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The determination of electric field distributions within superconductors is of fundamental importance for
both basic research and applications. The analysis of electric fields allows insights into different modes of
vortex dynamics in superconductors as well as the determination of local maxima of dissipation which could
destabilize superconducting transport. We present an analysis of electric field distributions for thin films in
magnetization experiments. We show that electric field distributions can be determined experimentally by
time-resolved magneto-optical measurements of flux density distributions via the Faraday law. We give a
detailed analysis of the inductive and the potential contributions to the electric fields Ei and Ep, respectively.
Experimental results are demonstrated for a magnetized square-shaped YBa2Cu3O6.95 thin film.

DOI: 10.1103/PhysRevB.73.094508 PACS number�s�: 74.25.Qt, 74.78.Bz

I. INTRODUCTION

The most remarkable phenomenon of superconducting
materials is the sharp drop of the resistivity of an electric
current to an unmeasureable small value at a critical tem-
perature Tc. This is inevitably related to the screening of
electric fields. Since an electric field corresponds to a time
change of the phase of an electron wave, the macroscopic
phase coherence of the superconducting condensate is in-
compatible with an electric field. However, it is well known
that in type-II superconductors a current-induced motion of
the Abrikosov flux lines �vortices� induces electric fields.1–3

The preservation of true superconducting currents requires
pinning of flux lines at materials defects. In high-temperature
superconductors �HTS’s� the interplay of intrinsic anisotropy
and large thermal fluctuations enhances strongly the ther-
mally activated depinning and motion of vortices. Dependent
on materials properties and experimental conditions, a vari-
ety of different regimes of vortex motion, such as thermally
activated flux creep �TAFC�,4 current-induced plastic creep,5

or flux flow �FF� can be observed. Their relation to different
modes of vortex dynamics like collective creep,6 moving
vortex bundles and chains,7 flux avalanches,8 self-organized
vortex motion,9 or even the occurrence of instabilities10 is
topic of actual research.

There are excellent theoretical studies of electric field dis-
tributions of superconductors in magnetization11–13 and
transport experiments.14,15 Gurevich and Brandt predict a
universal spatial pattern of the electric field in magnetization
experiments, which only depends on the sample
geometry.12,13 For transport currents, regions of strongly in-
homogeneous electric fields are predicted by Gurevich and
Friesen.15 The theoretical work has in common that it is
based on a materials law which is assumed to be valid in the
entire superconductor.16 However, different collective modes
of vortex motion �like avalanches, glassy creep, or vortex
dynamics at weak links� should be inevitably related to dif-
ferent electric field patterns. Therefore, it is highly desirable
to gain experimental insight into the electric field distribu-
tions of superconductors17 which is not based on the appli-
cation of a materials law. Work that direction on YBa2Cu3O7

and Nd1.85Ce0.15CuO4 single crystals has been performed by
Giller et al.18 There, a one-dimensional approximation for
the calculation of the electric field E from measured time
evolutions of the flux density was used. For the study of the
electric field and the vortex dynamics at specific locations,
like current domain boundaries, grain boundaries, flux fila-
ments at large defects, or avalanches, where anomalies of the
vortex motion are expected, a more general method has to be
applied. Our own first approach17 to generalize electric field
imaging to two-dimensional current distributions is based on
incorrect approximations. For the integration of the Faraday
law, it disregards the contribution of the time evolution of the
external stray field of the sample to the inductive electric
field which, however, represents the dominant contribution.

In this article, we consider the true total electric field of a
superconductor. The true electric field is induced by moving
vortices or by temporal evolution of the supercurrent density.
Theoretical work suggests the existence of an effective elec-
tric field, where thermodynamic contributions and the Ber-
noulli potential are considered19,20. The contribution of such
an effective electric field, if present, is extremely small be-
cause it is related to surface inhomogeneities of the super-
conducting state, such as vortex cores. If such an effective
electric field would exist in a superconductor, it would be by
orders of magnitude smaller than the true electric field
caused by vortex motion. In particular this applies to high-Tc
superconductors, which have an extremely small coherence
length and the spatial extent of surface inhomogeneities is
very small.

The total true electric field E is comprised of the inductive
Ei and the potential contribution Ep. The determination of
Ei�r� via the induction law requires the measurement of the
time evolution of the magnetic flux density vector B�r� in the
entire space inside and outside the sample. Since this is not
possible for arbitrary sample geometries, the method for the
determination of E�r� presented in this article is restricted to
magnetization experiments of thin-film superconductors with
arbitrary shape. For the case of a two-dimensional current
distribution j�x ,y�, the inversion of the Biot-Savart law al-
lows an unambiguous determination of the current density
from the measured normal component of the flux density
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Bz�x ,y� at the surface of the superconductor.21 The determi-
nation of the time evolution of j�x ,y , t� by experiment is the
starting point for the calculation of the time evolution of the
flux density components B�r , t�= (Bx�r , t� ,By�r , t� ,Bz�r , t�)
inside and outside the superconducting film and therefore for
the calculation of Ei�r�. The potential contribution Ep�r� can
be derived from the obtained Ei�r� and j�x ,y� distributions.

The article is organized as follows: In Sec. II we present
the general electrodynamics of superconductors for the de-
termination of inductive and potential contributions to E�r�.
Solutions of the equations are derived for a relaxing two-
dimensional �2D� current distribution in thin films in Sec. III.
Section IV presents the special case of a relaxing one-
dimensional current distribution and calculates the electric
field distribution in the cross section of a thin stripe. Section
V presents an exemplary experimental study of the time de-
cay of the flux density gradients of a magnetized square-
shaped YBaCuO thin film. The two-dimensional inductive
electric field distribution in the film plane is calculated via
two-dimensional Fourier transformations. In Sec. VI, it is
shown that the dielectric polarization field P�r�, the potential
electric field Ep�r�, and the induced charge density distribu-
tion nin�r� can be determined.

II. THEORY

In superconductors, an electric field distribution is in-
duced by moving vortices1 or �e.g., in the vortex free Meiss-
ner phase� by a temporal evolution of supercurrents.21 As
pointed out in the former section, a possibly existing thermo-
dynamic electric field is disregarded in this article. Accord-
ing to the Faraday law, the time derivative of the microscopic

flux density distribution of a moving vortex, −ḃ�r�=�
�ei�r�, induces a microscopic electric field distribution ei�r�
with pure inductive origin1 �the dot indicates the time deriva-
tive�. In addition to this inductive electric field, a complex
dielectric polarization pattern p�r� and thus a potential elec-
tric field are ep�r� induced due to the redistribution of the
electric charge density in the area of the vortex core. As
already pointed out by Bardeen and Stephen,1 e�r� gives rise
to an acceleration of quasiparticles in the vortex core and,

consequently, an electric displacement charge density nin�r�
is induced in a region of the size of the vortex core, with
�0� ·p�r�=−nin�r�. Therefore, a moving vortex represents an
electric dipole.22 Recent work23 gives some evidence that
even a vortex at rest may accumulate some charge �of the
order of 0.01 electron charges in YBa2Cu3O7� possibly due
to the mentioned thermodynamic potential—i.e., the differ-
ence of the chemical potential inside and outside the vortex
core. Both kinds of charges at the vortex core are screened
on the length scale of several coherence lengths, and the
entire vortex represents an electrically neutral object.

