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We study a hole-doped two-leg ladder system including metal ions, oxygen, and electron-lattice interaction,
as a model for Sr14−xCaxCu24O41−� . Single- and bipolaronic states at 1

4 -hole doping are modeled as functions
of pressure by applying an unrestricted Hartree-Fock approximation to a multiband Peierls-Hubbard Hamil-
tonian. We find evidence for a pressure-induced phase transition between single-polaron and bipolaron lattices.
The electronic and phononic excitations in those states, including distinctive local lattice vibrational modes, are
calculated by means of a direct-space random phase approximation. Finally, as a function of pressure, we
identify a transition between site- and bond-centered bipolarons, accompanied by a soft mode and a low-energy
charge-sliding mode. We suggest comparisons with available experimented data.
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I. INTRODUCTION

A material of considerable recent interest is the compound
Sr14−xCaxCu24O41 �SCCO�, which shows superconductivity
under pressure.1,2 The SCCO structure includes quasi-one-
dimensional �Q1D� two-leg ladders Cu2O3 and one-
dimensional �1D� CuO2 chains, while other high-Tc cuprate
superconductors found so far contain two-dimensional �2D�
CuO2 planes. The Cu2O3 ladders and CuO2 chains in this
system are intrinsically hole-doped even at x=0 with a total
of 6 holes per formula unit. �The total hole concentration can
be decreased by La and Y substitution for Sr, with e.g.,
La6Cu8O41 containing no holes.� Of these, only approxi-
mately one hole goes into the ladder component of the for-
mula unit, �Cu2O3�7, which results in an effective doping of
about 7% per Cu site in the ladder.3,4 Ca substitution, x, does
not change the total number of carriers, but transfers the
holes from the chains to the ladders.4–6 The conductivity
increases with increasing x.7

The doped holes can create a polaronic or charge-density-
wave �CDW� state, and a charge sliding mode could be
expected as a collective excitation. The existence of such
states and modes is supported by some experiments in
the material with x=0. Resonant x-ray scattering has re-
vealed a five-site periodic hole structure in the ladder.8,9

Microwave measurements show a relatively small c-axis
conductivity with a narrow peak in a very low-energy region
��0.2 meV�.10,11 This low-energy resonance is observed up
to a temperature ��100 K� too high to be attributed to single
particle excitations, which would be completely broadened
and no longer observed above 10 K�1 meV� due to thermal
fluctuations. Similarity has been noted between the non-
linear behavior of the conductivity in SCCO at x=0 and that
of the sliding mode in materials supporting CDW states.
Blumberg et al. have reported12 that the low-frequency di-
electric constant ��0�4�106� obtained by transport mea-
surements is consistent with estimates from the pinning en-
ergy ��0.2 meV� suggested by microwave measurements.

There are several possible polaronic configurations. One
is to randomly distribute the polarons. Another is that some

of them bind to compose various multipolaron configura-
tions: In a 2D case, the doped holes can arrange into stripes,
which is one kind of multipolaron state. The ground state
configuration depends on the doping level, pressure, etc.
Modeling the pressure-dependence of the ground state con-
figuration is one aim of this study.

In a previous work,13,14 we studied the electronic and
phononic excitations in a 2D CuO2 plane with inhomoge-
neous charge-lattice-spin structures �stripes and other po-
laron patterns�. We identified local “edge” or “interface”
modes in the phononic and electronic �spin and charge� ex-
citations induced by the inhomogeneity. In the Cu2O3 two-
leg ladder in SCCO, we can similarly anticipate the existence
of inhomogeneous structure and associated local excitation
modes in spin, charge, and lattice degrees of freedom.

Here, we investigate the ground states and the electronic
and phononic excitations in the two-leg ladder system by
applying an unrestricted Hartree-Fock and a direct-space
Random Phase approximations �RPA� to a multiband Peierls-
Hubbard Hamiltonian. We consider single-polaron �SP� and
bipolaron �BP� states: The latter comprise bound polarons
extending over rungs. Compared to the 2D cases, the SP state
that includes isolated polarons, is found to possess similar
phonon excitations as the diagonal stripe state or the periodic
polaron state.13,14 On the other hand, the BP state shows the
same type of local phonon modes as the vertical stripe state
in the 2D system. This is reasonable, since the vertical stripe
state is a form of multi-polaron state, which includes several
polarons coupled by shared O ions. To model the effect of
pressure on the groundstate configuration, we compare the
energies of the SP state and the BP state, while varying the
Cu-O hopping integral. We find that as a function of increas-
ing “pressure” �modeled by increasing hopping strength� a
transition from the SP state to the BP state is induced, to-
gether with interesting intermediate states. Most strikingly,
we identify a transition between site- and bond-centered BPs
accompanied by phonon softening indicative of the onset of
sliding or other instabilities.

