f ,

Ii,� = �2yiy�

a4 ��
x�1,x�2

�cos	2��1�x�2� + 2���2�x�2�


�cos	2��i�x�1�
� f ,

I�,� = �2y�y�

a4 ��
x�1,x�2

�cos	2��1�x�1� + 2���2�x�1�


�cos	2��1�x�2� + 2���2�x�2�
� f . �A3�

As previously used in the text, we are using the vector
notation x� = �x ,�� and �x� =�dxd�. The calculation involves
the propagators Gij

f �x2−x1 ,�2−�1�Gij
f �x�2−x�1�=Gij

f �r��,

which has an oscillatory behavior for long distance due to
the sharp cutoff in frequency. With suitable regularization we
can avoid the complications that can arise due to this oscil-
latory behavior. Different regularizations lead to different
nonuniversal constants in the recursion relations, but they do
not affect the universal properties. We use the following
regularized propagators:

G11
f �r�� =

J

2�
K0����r��2 + a2� = − G12

f �r�� = − G21
f �r��

�A4�

and

G22
f �r�� = ��x�

�

2�2K0����2 + a2� +
J

2�
K0����r��2 + a2� ,

where �=a−1e−l. K0 is the modified Bessel function. For dis-
tance much greater than the cutoff these regularized propa-
gators fall off exponentially and for distance much less than
�−1 they have logarithmic dependence on distance. For ex-
ample,

yi

a2 � dx��cos	2��i�x��
� f

=
yi

a2 � dx��cos	2��i
s�x�� + 2��i

f�x��
� f

=
yi

a2 � dx� cos	2��i
s�x��
exp	− 2�2��i

2�x��� f


=
yi

a2 exp	− 2�2Gii
f �0�
 � dx� cos	2��i

s�x��
 . �A5�

After rescaling the coordinates we obtain

yi�l� = exp��1 +
1

z
�l − 2�2Gii

f �0��yi�0� . �A6�

When we compute an average �cos	2��1�x��±2��2�x��
� f it
involves computing the average �	�1�x��±�2�x��
2� f. Due to
the mutual interaction between �1 and �2 fields we obtain

�	�1�x�� ± �2�x��
2� f = G11
f �0� + G22

f �0� ± 2G12
f �0� , �A7�

which leads to

y±�l� = exp��1 +
1

z
�l − 2�2	G11

f �0�

+ G22
f �0� ± 2G12

f �0�
�y±�0� . �A8�

From Eqs. �A5� and �A7� we obtain the first order RG equa-
tions for the fugacities.

Now we illustrate the calculations of the second order
terms. All the second order terms involve two space time
coordinates �x�1 ,x�2� but the propagators in real space time are
only functions of relative space-time coordinate �x�2−x�1�. For
this reason we do a coordinate transformation to the center of

mass coordinate �R� =
x�1+x�2

2
� and the relative coordinate �r�

=x�2−x�1�. The second order contribution I11 will involve only

FIG. 3. �Color online� Renormalization group shell integration.
The integration proceeds by integrating out the shaded areas.
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the isotropic propagator G11
f ��r���. In order to calculate such a

term we can go over to polar coordinates for the relative
vector r� which has the following three ranges:

� dr� = �
0

2�

d���
0

a

rdr + �
a

ael

rdr + �
ael

�

rdr� . �A9�

In the first range of integration we can take the propagator
G11

f ��r���=G11
f �0�; in the second range either we can set

G11
f ��r���=G11

f �a� or carry out the integral with the regularized
logarithmic form of the propagator combined with a gradient
expansion of the cosine terms. With suitable regularization,
G11

f ��r��� can be converted into a short range function of �r��
and the third part of the integral can be made negligible.48,49

The specific regularization controls how fast and how
smooth the propagator falls off with the distance but does not
affect the universal properties. This is what we achieve with
the regularized propagator mentioned above.

Due to the anisotropic part in the propagator G22
f , the

above decomposition into polar coordinates can be incorrect
for the second order terms involving the field �2. So, we
have to check all the second order terms mentioned above
independently. As we will demonstrate below the second or-
der terms consisting of cross correlation of the fields �1 ,�2
lead to integrals over combination of G11

f , G22
f , and G12

f . If
this combination turns out to be isotropic in space time we
can proceed with polar coordinate decomposition. Otherwise
we need to follow a tricky decomposition which we will use
below for I22. But, there is an interesting aspect of these
second order contributions. If the second order term involves
product of two different fugacities, it leads to relevant con-
tributions only if the combinations of the fields are con-
tracted at the same space-time point which renormalizes
other fugacities. This aspect simplifies the calculation of the
second terms involving product of two different fugacities.

For illustrative purposes of the above procedures first we
will pick I11.

I11 =
y1

2

2a4�
R� ,r�

�ei2�	�1�R� +r�/2�+�1�R� −r�/2�
 + c.c.