The aim of this article is the determination of mesoscopic
electric field distributions related to the collective motion of
a large number of vortices. Although the details of the mi-
croscopic p�r� pattern near the vortex core are not important
for the mesoscopic electric field distributions, it is necessary
to notice that a superconductor in the vortex state represent
an electrically polarizable medium. The electromagnetic
quantities of superconductors on a mesoscopic length scale
are defined as a local spatial average over the microscopic
properties of ensembles of individual vortices. The flux den-
sity B�r�= �b�r��a then represents a spatial average over an
area a2 which is determined by the spatial resolution a of an
experimental setup and may contain some vortices up to hun-
dreds of vortices, depending on a and the vortex density.
This mesoscopic length scale has an important physical sig-
nificance, since real transport supercurrents in the vortex
state develop as a superposition of inhomogeneously distrib-
uted microscopic eddy currents of vortices.24 The time evo-
lution of the mesoscopic flux density B�r� then gives insights
into the spatial structure of the electric field E�r�= �e�r��a on
the same length scale. Furthermore, we introduce a mesos-
copic average of the dielectric polarization vector P�r�
= �p�r��a. P�r� may be important at areas of strongly nonuni-
form motion of vortex ensembles �such as sample edges or
current domain boundaries�. In contrast, for a uniformly
moving vortex lattice all microscopic dipoles cancel—i.e.,
P�r�=0.

All microscopic effects of the generation of the true elec-
tric field in superconductors are fully contained in the Max-
well theory for the mesoscopic quantities. The electric induc-
tion field Ei�r� is derived from the time derivative of the

magnetic induction Ḃ�r� via the Faraday law

FIG. 1. Sketch of an electrically polarizable sample in an inductive electric field Ei, which is induced by a local temporal evolution of

Bz. According to the Faraday law, electric field components Ei,x and Ei,y are induced along any contour containing Ḃz�0 �black arrows�. This
inductive field Ei polarizes the medium, and consequently a polarization field P �white arrows� and a charge density nin=−�0� ·P are induced
in the sample �here only depicted at the sample surfaces�. The induced charge density is the source of a potential electric field Ep=−P in the
sample.
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�B

�t
= − � � Ei. �1�

The inductice electric field Ei has pure rotational character
and consequently � ·Ei�r�=0. In electrically polarizable me-
dia or media with mobile charges, the inductive electric field
Ei�r� gives rise to a dielectric polarization field P�r� �see
Fig. 1 for the general case of a polarizable medium in a
time-dependent field and Fig. 2 for the case of flux creep in
a square-shaped superconductor in a fully penetrated state�.
P�r� is related to induced volume and surface charge densi-
ties nin�r� via �0� ·P=−nin. Due to the presence of nin�r�, a
potential electric field Ep�r� is generated with �0� ·Ep=ntot

=nex+nin, where nex represents any excess or external charge
density. If nex=0, Ep�r�=−P�r� inside the sample. Note, that
the spatial average of the induced charge density in the entire
sample �nin�r��=0.11 The total electric field is then �accord-
ing to the Helmholtz decomposition� comprised of two con-
tributions E=Ei+Ep, where Ei has inductive and Ep=−��
has potential character—i.e., ��Ep=����=0 with ��
=−nin /�0 and � ·Ei=0.

The dielectric displacement D=�0�Etot is given by

D = �0Ei + �0Ep + �0P , �2�

with

� · D = nex. �3�

Consequently, D is independent of the considered material
and just depends on the electric induction field Ei and the
excess charge density nex—e.g., due to external charges.

The boundary conditions according to the Maxwell theory
require the continuity of the tangential components of E at
all surfaces. In contrast, the normal components of E exhibit
discontinuities due to the presence of surface charge densi-
ties. In the following, we restrict our analysis to magnetiza-
tion experiments of electrically isolated samples, where ex-
ternal charges or potentials are absent—i.e., � ·D=0 and �
=0 at the surface of the sample. The time evolution of the
magnetic flux density is then comprised of B�r , t�
=�0Hex�t�+�0H�r , t�, where �0Hex represents the contribu-
tion of the external field and the magnetic field H�r� is gen-
erated by the flowing supercurrents:

� � H =
�D

�t
+ j . �4�

Usually, electric fields in superconductors are extremely
small and thus the contribution of the time derivative of the
electric displacement �D /�t to the magnetic field in Eq. �4�
can be completely disregarded. For the magnetic induction
one has

FIG. 2. Sketch of the induced surface charge densities ns
in due to electric field components perpendicular to a relaxing current density. �a�

Contribution of the relaxation of the normal flux density component Ḃz to the electric field in the �x ,y� plane of a square-shaped film with
a relaxing Bean-like current density �b� �bold lines represent current flow lines�. According to the Faraday law, in each current domain, there
are inductive electric field components parallel and perpendicular to the current density. Whereas the Ei component ��j reflects the occurrence
of a finite resistivity, the Ei component perpendicular to j induces a charge density and a polarization P which is related to inhomogeneous
vortex motion. Note that the total electric field Ei+Ep �with Ep=−P� is parallel to the current density. �c� Possible occurrence of an Ez

component of the inductive electric field due to the relaxation of in-plane flux densities. Shown is a jx domain of a square-shaped film with
a �tBy. Since the total electric field must be parallel to j, Ez is totally canceled by Ep,z due to surface charge densities at the z= ±d /2 �see �d��
and the z=0 planes.
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� · B = 0. �5�

In magnetization experiments, the time evolution of the
flux density B�r , t� according to Eqs. �4� and �5� is directly
related to the time evolution of the current density j�r , t� and
the time evolution �0Hex�t�. After ramping of Hex is stopped,
the time evolution of j�r , t� determines the time evolution of
B�r , t�, only.

The key step for the determination of the total electric
field distribution E in superconductors during magnetization
experiments is the integration of the Faraday law �Eq. �1�� in
order to obtain the inductive electric field Ei�r�. There are
two alternative approaches to calculate the Ei�r� which ex-
actly give the same results. One approach is the introduction
of a vector potential X�r� with

Ei = � � X . �6�

This ansatz automatically fulfills � ·Ei�r�=0 and yields �see
Appendix A�

Ei =
1

4�
� Ḃ � �r − r��

�r − r��3
d3r�. �7�

A second approach �for �tHex=0� is obtained by applying
�� to Eq. �1� and using Ampères law �Eq. �4��:

�0�tj = − � � � � E , �8�

where �t stands for � /�t. A similar equation is discussed in
the article of Gurevich and Friesen15 �see also Ref. 11�,
where, however, �tj is replaced by ��tE and thus the nonlin-
ear differential conductivity ��E�=�j /�E appears as a mate-
rial law. In our equation �8�, no material law is entering.