PHYSICAL REVIEW B 73, 094514 �2006�

1098-0121/2006/73�9�/094514�10�/$23.00 ©2006 The American Physical Society094514-1

http://dx.doi.org/10.1103/PhysRevB.73.094514


II. FORMULATION

A. Hamiltonian

To study a Cu2O3 ladder, we use the following three-band
extended Peierls-Hubbard Hamiltonian, which includes both
electron-electron and electron-lattice interactions:15,16

H0 = �
�ij��

tpd�uij��ci�
† cj� + H.c.� + �

i,�
�i�uij�ci�

† ci� + �
�ij�

1

2
Kijuij

2

+ �
i,j,�,��

Uijni�nj��. �1�

We impose periodic �open� boundary condition in the x�y�
direction, i.e., there are two periodic Cu-O chains along the x
direction �we term this oxygen Ox subsequently�, connected
together through the other oxygens �Oy�. In this Hamiltonian,
ci�

† creates a hole with spin � on site i, and each site has one
orbital �dx2−y2 on Cu, and px or py on O�. The Cu �O� site
electronic energy is �d��p�. Uij represents the on-site Cu �O�
Coulomb, Ud�Up�, or the nearest-neighbor repulsion, Upd.
The electron-lattice interaction modifies the Cu-O hopping
strength linearly through the oxygen displacement uij:
tpd�uij�= tpd�1±�uij�, where ���� applies if the Cu-O bond
shrinks �stretches� for a positive uij; it also affects the Cu
on-site energies �d�uij�=�d+�� j�±uij�, where the sum is over
the three neighboring O ions. Other oxygen modes �buck-
ling, bending, etc.� are assumed to couple to electron charge
more weakly and are neglected here for simplicity, but can
be included as necessary within the same approach. We use
variations around the following set of model parameters used
in 2D CuO2 models:13,14 �p−�d=4 eV, Ud=8 eV, Up=3 eV,
Upd=1 eV, and K=32 eV/Å2, �=2.0 eV/Å, �=1 eV/Å;
we vary tpd=1–5 eV to simulate the pressure effect. This is
clearly an oversimplified representation of pressure effects,
but serves to demonstrate the ground state phases and tran-
sitions. Effects of varying the coupling strength are also con-
sidered below with similar results. To approximately solve
the above model, we use unrestricted Hartree-Fock com-
bined with an inhomogeneous generalized RPA to study lin-
ear fluctuations of lattice, spin or charge16 in a supercell of
size Nx�2 �we take Nx=8 here�.

B. Phonon spectral function

The output of the calculation is the Hartree-Fock ground
state and the linearized fluctuation eigen-frequencies and
eigenvectors with respect to it. From the phonon eigen-
modes, we calculate the corresponding neutron scattering
cross section,

S�k,	� =� dte−i	t�
ll�

�e−ikrl
��0�eikr

l�
� �t�� , �2�

where � labels the five ions in the unit cell of the ladder: �1�
Ox ions in the lower leg, �2� Oy ions in rungs, �3� Ox ions in
the upper leg, �4� Cu ions in the lower leg, and �5� Cu ions in
the upper leg. Here the position of each ion is expressed by
rl

��t�=xl+d�+ul
��t�, where each of the terms represents the

location of the lth unit cell origin xl�=xl1̂x�, time-dependent

vibrational component ul
��t�, and position within the unit cell

d�,

d�1� =
a

2
1̂x, d�2� =

a

2
1̂y, d�3� =

a

2
1̂x + a1̂y ,

d�4� = 0̂, d�5� = a1̂y . �3�

As noted above, for simplicity we consider Cu ions as
fixed, and the motion of O ions oriented along the corre-

sponding Cu-O bond: ul
�=ul

�ê� with ê1= ê3= 1̂x, ê2= 1̂y, ê4

= ê5= 0̂. The scalar displacements can now be expressed in
terms of the normal modes zn as ul

��t�=�n
xl,n
� zn�t�. Making

a second-order expansion in the oxygen displacements, we
obtain

S�k,	� = �
n

�	kx
2

kx,n

�1� 
2 + ky
2
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�2� 
2 + kx
2

kx,n

�3� 
2�

+ 	kxkye
−i�kx−ky��a/2�
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�1� �
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�2� �* + c.c.�

+ 	kxkye
i�kx�a/2�+ky�a/2��
kx,n

�2� �
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�3� �* + c.c.�

+ 	kx
2e−ikya
kx,n

�3� �
kx,n
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�
�

2m	n
	�1 + nB���	 − 	n� + nB��	 + 	n�� .