+ ei2�	�1�R� +r�/2�−�1�R� −r�/2�
 + c.c.� f

=
y1

2

a4e−4�2G11
f �0��

R� ,r�
†�e−4�2G11

f �r�� − 1�

�cos�2�	�1�R� + r�/2� + �1�R� − r�/2�
� + �e4�2G11
f �r�� − 1�

�cos�2�	�1�R� + r�/2� − �1�R� − r�/2�
�‡ . �A10�

First integral generates higher harmonic cos	4��1�R� �
 from
the first integral range of the relative coordinate. The same
integral in the second integral range generates a term propor-
tional to the higher harmonic multiplied by the square of the
gradient of the field �1. So, obviously, all these terms are
irrelevant. Relevant contribution comes from the second in-
tegral when we concentrate on the second integral range of
the relative coordinate. After a gradient expansion for cosine
term we obtain

I11 � −
A1

2
y1

2� dx����1�2. �A11�

A1 is a regularization dependent constant which in our case is
4�3. This will contribute to the renormalization of J. Now
we will pick a cross term, e.g.,

I12 =
y1y2

2a4 �
R� ,r�

�ei	2��1�R� +r�/2�+2��2�R� −r�/2�
 + c.c.

+ ei	2��1�R� +r�/2�−2��2�R� −r�/2�
 + c.c.� f

=
y1y2

a4 e−2�2	G11
f �0�+G22

f �0�
�
R� ,r�

��e−4�2G12
f �r�� − 1�

�cos	2��1�R� + r�/2� + 2��2�R� − r�/2�
 + �e4�2G12
f �r�� − 1�

�cos	2��1�R� + r�/2� − 2��2�R� − r�/2�
� . �A12�

As mentioned above here we have to deal with only an iso-
tropic propagator G12

f and hence polar coordinate will be
useful. From the first range of the r� integral we will get the
contribution

I12 � � y1y2

a2 �e−2�2	G11
f �0�+G22

f �0�
	±4�2G12
f �0�


� �
R�

cos	2��1�R� � � 2��1�R� �
 �A13�

which renormalizes y±. In the second range of the integrals
we will do a gradient expansion for the cosine terms which

leads to the contributions proportional to cos	2��1�R� �
±2��2�R� �
� ��R�1��R�2�2. After Fourier transformation
this leads to the terms which are combinations of frequency
or momentum with cosine and hence irrelevant.

Two interesting second order terms are I1+ and I1−. For the
relevant part of these terms we get

I1+ �
y1�l�y+�l�

a4 e−2�1+1/z�l�
R� ,r�

�e4�2	G11
f �r��+G12

f �r��
 − 1�

�cos	2��1�R� − r�/2� + 2��2�R� − r�/2�

− 2��1�R� + r�/2�
 ,

I1− �
y1�l�y−�l�

a4 e−2�1+1/z�l�
R� ,r�

�e4�2	G11
f �r��−G12

f �r��
 − 1�

�cos	2��1�R� + r�/2� + 2��2�R� − r�/2�

− 2��1�R� − r�/2�
 . �A14�

Recalling that G11
f +G12

f =0 we can see that the relevant part
of I1+ vanishes identically. As both G11

f and G12
f are isotropic

in space time polar decomposition is valid for I1−. Finally we
get
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I1− �
y1y−

a2 4�Jl� dx� cos�2��2� . �A15�

I11, I12, I1+, and I1,− exhaust all the second order terms that
involve the fugacity y1. Now we will also exhaust all the
second order terms that involve the fugacity y2. For the rel-
evant part of I2+ and I2− we get

I2+ �
y2�l�y+�l�

a4 e−2�1+1/z�l�
R� ,r�

�e4�2	G22
f �r��+G12

f �r��
 − 1�

�cos	2��1�R� − r�/2� + 2��2�R� − r�/2�

− 2��2�R� + r�/2�
 ,

I2− �
y2�l�y−�l�

a4 e−2�1+1/z�l�
R� ,r�

�e4�2	G22
f �r��−G12

f �r��
 − 1�

�cos	2��2�R� + r�/2� + 2��1�R� − r�/2�

− 2��2�R� − r�/2�
 . �A16�

Both of the combinations G22
f �r��±G12

f �r�� involve the aniso-
tropic part of the propagator G22

f . Since the relevant contri-
butions from the two terms above will come from the con-
traction of the fields at the same space-time point we can set
r�=0 without further difficulty and obtain

I2+ �
y2y+

a2 2�l� dx� cos�2��1� ,

I2− �
y2y−

a2 2�� + 2�J�l� dx� cos�2��1� . �A17�

Finally we consider I22 which will exhaust all the terms that
involve y2.

I22 =
y2

2

a4e−4�2G22
f �0��

R� ,r�
��e−4�2G22

f �r�� − 1�

�cos	2��2�R� + r�/2� + 2��2�R� − r�/2�


+ �e4�2G22
f �r�� − 1�cos	2��2�R� + r�/2� − 2��2�R� − r�/2�
� .