III. Ei FOR 2D CURRENT DISTRIBUTIONS

In this section, the reconstruction of the inductive electric
field in superconductors with a relaxing two-dimensional
current distribution j�x ,y , t�= jx�x ,y , t�ex+ jy�x ,y , t�ey is con-

sidered. This is the case in thin-film samples in a perpendicu-
lar external magnetic field. The z dependence of the current
density j�x ,y� can be disregarded for film thickness d�	,
where 	 represents the London penetration depth—i.e., the
length scale of the spatial variation of the superconducting
current density. This represents a completely two-
dimensional problem for the current density. However, with
respect to the magnetic flux density and the electric field
distribution, the problem remains three dimensional.

A. In-plane components of Ei

After two-dimensional Fourier transformation of Eq. �7�
�see Appendix B�, the Fourier coefficients of the Ei,x�r� com-
ponent of the electric field are given by

Ẽi,x�kx,ky,z� = Ẽi,x
�1� + Ẽi,x

�2�, �9�

with

Ẽi,x
�1� = �

−





dz�g�kx,ky,z,z��Ḃ
˜

y�kx,ky,z�� �10�

and

Ẽi,x
�2� = − �

−





dz�l�kx,ky,z,z��Ḃ
˜

z�kx,ky,z�� . �11�

Similarly, the Fourier coefficients of Ei,y�r� are given by

Ẽi,y�kx,ky,z� = Ẽi,y
�1� + Ẽi,y

�2�, �12�

with

Ẽi,y
�1� = �

−





dz�h�kx,ky,z,z��Ḃ
˜

z�kx,ky,z�� �13�

and

FIG. 3. �a� Scheme for the integration of the Faraday law according to the Stokes theorem. If the integration area is divided into cells,
each containing a time change of the flux density component Bz, the electric field components can be calculated along the contours of each
cell. However, the neighboring cells have to be taken into account. �b� Strip geometry for the one-dimensional current distribution.
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Ẽi,y
�2� = − �

−





dz�g�kx,ky,z,z��Ḃ
˜

x�kx,ky,z�� . �14�

For the Fourier-transformed integral kernels see Appendix B.
The key step for our thin-film method is to express the

Fourier coefficients Ḃ
˜ �kx ,ky ,z� of the time derivate of the

flux density via the Fourier coefficients of the time derivative
of the two-dimensional current density �t j̃x�kx ,ky� and

�t j̃y�kx ,ky�. This is possible by using a two-dimensional
Fourier-transformed version of the Biot-Savart law �see Ap-
pendix C�.

For the determination of the Fourier coefficients of the
Ei,x component of the electric field, we then calculate the two
contributions in Eq. �9� separately and obtain nonanalytical
expressions �see Appendix D�. However, for the z=0 plane,
where the in-plane electric field has a global maximum, the
following analytical expressions are found:

Ẽi,x
�1��kx,ky,z� =

�0

4k2�t j̃x�kx,ky�	e−kd/2�dk + 1� − ekd/2


�15�

and

Ẽi,x
�2��kx,ky,z� = −

�0

4

ky

k2 �̇�2

k
sinh� kd

2

e−kd −

1

k
	5ekd + dkekd

− 1 − 4e3/2kd
e−3/2kd� , �16�

with

�̇ =
ky

k
�t j̃x�kx,ky,z�� −

kx

k
�t j̃y�kx,ky,z�� �17�

and wave number k=�kx
2+ky

2.
We now apply the thin-film approximation kd�1, where

the lateral measurement resolution kmax
−1 is comparable or

worse than the film thickness d. Typically, d�300 nm and
kmax

−1 �1−3 �m in our experiments. Using the first-order ap-
proximation ex�1+x we obtain

Ẽi,x�kx,ky,z = 0� = −
�0d2

8
�t j̃x�kx,ky� +

�0

2k

ky

k2 sinh� kd

2

�̇ .

�18�

Similarly the total inductive Ey can be calculated, giving

Ẽi,y�kx,ky,z = 0� = −
�0d2

8
�t j̃y�kx,ky� −

�0

2k

kx

k2 sinh� kd

2

�̇ .

�19�

B. Normal component of Ei

The Fourier coefficients of the perpendicular inductive
component of the electric field Ei,z are given by �see Appen-
dixB�

Ẽi,z�kx,ky,z� =
�0

4k2 	ikx�t j̃x + iky�t j̃y
��z,k,d� , �20�

with

��z,k,d� = �
−





dz�e−k�z−z��	e−k�z�−d/2� − e−k�z�+d/2�
 . �21�

Since ikx�t j̃x+ iky�t j̃y is the Fourier-space equivalent for
� ·�tj=−n̈in, Eq. �20� shows that an Ei,z component is present
only if n̈in�0—i.e., if the change of the rate of flux creep in
time is large enough. In this article, where our method is
applied to slowly relaxing magnetized films, n̈in can be com-
pletely disregarded. Furthermore, the � function displays a
sign reversal at the z=0 plane and one has Ei,z�z=0,k ,d�
=0 for arbitrary n̈in values.

C. Alternative approach for the in-plane components of Ei

In this section, we show that the in-plane components of
the inductive electric field can also be easily obtained if we
start from Eq. �8� and apply a thin-film approximation, where
the z dependence of the two-dimensional current density
j�x ,y� is disregarded. Writing down Eq. �8� in components,

using Ḃz=−�xEi,y +�yEi,x, and summarizing some terms
yields

�z
2Ei,x = − �yḂz + �0�t jx + �x�zEi,z,

�z
2Ei,y = �xḂz + �0�t jy + �y�zEi,z,

��x
2 + �y

2�Ei,z = �z�xEi,x + �z�yEi,y = 0. �22�

According to the result in the former section that the Ez
component is small for slow changes in the relaxation rate, in

FIG. 4. Calculated temporal change of the normal magnetic flux
component Bz�x� of a thin strip of thickness d=200 nm, width W
=8 �m in an external magnetic field of �0H=42 mT. The strip is in
a nearly fully penetrated state and carries a constant magnetization
current density with a value of jc�t1�= ±1011 A/m2 which relaxes to
jc�t2�= ±0.9�1011 A/m2. �Bz=Bz�t2�−Bz�t1� denotes the corre-
sponding change of the flux density.
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the following, the Ei,z component in Eq. �22� will be disre-
garded. This allows a decoupling of the solution of Eq. �22�
for the Ex and Ey components, respectively, and thus