�4�

Here, 
kx,n
� =�le

−ikxxl
xl,n
� , and nB= �e	n/T−1�−1 is the thermal

population of the phonon mode n. This is a generalization of
the usual neutron scattering intensity expression17 for the
case of phonons with a larger real space unit cell. We plot
S�k ,	� / 
k
2 for k directions sampling longitudinal modes,
consistent with the common experimental convention.

C. Electron spectral function

To investigate the neutral electronic excitations, we calcu-
late the spectral function18

�
n


��0
O�k�
�n�
2��	 − En − E0� , �5�

where 
�0��
�n�� is the RPA ground �excited� state whose
energy is represented by E0�En�, and O�k� is an operator,
e.g., spin S�k� or charge n�k�, summed over Cu and O sites,

O�k� = �
�=1

5

O��k�e−ikd�
. �6�

The effect of an infinitesimal external field corresponding to
the excitation �n can be represented by the change of an
observable �O� in the state �=�0+�n�

�1�,

�O�  �O�0 + ��O�n, �7�

��O�n � ��0
O
�n� , �8�

where �O�0 is the expectation value with respect to the
ground state.
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As noted earlier, we simulate the effect of pressure by
varying tpd. We identify a transition from the SP to the BP
state with distinct electronic and phononic signatures. Note
that the BP states here are polaron bound states on different
legs of the ladder �in contrast to same-chain BPs�.

III. RESULTS

A. Polaronic ground states and phase transitions

We first show in Fig. 1 the configurations of the ground
states obtained by the Hartree-Fock calculation for several
values of tpd. For 1.0� tpd�5.0, there are six types of ground
state configurations. �A� In Fig. 1 is a single-polaron �SP�
state, which has n polarons in a staggered arrangement for an
n-hole doped system �n=4 here�. �B� and �C� Diagonal bi-
polaron �DBP� states, which have diagonally-bound po-
larons. �D� and �E� Vertical bipolaron �VBP� states, which
have the same structure as a short segment of a vertical stripe
in the 2D system. �D� Consists of site-centered VBPs. �E�
Bond-centered VBPs. �F� The uniform �UNI� state, which
does not have any local spin or charge modulation, or lattice
displacement.

Note that the undoped system shows the AF configuration
without any lattice displacement �not shown here�. One can
expect that a singlet solid is the more likely exact undoped
ground state, however the Hartree-Fock calculation favors an
AF.

With E�A�, E�B� , . . . ,E�F� the energies of �A�, �B�, ¼, �F�,
respectively, we compare these energies, and determine
the regions of tpd corresponding to the �A�–�F� phases for
1.0� tpd�5.0. The tpd dependence of these ground state con-
figurations is shown in Fig. 2.

There are five ground state transitions for 1.0� tpd�5.0.
These are first-order transitions except for the one between

�E� and �F�, which is of second order. The main feature here
is that the larger tpd, the more delocalized the ground state
becomes. This follows from the fact that the transition with
increasing tpd is SP→BP→UNI. By studying the polaron
eigen-functions, we find that the transitions occur when the
SP-SP or BP-BP overlap achieves sufficient levels, resulting
in the polaron melting, i.e., the sequence of the transitions
SP→BP→UNI.

The transition DBP→UNI VBP with increasing tpd is
similar to the transition from diagonal to vertical stripe with
increasing hole-concentration in some of the high-Tc cu-
prates with CuO2 planes.19,20 The energy difference between
�D� and �E� near the transition point is smaller than for the
other transitions. E�D�−E�E� and E�E�−E�F� both asymptoti-
cally vanish, as tpd approaches the �E�-�F� transition point
from smaller tpd. This transition is associated with recovery
of the broken symmetry. Below, we show the existence of the
VBP sliding mode, which recovers the translational symme-
try.

B. Sliding mode in bipolaronic states

The tpd dependence of the phonon eigenfrequencies ob-
tained by a direct-space RPA calculation is shown in Fig. 3.
A main branch lies in the range of 80–85 meV and is con-
sistent with the main phonon branch observed experimen-
tally. This frequency range is insensitive to the doping level.
However, some characteristic local modes are induced below
this frequency range by hole doping, similar to the 2D
cases.13,14 Additionally, an extremely soft mode is found in
the �D� and �E� phases. The frequency of the soft phonon
mode in the �E� configuration is purely imaginary in the �D�
phase region, and vice versa. To further understand this soft
mode, we calculate the corresponding electronic excitations
�Fig. 4�. We find one soft charge excitation 	Fig. 4�a��, which
shows a sliding mode 	Fig. 4�b�� and whose excitation en-
ergy shows the same behavior as that of the soft phonon
mode. We identify the soft phonon mode as one coupling
with a sliding mode of VBPs along the ladder. We identify

FIG. 1. �Color online� ground states for several values of tpd:
�A� tpd=1.2, �B� tpd=1.6, �C� tpd=1.8, �D� tpd=3.0, �E� tpd=3.5, and
�F� tpd=4.7. The circles �radius� and the arrows �length and direc-
tion� represent the hole and spin densities, respectively. Lines at the
positions of O ions represent static displacements, and shadows
show where the polarons are located.