�A18�

Regardless of the anisotropic interaction the first integral
leads to higher harmonics of �2 and hence can be ignored.
Calculation of the second integral is tricky but leads to con-
tributions involving ����2�2 and ��x�2�2. But, in the original
action such terms are not present and these are also of higher
order than �����2�2 and hence irrelevant. Though the second
integral produces irrelevant terms we will describe the way
to calculate it as such a calculation will be required later on
for I−−. We will break the integral into two parts correspond-
ing to only onsite contraction and offsite contraction of the
field �2.

I22 �
y2

2

a4e−4�2G22
f �0��

R� ,r�
�e4�2G22

f �r�� − 1�cos	2��2�R� + r�/2� − 2��2�R� − r�/2�


=
y2

2

a3e−4�2G22
f �0� � dxdud��e4�2G22

f �0,�� − 1�cos	2��2�x,u + �/2� − 2��2�x,u − �/2�


+
y2

2

a4e−4�2G22
f �0��

R� ,r�
�e4�2G22

fI ��r��� − 1�cos	2��2�R� + r�/2� − 2��2�R� − r�/2�


−
y2

2

a3e−4�2G22
f �0� � dxdud��e4�2G22

fI �0,�� − 1�cos	2��2�x,u + �/2� − 2��2�x,u − �/2�
 , �A19�

where u=
�1+�2

2 and �=�2−�1. We have also broken G22
f into

two parts G22
fI and G22

fA corresponding to isotropic and aniso-
tropic interactions, respectively. Rearrangement of I22 in this
form has been used previously by Bobbert et al.28 For the
first and third integrals which involve only onsite contraction
we can break up the integrals into three parts

� d� = �
o

a

d� + �
a

ael

d� + �
ael

�

d� . �A20�

The second range of the integrals contribute terms propor-
tional to ��u�2�2. It turns out that the contributions from the
first and third integrals cancel each other. Second integral

involves only isotropic function of �r�� and we can use polar
coordinates as mentioned above which will contribute a term
proportional to ��R�2�2.

Finally we have to consider only two other second order
terms I++ and I−−. The relevant part of these is given by

I++ �
y+

2�l�
a4 e−2�1+1/z�l�

R� ,r�
�e4�2	G11

f �r��+G22
f �r��+2G12

f �r��
 − 1�

�cos�2�	�1�R� + r�/2� + �2�R� + r�/2� − �1�R� − r�/2�

− �2�R� − r�/2�
� ,
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I−− �
y−

2�l�
a4 e−2�1+1/z�l�

R� ,r�
�e4�2	G11

f �r��+G22
f �r��−2G12

f �r��
 − 1�

�cos�2�	�1�R� + r�/2� − �2�R� + r�/2� − �1�R� − r�/2�

+ �2�R� − r�/2�
� , �A21�

G11
f �r��+G22

f �r��+2G12
f �r��=��x� �

�2 K0����2+a2� which de-
pends only on time. This implies for I++ the relevant contri-
bution is obtained by contracting the combination of the
fields �1+�2 at the same spatial point but at different times.
So, we need to integrate over only �=�2−�1. After breaking
up the integral into three parts as we have done before the
relevant contribution will come from the second range of the
integral and we obtain

I++ � −
A+

2
y+

2 � dx�����1�2. �A22�

A+ is a regularization dependent constant and for the regu-
larization used above, A+=4�2. We have ignored the irrel-
evant terms like ����2�2 and �1�2 involving spatial or tem-
poral derivatives.

Since G11
f �r��+G22

f �r��+2G12
f �r�� involves both isotropic and

anisotropic parts, the evaluation of I−− is more complicated.
But, we can carry out the calculation using the trick men-
tioned above for I22. Ignoring irrelevant contributions we get

I−− � −
A−

2
y−

2 � dx����1�2, �A23�

where A− is another regularization dependent constant and
for the regularization method chosen above A−=4�3.

Since we are integrating out the momenta for a fixed fre-
quency shell, the coefficient of �dx�����1�2 has to be kept
fixed. Due to this reason after collecting the second order
terms involving �dx�����1�2 and rescaling the space-time co-
ordinates we obtain

1

J�
= e�1/z−1�l�1

J
+ �A1y1

2 + A+y+
2 + A−y−

2�l� , �A24�

which leads to

dJ

dl
= J��1 −

1

z
� − J�A1y1

2 + A+y+
2 + A−y−

2�� . �A25�

The anisotropic scaling prescription k→ke−l/z can be used to
keep the coefficient of k2 fixed and 1/z is determined by the
difference of the coefficients of the terms involving
�dx�����1�2 and �dx���x�1�2 generated at the second order RG
transformation. This trick to extract the dynamic exponent in
a perturbative analysis is well-known.50 Following this trick
we get

2�1 −
1

z
� = A+y+

2 . �A26�

This completes the derivation of the recursion relations of
the coupling constants up to the second order.
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