�z
2Ei,x = − �yḂz + �0�t jx,

�z
2Ei,y = �xḂz + �0�t jy . �23�

In the thin-film limit, the integration of Eq. �23� yields

Ei,x�x,y,z� = �0�t jx�x,y�� z2

2
−

d2

8

 − �

−


z

d2z��yḂz,

Ei,y�x,y,z� = �0�t jy�x,y�� z2

2
−

d2

8

 + �

−


z

d2z��xḂz. �24�

For a discussion of the integration method see the next sec-
tion. After two-dimensional Fourier transformation in the

FIG. 5. Different contributions
to the total inductive electric field
in the �x ,z� plane of a thin-film
strip being extended infinitely in
the y direction. The strip is in a
fully penetrated state and the time
evolution of the flux and current
distribution are shown in Fig. 4.
�a� Total inductive electric field
Ei,y according to Eq. �28� for
��t jy � =1010 A/ �m2 sec�. In �b�
and �c� the two contributions to
the inductive electric field distri-
bution according to Eqs. �31� and
�32� are depicted. Note that the
size of the cross section of the
strip �W /d=40� can be seen in the
grey-scale pattern of �b�.
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�x ,y� plane and expressing the Fourier components of Bz via
the Fourier components of the current density �see Appendix
C� the Fourier components of the electric field are written

Ẽi,x�kx,ky,z� = �0�t j̃x�kx,ky,t�� z2

2
−

d2

8
�

+
�0

2k

ky

k2 sinh� kd

2

�̇e−k�z�,

Ẽi,y�kx,ky,z� = �0�t j̃y�kx,ky,t�� z2

2
−

d2

8
�

−
�0

2k

kx

k2 sinh� kd

2

�̇e−k�z�, �25�

where �̇ is defined in Eq. �17�. Note that j=0 for �z � 
d /2.
For the electric field distribution in the central plane z=0 of
the superconductor we recover then Eqs. �18� and �19�.

IV. SOLUTIONS AND TESTS FOR 1D CURRENT
DISTRIBUTIONS

In order to improve our understanding of the electric field
distributions, in this section, Eq. �24� is compared to a direct
integration of Eq. �1� for superconducting samples with one-
dimensional current distribution jy�x�—i.e., a thin strip
which is extended infinitely in the y direction. The strip has
a width W �parallel to the x direction� and a thickness d �see
Fig. 3�b��. As before, we consider only magnetization experi-
ments. The current loop is closing at infinity and no external
potentials or charges are present. The only electric field com-
ponent in this case is the Ei,y component; Ei,x and Ei,z in this
artificial geometry are zero everywhere. Since div E=�yEy
=0, no charge density is induced in the sample and therefore
P and Ep are zero.

Generally, the Faraday law, Eq. �1�, is integrated by
means of the Stokes theorem. This is related to the integral
representation of the Faraday law

�
A

d2r�Ḃ�r�� = − �
C

ds · Ei. �26�

As an example, we consider now the case that only a time
derivative of Bz is present �see Fig. 3�a��. We divide our
integration area in small cells with area a2 and contour C
with length 4a, each cell exhibiting a locally piecewice con-

stant Ḃz. The electric field components Ei,x and Ei,y due to the

local flux change Ḃz in an isolated cell are then approxi-

mately given by Ei,x=Ei,y � Ḃza /4. However, also the flux
changes in each neighbor cell have to be taken into account.
If we now consider the one-dimensional case with Ei,x=0

and reduce the cell size to the limit of continuous Ḃz�x� dis-
tributions, the calculation of the Ei,y component of the elec-

tric field can be performed by a single integration of Ḃz�x�
along the x direction.

This can be also derived directly from Eq. �1�. The differ-
ential form of the Faraday law, Eq. �1�, for the one-
dimensional case is written

Ḃx�x,z� = �zEi,y�x,z� ,

Ḃz�x,z� = − �xEi,y�x,z� . �27�

Due to div B=0, Ei,y along a given contour C is independent
of the choice of the integration area A �as long as �A=C� and
consequently the two lines of Eqs. �27� are equivalent. The
solution of Eqs. �27� is, e.g., given by

Ei,y�x,z� = − �
−


x

dx�Ḃz�x�,z� , �28�

where the lower integration bound has to be chosen in an
area without flux changes. This result immediately shows
that the electric field in the strip is induced by all flux
changes inside and outside the sample. Consequently, the
integral in Eq. �28� should be taken over the full spatial
extent of the self-field of the sample. Therefore, the electric
field Ei�x ,y� at a specific location in the samples depends
nonlocally on the flux changes inside and outside the super-
conductor strip.

In order to shed light on our solution of the two-
dimensional problem �Eqs. �24��, it is shown in the following
how the second line of Eqs. �24� can be also obtained from
Eq. �27� in the 1D geometry. Applying �z to the first line of

Eqs. �27� and using Eq. �4�, �0�t jy =�zḂx−�xḂz, we recover
the second line of Eqs. �23�

�z
2Ei,y = �x�tBz + �0�t jy . �29�

The integration of this equation, assuming a z-independent
current density in the film, yields

Ei,y�x,z� = Ei,y
�1��x,z� + Ei,y

�2��x,z� , �30�

with a contribution being directly related to the current re-
laxation

Ei,y
�1��x,z� = �0�t jy�x�� z2

2
−

d2

8

 . �31�

Note that jy =0 for �z � 
d /2 and therefore Ei,y
�1�=0 outside the

sample. The second contribution is nonlocal and is related to
an integral of the gradient of �tBz,

Ei,y
�2��x,z� = �

−


z

d2z��x�tBz. �32�

Note that the sum of Eqs. �31� and �32� exactly corresponds
to Eq. �28�. This will be visualized in the following for
simple relaxing model current distributions.

A. Numerical results for model current distributions

In this section, numerical results of Eqs. �28� and �30�,
respectively, are calculated by using theoretical Bean-model-
like current distributions for the infinitely extended thin strip.
We want to shed light on the relative strength of different
contributions to the total electric field in Eq. �30�. Results for
a partly penetrated state are presented, where the shrinking of
the Meissner area during magnetic relaxation and the contri-
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bution of the time evolution of the Meissner currents have to
be taken into account.