FIG. 2. tpd dependence of the energy difference between the
�meta-� stable states with �=2.0: E�A�−E�B� �filled circles�, E�B�
−E�C� �open squares�, E�C�−E�D� �open circles�, E�D�−E�E� �filled
squares�, and E�E�−E�F� �open triangles�. E�D�−E�E� is of order
10−3 meV per unit cell �Cu2O3�, while the others are of order
10−1–1 meV. Each state �A�–�F� is the ground state in the corre-
sponding region separated by the thick grey lines. The lines are
guides to the eye only.
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the frequency of this mode as a pinning energy of the VBP
sliding, corresponding to a Peierls-Nabarro barrier from the
lattice discreteness. In the �D� phase 	�E� phase�, VBPs are
pinned Cu site-centered �bond-centered� by a potential en-
ergy; the potential energy is minimal at a Cu site �an Ox site�
and maximal at an Ox site �a Cu site�. The minimum and
maximum points of the potential energy exchange at the �D�-
�E� transition point. We will discuss this further below.

From the softening of the sliding mode and the second-
order-like behavior of the energy differences, E�D�−E�E� and
E�E�−E�F� near the �E�-�F� transition point, we conclude that
the pinning potential becomes flat at that transition point.

C. Effects of electron-lattice coupling

We next consider effects of the electron-lattice coupling
on the ground state configuration �see Fig. 5�. For this pur-
pose, changing the coupling strength �= �1.0,2.0,3.0,4.5�
we calculate the critical values of tpd in the same manner as
above. In this way, the tpd-� phase diagram is found as in
Fig. 1. Increasing the coupling strength tends to raise the
critical values of tpd except for that between �E� and �F�: The
boundary between �E� and �F� is insensitive to the change of

the coupling strength. The difference in the � dependence
shows that the transition between �E� and �F� has a different
character than other transitions: As seen above, the transition
between �E� and �F� is most likely of second order.

IV. DISCUSSION

We now discuss the details of the results obtained above.
First, we analyze the polaron size by using Gaussian fitting,
and describe the overall picture of the transitions as the de-
localization of polarons induced by the pressure. Next, we
discuss the transition between site- and bond-centered VBPs
and the pinning frequencies of a CDW in terms of Ginzburg-
Landau theory.

A. Size of polaron

Figure 6 shows hole-density profiles for several cases.
The data shown by circles in Fig. 6 includes averages over
nearest O sites,

n̄i = nCu,i +
1

2 �
j:nearest

neighbors

nO,j , �9�

where nCu,i and nO,j are hole densities, respectively, at Cu
and O sites obtained by Hartree-Fock calculation. We fit the
data by a least-squares method with the following function:

��x,y� = �
i

1

2��2 exp�−
�x − x̃i�2 + �y − ỹi�2

2�2 � + h .

�10�

Here, the center of the ith polaron is represented by �x̃i , ỹi�,
and h takes a value of about 1.1. In the SP and VBP cases
�upper and lower in Fig. 6�, the data are well fitted by the
function in Eq. �10�. In the DBP case, on the other hand, it is
not as well-fitted, especially for large � �middle right in Fig.
6�. We define the size of a polaron as 2� /a. The tpd depen-
dence of this polaron size is shown in Fig. 7. In the �A� case,
we find 2� /a is between 1.1 and 1.2 within the tpd range
between 1.0 and 2.5. There is little change with increasing tpd
in this case. The �B� state shows the same behavior as the �C�
state. The polaron size of the DBP states increases as tpd
increases. This polaron size growth in the DBP states is

FIG. 3. tpd dependence of the phonon eigen frequencies. The
lines are guides to the eye only.

FIG. 4. �Color online� �a� Charge excitation for k= ��� /2� ,0� at
tpd=3.5 eV from the RPA calculation. �b� Excited state at E
�13 meV. The ground state is �E� in Fig. 1. Comparing this excited
state with the ground state, a sliding of BPs is found. �c� Energies of
soft phonon modes �open circles� and charge sliding modes �filled
circles�.

FIG. 5. Phase diagram obtained from the calculation of the criti-
cal values of tpd for various electron-lattice coupling strength �.
�A�–�F� correspond to the states in Fig. 1. The lines are guides to
the eye only.
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greater than in the SP state. However, the polaron sizes in the
VBP are larger than those of SP or DBP.

Compared to Fig. 2, we find that the phase transitions
occur from a state of smaller polarons to another state of
larger ones. Especially, we can understand the aspects of the
phase transitions �D�→ �E�→ �F� by considering the pinning
potential. Delocalization of the polaron induced by changing
tpd causes less distortion of the lattice, as shown in Fig. 1.
Therefore, the potential energies for site- and bond-centered
states should change. For small tpd, the pinning at Cu is
stronger than that at O. As is discussed in Appendix A, if the
change of tpd varies the ratio of the pinning potential at Cu
and O sites, then phase transitions are induced. The phase
transitions are also well described by Ginzburg-Landau
theory. This is discussed in the following section, where,
within the Ginzburg-Landau picture, we explain the behavior
of the pinning frequencies.

B. Pinning frequency

We now discuss the transition between site- and bond-
centered VBPs and the behavior of the pinning frequencies
in terms of a Ginzburg-Landau theory. We can describe the
aspects of the transitions between VBP and UNI, and be-
tween site- and bond-centered VBPs by introducing the Lan-
dau function �see Appendix B for details�,

F =� dxf	��x�,m�x�� . �11�

Here ��x� and m�x� are the charge and spin order parameters.
m�x� is the staggered spin density, and ��x� is defined by the
deviation of the charge density from the uniform state,

m�x� = �− 1�x/aS�x� , �12�

��x� = ��x� − �0. �13�

In general, f can be written in the following form for an
L-site-periodic commensurate CDW:21

f	��x�,m�x�� = f0	��x�,m�x�� + p�x���x�L + q�x���x�2L.

�14�

Here, f0 is concerned with the lattice-independent spin and
charge ordering, and the remaining terms lead to the lattice
pinning effect of the CDW. We assume f0 is of the form

f0	��x�,m�x�� = r0m�x�2 + u0m�x�4 + s0m�x�2��x� + v0��x�2

�15�

with v0�0, that is, the charge order is induced by the mag-
netic order.22 If we write the charge order parameter in sinu-
soidal form, the amplitude �1 is found to be �see Appendix
B�

�1 � t0 − tpd, �16�

where t0 is the BP-UNI transition point.
Considering the small oscillations around the equilibrium

state, the pinning frequencies are derived in Appendix B as

FIG. 6. Hole-density profile
fitted by Gaussian. The left panels
for �=2.0, and the right for �
=4.5. The upper, middle, and
lower panels for �A�, �C�, and �E�
states, respectively. Circles show
the hole-density averaged over
nearest O sites using the data of
the the Hartree-Fock calculation.
Here the profile along only one of
the ladder legs is shown.

FIG. 7. tpd dependence of polaron size at �=2.0. �A� filled dia-
monds, �B� open triangles, �C� open circles, �D� open squares, �E�
filled triangles. �B� and �C�, and �D� and �E� lie almost on the same
line.
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� � �
tpd − tc
1/2 for tpd � tc


t0 − tpd
�L−2�/2 for tpdt0,
� �17�

where tc is the transition point between site- and bond-
centered VBPs. Both expressions are plotted in Fig. 8�b�, and
show a good agreement with the RPA data. If tc is not very
far from t0, the following form well-describes the behavior of
the phonon frequencies as a function of tpd over the whole
region around the transition points 	see Fig. 8�a��,

� � 
tpd − tc
1/2
t0 − tpd
�L−2�/2. �18�

As shown in Appendix B, the tpd dependence of the en-
ergy difference between site- and bond-centered VBPs is
given by


�F
 � �
tpd − tc
 for tpd � tc


t0 − tpd
L for tpd � t0.
� �19�

These functions are plotted in Fig. 8�c�, where 
E�D�−E�E�

from the Hartree-Fock calculation are also plotted for com-
parison.

Equation �17� well reproduces the features of the pinned
CDW in the L=4 case. Here we investigate energies and the
pinning frequencies for different dopings �resulting in
different-period CDWs�, and further show the validity of Eq.
�17� for other L. Figs. 9 and 10 show the results for the
1
3-hole doping �L=3�, and the 1

5-hole doping �L=5� cases. In
the both cases, the results suggest that Eq. �17� agrees with
the RPA calculation. The Hartree-Fock and RPA calculations
were performed in the systems whose sizes were 6�2 �L
=3� and 10�2 �L=5�. The tpd dependence of the energy
difference between site- and bond-centered VBPs is also
well-described by the function obtained from the Ginzburg-
Landau theory in both cases.

Similar to the 1
4-hole doping, for 1

3 -hole doping Eq. �18� is
also a good approximation. For 1

5 -hole doping, Eq. �18� does
not give a good agreement with RPA data. This is not sur-
prising, since tc is far from t0 in this case.