In the thin-film Bean model for the strip of thickness d
and width W, being extended infinitely in the y direction �see
Fig. 3�b��, the current distribution is given by simple analyti-
cal expressions.25 If Hex � z is increased from the ZFC state,
one obtains, for the current density,26

jy�x� = � jc
x

�x�
, Q � �x� � W/2,

2jc

�
arctan� xc

�Q2 − x2�1/2� , �x� � Q ,

�33�

with c=2��W /2�2−Q2�1/2 /W and Q indicating the penetra-
tion depth of the flux front measured from the strip center.
The penetration depth of the magnetic flux measured from
the strip edge is P=W /2−Q with

Q =
W

2

1

cosh��Hex

jcd
� . �34�

This one-dimensional current distribution generates a
magnetic stray field in and outside the sample, which can be
calculated by the Biot-Savart’s law:

Bx�x,z� =
�0

2�
�

−W/2

W/2

dx�jy�x��

�F�x,x�,z,z = d/2� − F�x,x�,z,z = − d/2� ,

with

F�x,x�,z,z�� =
1

2
ln��x − x��2 + �z − z��2� ,

Bz�x,z� = −
�0

2�
�

−W/2

W/2

dx�jy�x��

�G�x,x�,z,z� = d/2� − G�x,x�,z,z� = − d/2� ,

with

G�x,x�,z,z�� = arctan� z − z�

x − x�
� . �35�

Note that in contrast to the analytical solution in Ref. 26 for
d→0, the calculation of B in Eq. �35� is performed for strips
of finite thickness d, where no analytical solution is known.
This is necessary for calculating electric fields inside the
strip volume.

Examples of the flux and current distributions are de-
picted in Figs. 4 and 7 for a fully penetrated and a partly
penetrated state. For the calculation of the electric field, it is
assumed that the time derivative of the relaxing current den-
sity �t jy�x���jy�x , t2�− jy�x , t1�� /�t� jy�x , t1�, where jy�x� is
given by Eq. �33�. The corresponding time derivatives of the
magnetic flux density components are then calculated by Eq.
�35�. Finally, the total electric field is calculated by Eq. �28�

and is compared with the two different contributions to Eq.
�30�—i.e., Eqs. �31� and �32�, respectively.

B. Fully penetrated state

The electric field distribution during relaxation of the
fully penetrated state in Fig. 4 is depicted in Fig. 5�a�. It
shows a spatial pattern which is characterized by the follow-
ing properties: �i� The electric field is maximal in the cross
section of the superconducting strip: however, its spatial ex-
tend in the z direction is much larger than the thickness of
the sample and is of the order of W. �ii� The electric field is
parallel to the current density. Consequently, due to the sign
change of the current density, Ei,y�x� displays a sign reversal
at x=0, too, and has an antisymmetric structure with respect
to x=0. �iii� Within one current domain, �Ei,y�x�� has a maxi-
mum value at a distance of x� 2

3W /2 from the sample center.
This is approximately the position of the so-called neutral

line28—i.e., the location where Ḃz�0 and Bz=�0Hex.
Very similar results have been obtained before by Gurev-

ich and Brandt12 and Brandt13 by a nonlocal diffusion equa-
tion for the electric field with a nonlinear current-electric-
field material law E�j�� jm. They showed that a universal
shape of Ei,y�x� occurs for strongly nonlinear E�j� �m�1�
which only depends on the geometry of the sample. In both
references, also analytical results for the x dependence of the
electric field are given in the limit m�1 in the creep regime.
The main new step of this work is that no materials law is
applied for the determination of electric field patterns.

The different contributions Ei,y
�1� and Ei,y

�2� to the total induc-
tive electric field according to Eqs. �31� and �32� are depicted
in Figs. 5�b� and 5�c�. As can be nicely seen from a compari-
son of Fig. 5�a� with Fig. 5�c�, the shape of Ei,y

�2� is similar to
the spatial pattern of the total Ei,y. For the fully penetrated
state, Ei,y

�1� represents only a minor contribution to the induc-
tive electric field.

Since the spatial extend of the magnetic self-field of the
strip increases with the sample width W in both the x and z
directions, a strong dependence of the total electric field on
W is expected.12 The increase of Ei,y with increasing sample
width W is shown in Fig. 6, where the electric field distribu-
tion in the cross section of three strips with different W is
depicted. Note that the thickness is constant �d=200 nm� and
all other parameters are unchanged compared to Fig. 4. In-
dependently of W, Ei,y�x ,z� displays a universal pattern as
predicted in Refs. 12 and 13. Whereas d remains constant in
Fig. 6, the extent of the Ei,y pattern in the z direction in-
creases �W.

Partly penetrated state

The time evolution of the flux and current density and the
corresponding electric field distribution due to current relax-
ation in a partly penetrated state of a strip strongly differs
from that one of a fully penetrated state. Figure 7 shows the
change of the flux and current density according to Eqs. �33�
and �35�. After relaxation of the jc value by 10%, the pen-
etration depth P of the flux front is increased. Consequently,
the Meissner screening current density in the flux-free region
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is rearranged in a way to screen the new flux distribution
from the Meissner area. This results in an enhancement of
the local current density values in the Meissner area which is
induced by the decrease of the current density in the flux-
filled regions.

Figure 8 shows the corresponding inductive electric field
distribution together with the contributions Ei,y

�1� and Ei,y
�2� ac-

cording to Eqs. �31� and �32�. In the flux filled current do-
mains, a similar Ei,y�x� pattern is present as in the current
domains of a fully penetrated state, with a maximum of
�Ei,y�x�� which is slightly moved from the sample edge to-
wards the interior of the sample. The electric field in the
Meissner area exhibits a sign reversal compared to the adja-

cent flux-filled current domain with the same current direc-
tion. The sign reversal is due to the sign reversal in �t jy�x�
and reflects the increase of the local current density in the
Meissner area. Consequently, the electric field is parallel to
the current direction in the flux-penetrated regions, whereas
it is antiparallel in the area of Meissner currents.

In our own first paper17 on the determination of electric
fields in superconducting films, it was assumed that the elec-
tric field in the film is generated only by the moving flux
inside the superconductor. The contribution of the temporal
change of the magnetic stray field outside the film to the
electric field in the film plane was completely disregarded.
This approximation considers therefore only the Ei,y

�1� contri-

FIG. 6. Distribution of the total inductive
electric field Ei,y in the �x ,z� plane �fully pen-
etrated state� for different widths W of a thin
strip. The width of the strip is increased from W
=2 �m �a�, W=8 �m, �b� to W=400 �m �c�. All
other parameters are the same as in Figs. 4 and 5.
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bution to the total Ei,y which is only a minor part. The value
of the electric field is underestimated in this article by a
factor of W / �8d� which is of the order of 100 for our
samples. Consequently, Eq. �3� of Ref. 17 is wrong and
should not be used in further work. The application of the
correct method to the data in Ref. 17 shows that the obtained
local minima and maxima of the electric field at grain bound-
aries in the bicrystalline YBaCuO films are still present.
However, the values and the relative height of the electric
field anomalies are not correct.

Other authors18,29 present electric field distributions for
single crystals and slabs, which are based on the one-
dimensional case of Eq. �28�. The main advantage of using
Eq. �30� in this article is that it can be easily extended to the
case of two-dimensional current distributions by Fourier
transform methods.