V. SUMMARY

In summary, we have modeled a pressure effect in a
Cu2O3 ladder system by using a multiband Peierls-Hubbard
model and simulating the effect of pressure through the hop-
ping strength tpd. With increasing tpd, we find a sequence of
transitions from SP/BP charge localization to sliding to de-
localization, all occurring within a magnetically ordered
background. The ground state has the same number of SPs as
doped holes in the case of small tpd �tpd�1.6 with the pa-
rameters used here�. The ground state configuration changes
as SP→BP→UNI states, as tpd increases. While SPs are
localized and isolated, Bps are partially delocalized. This
means the pressure produces a more delocalized ground
state. In the BP phase, there is also a phase transition be-
tween DBP and VBP states. A similar transition has been
found in some other cuprates, namely, the transition between
diagonal- and vertical-stripe states induced by hole doping.

In the VBP phase, we also find a soft mode transition
between site- and bond-centered VBP states, although the
energies are very close. Calculations of the phonon eigenfre-
quency and electronic excitation in the VBP phase yields a
sliding mode of VBPs with weak pinning. The pinning en-
ergy in the bond-centered VBP phase is around 15 meV at
most for tpd�3.5 eV. Increasing tpd up to tpd�4.6 eV makes
the pinning zero, and a transition from the VBP to UNI state
occurs. These results suggest experimentally exploring pres-
sure dependence of the low-energy modes found by Kitano
et al.10,11 and Blumberg et al.12 If these modes correspond to

FIG. 8. Comparison of the functions obtained
from Ginzburg-Landau theory with the results
from Hartree-Fock and RPA calculations for the
1
4 -hole doping �L=4� case. Lines show the func-
tions �the explicit forms are shown below�. The
frequencies from the RPA calculation are plotted
with open triangles for tpd� tc, open circles for
tpd� tc, and filled circles for tpd� t0. The energy
difference 
E�D�−E�E�
 from the Hartree-Fock cal-
culation are plotted with open diamonds for tpd

� tc, open squares for tpd� tc, and filled squares
for tpd� t0. �a� Pinning frequencies: �� 
tpd

− tc
1/2
t0− tpd
�L−2�/2. �b� Pinning frequencies �log-
log plot�: �� �t0− tpd��L−2�/2 for tpd� t0 �solid
line� and �� �tc− tpd�1/2 for tpd� tc �dashed line�.
�c� Energy difference between site- and bond-
centered VBPs: 
�F
� �t0− tpd�L for tpd� t0 �solid
lines� and 
�F
� �tc− tpd� for tpd� tc �dashed
lines�.
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those we have identified, then their pressure-dependence will
follow the interesting pattern in Fig. 3. Studying IR, Raman,
and optical signatures would further clarify the mode assign-
ments. The resonant soft x-ray scattering technique of Refs.
8 and 9 could also be used to probe our predicted charge
ordering structures as a function of pressure.

The sequence of phases �SP-BP-UNI� is reminiscent of
the insulator-metal transition with doping observed in other
low-dimensional broken-symmetry groundstate materials, in-
cluding conjugated polymers23 and layered cuprates. It is

tempting to associate the mode softening with the onset of a
sliding CDW in the spirit of Fröhlich. However, as the
phonon-fluctuations soften, additional degrees of freedom
�quantum lattice and spin fluctuations� become relevant and
need to be considered—in particular to identify the super-
conductivity mechanism. The superconductivity is observed
experimentally in a finite range of pressure. Whether this can
be associated with the finite range of tpd with low pinning
frequencies �Fig. 3� requires comparison with more detailed
experiments, but is a tempting scenario. We have also ex-

FIG. 9. Pinning frequencies and energy differ-
ence for the 1

3 -hole doping �L=3� case. See the
figure caption in Fig. 8.

FIG. 10. Pinning frequencies
and energy difference for the
1
5 -hole doping �L=5� case. �a� �
=C�t0− tpd��L−2�/2 for tpd around t0

�solid line�, �=C
tc− tpd
1/2 for tpd

around tc �dashed line�, and the
RPA data of the pinning frequen-
cies �same as in Fig. 8�. �b� and
�c� are the same as in Fig. 8.
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plored other values of � and found the same general phase
sequence as a function of tpd shown in Fig. 5.

In this study, we mainly considered only the 1
4-hole-doped

case and related commensurate dopings. Other cases includ-
ing incommensurate fillings with discommensurations will
be reported elsewhere. We can expect related transitions with
doping as with tpd, since they should both be controlled by
SP or BP wave function overlaps.
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APPENDIX A: PINNING POTENTIAL

Here we attempt to describe the pinning potential of VBP
states, and show the details of the discussion regarding the
transition between site- and bond-centered VBPs in Sec.
IV A. Since we are interested only in VBP states with differ-
ent phases here, the system we consider can be reduced to
one dimension. Therefore, the pinning potential is a function
of x, and has a minimum at x=na for the site-centered VBP
and at x= �n+ 1