V. Ei DISTRIBUTIONS IN 2D FILMS FROM MAGNETO-
OPTICAL IMAGING EXPERIMENTS

In this section, we present two-dimensional electric field
distributions which are obtained from time resolved
magneto-optical imaging experiments. The measurements
were done at a square-shaped YBa2Cu3O6.95 film with
500 nm thickness and a width of 1.2 mm. After zero-field
cooling to T=8 K, an external magnetic field of �0Hex
=86 mT was applied with a ramp rate of 0.3 mT/sec. A
series of images of the normal component of the magnetic
flux density were taken with a time resolution of 120 msec.

The measured light intensities are calibrated into magnetic
flux densities as described in Ref. 25.

Figure 9�a� depicts the Bz�x ,y� distribution 1.2 sec after
application of the external field. The superconducting film is
in a partly penetrated state with a Meissner area �dark grey�
in the central region. The corresponding current density dis-
tribution is shown in Fig. 9�b�. One observes a typical Bean-
like current density profile with approximately constant criti-
cal current density in the flux-filled areas and a Meissner
screening current density jm� jc in the flux-free area. Note
that the small peaks of the current density at the sample
edges are well-known experimental artifacts due to the cou-
pling of in-plane stray fields of the superconductor to the
iron garnet indicator.30,31 This slight error cancels in the time
derivative of the current density �tj which is used for the
calculation of Ei and therefore does not affect the Ei�r� pat-
tern.

The thermally activated flux creep can be nicely seen in
Fig. 10�a�, where the temporal change of the flux density
�Bz�x ,y�=Bz�x ,y , t=1.2 sec�−Bz�x ,y , t=0.7 sec� is depicted
as a grey-scale image. From the time evolution of Bz�x ,y�,
the time evolution of the two-dimensional current density
j�x ,y� is obtained by inversion of Biot-Savarts law. Accord-
ing to Eqs. �18� and �19�, the in-plane electric field compo-
nents can be obtained from the time dependence of j�x ,y� in
Fourier space. The time evolution of the current density de-
termines the 3D time evolution of the flux distribution in full
space outside and inside the sample.

The resulting inductive electric field distribution is visu-
alized in Fig. 10�b�. The image shows the absolute value
Ei�x ,y�= �Ei,x

2 �x ,y�+Ei,y
2 �x ,y��1/2 of the electric field at t

=1.2 sec after external field sweep. Similarly to the flux do-
main structure, one observes four domains in the electric
field pattern. In each domain, the electric field has a local
maximum near the sample edge. The electric field at the
current domain boundaries exhibits a local minimum. How-
ever, the values remain finite and well above the noise level
of our measurement of Enoise�10−10 V/m. The electric field
pattern is similar to the theoretical patterns obtained by
Brandt11 for flux creep in a square-shaped thin film.

Figure 11 depicts the distributions of the electric field
components Ei,x�x ,y� and Ei,y�x ,y� after fast-Fourier-
transform back-transformation of the Fourier coefficients in
Eqs. �18� and �19�. The electric field distribution in Fig. 11 is
characterized by the following features: �i� In the flux-filled
domains, the electric field Ei has the same sign as the current
density. Due to opposite current directions, the electric field
exhibits a sign reversal in opposite flux domains. �ii� Within
an individual flux domain, the electric field is inhomoge-
neous. �Ei�x ,y�� shows a maximum near the middle of each
film edge and decays monotoneously from the edges towards
the flux front. �iii� As already observed for the calculated
data �Figs. 7 and 8� for Meissner regions in thin strips, the
electric field displays an additional sign reversal at each flux
front, where, however, the direction of the current is un-
changed. This sign reversal is related to a different relaxation
behavior in the Meissner- and flux-penetrated phases, respec-
tively. Whereas the current density decreases during mag-
netic relaxation in the flux-penetrated phase, the Meissner

FIG. 7. Calculated temporal change of the normal magnetic flux
component Bz�x� of a thin strip in a partly penetrated state. The
thickness of the strip is d=200 nm, the width W=4 �m and �0H
=10 mT. The current density in the flux penetrated area is relaxed
from jc�t1�= ±2�1011 A/m2 to jc�t2�= ±1.8�1011 A/m2. �Bz

=Bz�t2�−Bz�t1� denotes the corresponding change of the flux den-
sity. For a clearer representation, �Bz was shifted by a value of
−0.005T.
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screening current locally increases when the flux front moves
towards the sample center.

VI. DETERMINATION OF Ep

It is an interesting observation that the determined vector
Ei�x ,y� of the local inductive electric field distribution is not
parallel to the local current density j�x ,y�. We observe sys-

tematic deviations between the direction of both vectors.
They can be seen, e.g., in Fig. 11, where nonvanishing in-
ductive electric field components Ei,x and Ei,y are also
present in the current domains which are dominated by the jy

and jx components, respectively �see also Fig. 2 for a com-
parison with theory�. As we will show in this section, the
deviation between the inductive in-plane electric field vector
Ei�x ,y� and the direction of the current density j�x ,y� can be

FIG. 8. Electric field distribu-
tion in a �x ,z� plane of a thin strip
due to current relaxation in a
partly penetrated state for the
same parameters as in Fig. 7. The
total inductive electric field
Ei,y�x ,z� �Eq. �28�� is shown in
�a�, whereas �b� and �c� depict the
contributions Ei,y

�1� and Ei,y
�2� accord-

ing to Eqs. �31� and �32�,
respectively.
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utilized for the determination of the potential contribution
Ep�x ,y�.

In general, such deviations could have different physical
origins, such as a flux-creep Hall effect, where the vortex
velocity field is not perpendicular to the current density. Fur-
ther possible effects are vortex dragging by the superflow,
vortex sliding at planar defects, or an anisotropy of the flux-
creep resistivity due to the anisotropic orthorhombic crystal
structure of the superconductor. However, all these effects
can be clearly ruled out because of the following reasons: �i�
The observed symmetry of the transverse components of Ei

with two mirror planes �x and �y defined by x=0 and y=0,
respectively, contradicts such effects. �ii� The observed tem-
poral evolution pattern of Bz�x ,y� in Fig. 10 clearly shows
that the vortex velocity is perpendicular to the direction of
j�x ,y�. A significant flux-creep Hall effect would be visible

in the symmetry breaking of the Ḃz pattern with respect to
the �x and �y mirror planes, respectively �Fig. 10�. �iii� The
orthorhombic crystal structure of the thin films is averaged
on length scales below the spatial resolution of our method
due to twinning. In addition to the symmetry argument, this

FIG. 9. �a� Calibrated
magneto-optical image showing
the normal magnetic flux density
distribution of a square-shaped
YBaCuO film as a grey-scale im-
age. The thin film has a thickness
of 500 nm and a width of 1.2 mm.
The image is taken 1.2 sec after
ramping up the external field from
a zero-field-cooled state at T
=8 K to �0Hex=86 mT. �b� Flux
density distribution with superim-
posed current flow lines and cur-
rent density profiles for the same
state as in �a�. The current distri-
bution is obtained by 2D inversion
of the Biot-Savart law.