2
�a for the bond-centered VBP. Approximately,

the pinning potential may be attributed to the potential at Cu
and O sites,

E�x� = �
i

�ECu,i�x� + EO,i�x�� , �A1�

where the phase is chosen such that the state becomes site-
centered when x=0. We continue our discussion with the
following two assumptions: �1� both ECu and EO are com-
posed of Gaussians,

ECu,i�x� = −
C1

�2��1

exp�−
�x − ai�2

2�1
2 � , �A2�

EO,i�x� = −
C2

�2��2

exp�−
�x − ai +

a

2
�2

2�2
2 � , �A3�

and �2� both �1 and �2 are comparable to a. The case we
consider here can satisfy these conditions. Since the density
profile of VBP states is well fitted by Gaussians �shown in
Sec. IV�, we expect the contribution of the partial free en-
ergy of the Cu and O sites to the total is also formed of
Gaussians, and that the size of the Gaussians should also be
similar to the VBP size.

We investigate the potential energy in Eq. �A1� with as-
sumption �1�. The pinning potential can be expanded as a
Fourier series,

E�x� = �
n

En cos�nGx� , �A4�

where G=2� /a. The Fourier coefficients are given by the
following form:

En = −
1

a
�

−�a/2�

a/2

dx�
i
� C1

�2��1

exp�−
�x − ai�2

2�1
2 �

+
C2

�2��2

exp�−
�x − ai +

a

2
�2

2�2
2 ��cos�nGx� �A5�

=−
1

a� C1

�2��1
�

−�

�

dx exp�−
x2

2�1
2�cos�nGx�

+ �− 1�n C2

�2��2
�

−�

�

dx exp�−
x2

2�2
2�cos�nGx�� �A6�

=− �C1

a
exp�−

n2G2�1
2

2
� + �− 1�nC2

a
exp�−

n2G2�2
2

2
�� .

�A7�

From Eq. �A7�, it follows that En for large n vanishes. By
considering the fact that the Gaussian almost vanishes at
three-fold half maximum full-width, we evaluate the condi-
tion to neglect the components as

n2G2�2

2
=

2�2n2�2

a2 �
32

2
. �A8�

Here all variables are positive, so that the condition is given
by

2�

a
�

1

n
. �A9�

If we consider the case that both �1 and �2 are comparable to
a 	assumption �2��, E�x� is approximately represented by the
cosine curve or a slightly modified one,

E�x� � E0 + E1 cos�Gx� + E2 cos�2Gx� . �A10�

Here E2 is small and it does not change the shape of cos�Gx�
very much unless E1 is small as well as E2. In such a situa-
tion, only one of the site-or bond-centered VBP states is
stable, and is determined by the relation between the C1 and
C2 magnitudes. However, if E1 is smaller than 4E2, E�x� has
minima at both Cu and O sites. This can happen when C1
�C2 	see Fig. 11�a��.

In Fig. 11�b�, the scheme of phase transition which fol-
lows from the Hartree-Fock calculation �Fig. 2� is shown.
From the phonon frequency calculation �Fig. 3�, the bistabil-
ity interval, t1− t2, is very narrow and difficult to identify
numerically. Comparing this scheme and the behavior of
dE�x� /dx, we understand the phase transition �D�→ �E�
→ �F� as follows. �1� Since the site-centered state �D� is
found at small tpd ��t2�, C2 /C1 has to be less than 1 in this
case. �2� Since the double-minimum region is very narrow
�t1� t2�, the zig-zag boundary near C2 /C1�1 in Fig. 11 is
almost flat when tpd is close to the transition point. �3� Since
the bond-centered state �E� is found above the transi-
tion point ��t1�, C2 /C1 should be found in the upper region
��1� across the coexistence point tc. �4� Increasing tpd far
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above t1, E�x� becomes close to a constant F0, which implies
that the transition from �E� to �F� occurs.

APPENDIX B: GINZBURG-LANDAU THEORY OF THE
SITE-CENTERED TO BOND-CENTERED VBP

TRANSITION

Here we give details of the transition between site- and
bond-centered VBPs discussed in Sec. IV B. First, we de-
scribe the statics of the transition by considering the free
energy. Then, by considering small long-wavelength oscilla-
tions around the ground state, we estimate the pinning fre-
quencies.

We start with the Landau function,

F =� dx	r0m�x�2 + u0m�x�4 − s0m�x�2��x� + v0��x�2

+ p�x���x�L + q�x���x�2L� . �B1�

We write p�x� and q�x� in an expanded form, for example

p�x� = �
n=1

�

pn cos�nGx� . �B2�

As seen in Sec. IV, the density profile of the VBP is well
fitted by large-size Gaussians, so we can neglect higher har-
monic terms of the order parameters and describe them by
sinusoidal waves,

��x,�� � �1 cos�G

L
x +

�

L
� , �B3�

m�x,�� � m1 sin� G

2L
x +

�

2L
� . �B4�

We may constrain �1�0.