CH. JOOSS AND V. BORN PHYSICAL REVIEW B 73, 094508 �2006�

094508-12



rules out any possible effect due to an in-plane anisotropy of
the flux-creep resistivity.

Furthermore, a state with approximatly constant rate of
flux creep represents a quasistationary state. Any total E with
a direction deviating from the current direction would give
rise to a rearrangement of the current density pattern in that a

way to fulfill E � j. Consequently, the total electric field
E�x ,y� must be parallel to j�x ,y� and the vector of the po-
tential electric field must be perpendicular to j, because any
Ep component parallel to j would change the spatial evolu-
tion of the current relaxation and consequently would in fact
contribute to Ei.

FIG. 10. �a� Time change of
the flux density �Bz�x ,y�
=Bz�x ,y , t=1.2 sec�−Bz�x ,y , t
=0.7 sec� due to thermally acti-
vated flux creep. �b� Grey-scale
map of the absolute value of in-
ductive electric field distribution
in the z=0 plane at t=1.2 sec of
the same state of the sample
shown in Fig. 9. The profiles of
the electric field are taken along
the black lines.
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With � denoting the deviation angle between Ei and j,
the total electric field is �E � = �Ei �cos �. The deviation angle
can be determined via cos �= j ·Ei / ��j � �Ei � �, giving, for the
total electric field,

E =
j

j
�Ei�

j · Ei

�j��Ei�
, �36�

with j= �j�. For the in-plane components of the potential elec-
tric field Ep follows

Ep,x = jx�Ei · j�/j2 − Ei,x,

Ep,y = jy�Ei · j�/j2 − Ei,y . �37�

The resulting potential electric field distributions are de-
picted in Fig. 12 as grey-scale images. The induced charge
density ns

in=�0� ·Ep=−�0� ·P is depicted in Fig. 13.
The results fully agree with the qualitative theoretical ex-

pectations in Fig. 2 which can be directly derived from Fara-
day’s induction law. The potential contribution to the total
electric field is generated by a charge density distribution at
the current domain boundaries and the sample edges. This
charge density is built up by an inhomogeneous sheer creep

FIG. 11. Grey-scale map of the
Ei,x�x ,y� �a� and Ei,y�x ,y� �b�
components of the inductive elec-
tric field in the z=0 plane for the
same conditions as in Fig. 10.
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of vortex columns. The obtained values of the induced
charge density of up to 1.4�10−14 C/m3 nicely agree with
the order of magnitude estimate which can be obtained from
the equation �nin � =�0�tBex for external field sweep in the
fully penetrated state in Ref. 11. If we replace the time de-
rivative of the external magnetic field �tBex by the local
quantity �tBz��0.1–1��10−2 T/sec �see Fig. 10�, we obtain
a theoretical order-of-magnitude estimate of ns

in= �0.8–8�
�10−14 C/m3.

The accuracy of the determination of Ep depends strongly
on the accuracy of the determined j and �tj. Taking all cali-

bration errors of the magneto-optical data into account, the
error in j is smaller than 10% with a comparable error in �tj
�note that some of the errors cancel in the differential images
used for the calculation of �tj�. Since Ep depends not only on
the absolute values of E and j but also on their directions, the
error in P may be larger �up to 30%�. There are three minor
features in Figs. 12 and 13 which are experimental artifacts
and are related to small errors in the calibration of the
magneto-optical signals: �i� some small spots in Ep and nin

which are due to defects in the mirror of magneto-optical
sensor film �visible also in Fig. 9�a��, �ii� a slight asymmetry

FIG. 12. Grey-scale map of
the Ep,x�x ,y� �a� and Ep,y�x ,y� �b�
components of the potential elec-
tric field Ep in the z=0 plane for
the same conditions as in Fig. 10.
Some small spots in the image are
experimental artifacts due to de-
fects in the mirror of the magneto-
optical active sensor film.
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in the Py pattern in the top jx domain �Fig. 12�b�� which is
related to a small asymmetry in the current stream lines in
this area �see Fig. 9�b��, and �iii� whereas the sign change of
ns

in at the horizontal sample edges are correct, it is shifted at
the vertical sample edges from y=0 towards the upper part of
the sample. These small artifacts can be clearly identified
with small calibration errors in the Bz�x ,y� data �due to the
small Faraday effect in optical components�, and they could
be corrected artificially by a linear tilt of the data. The ex-
perimental results presented in the article are based on
orginal and uncorrected data.

VII. SUMMARY AND CONCLUSIONS

Summarizing the results of this paper, we present a
method which allows for the determination of the inductive
and potential electric field distributions induced by thermally
activated magnetic relaxation in thin-film superconductors of
arbitrary shape. The inductive part of Ei is obtained from the
measured time evolution of the normal component of the flux
density Bz�x ,y�.

The observed systematic deviations of the in-plane direc-
tions of Ei from the directions of j are used for the determi-
nation of the Ep distribution and the induced surface charge
density at the sample edges and the current domain bound-
aries.

We present experimental results for the thermally acti-
vated relaxation of a square-shaped YBaCuO thin film after
ramping up the external magnetic field. The electric field
pattern is very similar to the theoretical expectations of
Brandt and Gurevich.11,12 The determination of the in-plane
dielectric polarization field and the induced charge density
shows that the sample edges and the current domain bound-
aries are electrically charged. This charge density seems to
play an important role for the shape of the current stream-

lines at the current domain boundaries; in particular, its pres-
ence is crucial for the strong bending of the supercurrents.
The method presented in this article represents a general ba-
sis for the analysis of the inductive and potential contribu-
tions to the total electric field in samples with complex mi-
crostructures such as large defects, current inhomogenities,
and grain boundaries.