We evaluate the free energy using the following integral
�l�0�:

�
V

dx

V
cosn�G

L
x +

�

L
�cos�lGx�

= �
h=0

�n−1−�̃n�/2
1

2n�n

h
��n−2h,lL cos�l�� , �B5�

where � n
l
�=n! / 	�n− l�!l!�, � is Kronecker’s delta, and �̃n is

unity for even n and zero for odd n. Integrating over volume
V, the free energy per unit volume is

F��tpd,�1,m1� = F�0��tpd,�1,m1� + 	p̃1�1
L + q̃1�1

2L�cos���

+ q̃2�1
2L cos�2�� , �B6�

F�0��tpd,�1,m1� = r̃0m1
2 + ũ0m1

4 − s̃0m1
2�1 + ṽ0�1

2, �B7�

where

p̃1 =
1

2L p1, q̃1 = �̃L� 2L

L/2
� 1

22Lq1, q̃2 =
1

22Lq2, �B8�

ũ0 = 3
8u0, ṽ0 = 1

2v0, r̃0 = 1
2r0, s̃0 = 1

4s0. �B9�

Note that the signs of these variables are the same with or
without tilde. The r0 and u0 terms govern the BP-UNI con-
tinuous transition, and the rest characterize the transition be-
tween site- and bond-centered VBPs. Subsequently, we ne-
glect the q̃1�1

2L term in Eq. �B6�, since this term would be
smaller than the p̃1�1

L term.
First, we consider the BP-UNI transition. Phenomenologi-

cally assuming r0� tpd− t0 �t0 is the BP-UNI transition point,
where p1=0� and u0�0, we find m1� �t0− tpd�1/2 for tpd� t0.
From the last two terms of Eq. �B7�, it follows that

�1 � m1
2 � t0 − tpd �B10�

for tpd� t0. Next, we consider the transition between site-
and bond-centered VBPs. In the case tpd� tc �tc is the coex-
istence point�, the minimum point of this free energy is con-
trolled by the p1 term. At tpd= tc, the p1 term vanishes, and
the minimum of the free energy is determined by the q2 term.

The minimum point is given by

� = �� for p1 � 0

0 for p1 � 0.
� �B11�

�=� corresponds to the bond-centered case at tpd� tc, and
�=0 to the site-centered case at tpd� tc. At the critical point
�tpd= tc�, the p1 term vanishes, and for

q2�1
2L � 0 �B12�

there are minima at both �=0 and �.
Next we consider the small oscillations around the equi-

librium state: �=�0+�� ��0 takes either 0 or � for the
ground state�. Using p1 cos��0�=−
p1
 and cos�2�0�=1, the
free energy is expanded for �� as

FIG. 11. �a� The derivative of E�x�. � and � show sign of
dE�x� /dx. Blackened area represents dE�x� /dx�0. Here both �1

and �2 are taken as 0.4. If we take larger �1 and �2, the zig-zag
boundary becomes flatter. �b� Scheme of transitions in bipolaronic
states. Solid lines show the center of bipolarons at each tpd. In the
case tpd� t2 �t1� tpd� t0�, the system shows the site-centered
�bond-centered� VBP ground state. For t2� tpd� t1, the pinning po-
tential has two minimal points, and at tc there is coexistence of site-
and bond-centered VBP states. In t0� tpd �blackened zone�, the �F�
state becomes the ground state. The larger �1 and �2, the narrower
the double-minimum zone �t1� tpd� t2� becomes.
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F�0+���tpd,�,m� = F0�tpd,�1,m1� + p̃1�1
L cos��0��1 −

����2

2
�

+ q̃2�1
2L cos�2�0��1 −

�2���2

2
� �B13�

=	F0�tpd,�1,m1� − 
p̃1
�1
L + q̃2�1

2L�

+
1

2
�
p̃1
�1

L − 4q̃2�1
2L�����2. �B14�

The second line of Eq. �B14� is used to find mode frequen-
cies. The Lagrangian for the oscillation of VBPs is given by

L =
M

2

d����
dt

−
M�2

2
����2 + const. �B15�

Here, M is the effective mass of the CDW, and

�2 =
1

M
�
p̃1
�1

L − 4q̃2�1
2L� . �B16�

Using p1� tpd− tc and �1� t0− tpd, and supposing M ��1
2, for

tpd� t0, we find

� � �
tpd − tc
1/2 for tpd � tc


t0 − tpd
�L−2�/2 for tpd � t0.
� �B17�

It also follows from Eq. �B6� that the tpd dependence of
the energy difference between site- and bond-centered VBPs,

�F
, is given by


F�=0 − F�=�
 � �
tpd − tc
 for tpd � tc


t0 − tpd
L for tpd � t0.
� �B18�
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