As a final remark, it is very important to notice that the
determination of electric field distributions of superconduct-
ors allows to obtain fundamental insights into other dynamic
properties of moving vortex ensembles. Having determined
the total electric field distribution E=Ei+Ep, it is very easy
to obtain the dissipated power density p= j ·E, the local flux
velocity v according to E=B�v, and the local activation
barrier U=−kBT ln�v /v0�, where kB is the Boltzmann con-
stant, T is the temperature, and v0 depends only on the ma-
terial constants of the superconductor. This will allow the
space-resolved determination of activation barriers for flux
creep which is up to now based on specific models for the
U�j� and U�B� relations32 or restricted to one-dimensional
sample geometries.33
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APPENDIX A

After expressing the inductive electric field by a vector
potential X�r� with

Ei = � � X , �A1�

one obtains

FIG. 13. Grey-scale represen-
tation of the induced surface
charge density ns

in=−�0� ·P for
the same conditions as in Fig. 10.
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� � Ei = � · �� · X� − �X = − Ḃ . �A2�

Without loss of general validity, the gauge � ·X=0 can be
applied and Eq. �A2� can be integrated by means of the
Green function of the Laplace operator, giving

X =
1

4�
� d3r�

Ḃ�r��
�r − r��

. �A3�

For the inductive electric field, we find

Ei =
1

4�
� �� Ḃ

�r − r��
d3r�, �A4�

yielding directly Eq. �7�.

APPENDIX B

For the Ei,x, Ei,y, and Ei,z components of the inductive
electric field, we obtain, from Eq. �7�,

Ei,x�r� =� d3r�G�r − r��Ḃy�r�� −� d3r�L�r − r��Ḃz�r�� ,

�B1�

Ei,y�r� =� d3r�H�r − r��Ḃz�r�� −� d3r�G�r − r��Ḃx�r�� ,

�B2�

and

Ei,z�r� =� d3r�L�r − r��Ḃx�r�� −� d3r�H�r − r��Ḃy�r�� ,

�B3�

with the integral kernels

G =
1

4�

z − z�

�r − r��3
, �B4�

H =
1

4�

x − x�

�r − r��3
, �B5�

and

L =
1

4�

y − y�

�r − r��3
. �B6�

Applying two-dimensional Fourier transforms in the �x ,y�
plane, one obtains, for the Fourier-transformed kernels,

g =
1

2
sgn�z − z��e−k�z−z��, �B7�

h =
i

2

kx

k
e−k�z−z��, �B8�

and

l =
i

2

ky

k
e−k�z−z��, �B9�

with wave number k=�kx
2+ky

2.

The Fourier coefficients of Ei,x can be expressed as

Ẽi,x�kx,ky,z� = Ẽi,x
�1� + Ẽi,x

�2� = �
−





dz�g�kx,ky,z,z��Ḃ
˜

y�kx,ky,z��

− �
−





dz�l�kx,ky,z,z��Ḃ
˜

z�kx,ky,z�� . �B10�

Similarly, the Fourier coefficients of Ei,y are given by

Ẽi,y�kx,ky,z� = Ẽi,y
�1� + Ẽi,y

�2� = �
−





dz�h�kx,ky,z,z��Ḃ
˜

z�kx,ky,z��

− �
−





dz�g�kx,ky,z,z��Ḃ
˜

x�kx,ky,z�� �B11�

and those of Ei,z are written

Ẽi,z�kx,ky,z� = Ẽi,z
�1� + Ẽi,z

�2� = �
−





dz�l�kx,ky,z,z��Ḃ
˜

x�kx,ky,z��

− �
−





dz�h�kx,ky,z,z��Ḃ
˜

y�kx,ky,z�� . �B12�

APPENDIX C

Once the time evolution of the two-dimensional current
density in the film is known, the time evolution of B�r , t� in
the entire space inside and outside the superconducting film
can be determined by the Biot-Savart law:

B�r,t� =
�0

4�
� j�r�,t� � �r − r��

�r − r��
d3r�. �C1�

After two-dimensional Fourier transforms, we can again
use the Fourier-transformed integral kernels g, h, and l. We
obtain, for the Fourier coefficients of the Bz component,

B̃z�kx,ky,z� =
i�0

2
�

−d/2

d/2

dz�e−k�z−z��� , �C2�

with

� =
ky

k
j̃x�kx,ky,z�� −

kx

k
j̃y�kx,ky,z�� . �C3�

Assuming that the current density does not vary in the z
direction within the film thickness �z � �d /2, this yields

B̃z�kx,ky,z� =
i�0

2
��

2

k
e−k�z�sinh� kd

2

 , �z� �

d

2
,

1

k
�2 − e−k�z+d/2� − ek�z−d/2�� , �z� �

d

2
.

�C4�

Similarly, the Bx and By components are given after two-
dimensional Fourier transforms by

B̃x�kx,ky,z� = �0�
−d/2

d/2

dz� j̃yg �C5�

and

DETERMINATION OF ELECTRIC FIELD¼ PHYSICAL REVIEW B 73, 094508 �2006�

094508-17



B̃y�kx,ky,z� = − �0�
−d/2

d/2

dz� j̃xg , �C6�

yielding

B̃x�kx,ky,z� =
�0 j̃y

2k
	e−k�z−d/2� − e−k�z+d/2�
 �C7�

and

B̃y�kx,ky,z� = −
�0 j̃x

2k
	e−k�z−d/2� − e−k�z+d/2�
 . �C8�

APPENDIX D

We calculate the two contributions to the Fourier coeffi-
cients of Ei,x in Eq. �9�. For the first contribution one obtains

Ẽi,x
�1��kx,ky,z� = �

−





dz�g�kx,ky,z,z��Ḃ
˜

y�kx,ky,z��

=
�0

4k
�t j̃x�kx,ky��

−





dz�sgn�z − z��e−k�z−z��

� 	e−k�z�+d/2� − e−k�z�−d/2�
 . �D1�

At the z=0 plane, the integral gives

1

k
	e−kd/2�dk + 1� − ekd/2
 , �D2�

and in the approximation kd�1 the first-order approxima-
tion ekd/2�1+kd /2 gives for the integral

−
1

2
kd2. �D3�

The second contribution in Eq. �9� is given by

Ẽi,x
�2��kx,ky,z� = − �

−





dz�l�kx,ky,z,z��Ḃ
˜

z�kx,ky,z��

= −
�0

4

ky

k2 �̇	f1 + f2 + f3
 , �D4�

with

f1 = �
−


−d/2

dz�2e−k�z−z��e−k�z��sinh� kd

2

,

f2 = �
d/2




dz�2e−k�z−z��e−k�z��sinh� kd

2

,

f3 = �
−d/2

d/2

dz�e−k�z−z��	2 − e−k�z�+d/2 − ek�z�−d/2
 , �D5�

and

�̇ =
ky

k
�t j̃x�kx,ky,z�� −

kx

k
�t j̃y�kx,ky,z�� . �D6�

At the z=0 plane, the functions f i can be evaluated ana-
lytically:

f1 = f2 =
1

k
sinh� kd

2

e−kd,

f3 = −
1

k
	5ekd + dkekd − 1 − 4e3/2kd
e−3/2kd. �D7�

For kd�1 and using the first-order approximation ekd/2�1
+kd /2 one obtains

Ẽi,x
�2��kx,ky,z = 0� =

�0

2k

ky

k2 sinh� kd

2

�̇ . �D8�
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