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We discuss a practical design for tunably coupling a pair of flux qubits via the quantum inductance of a third
high-frequency qubit. The design is particularly well suited for realizing a recently proposed microwave-
induced parametric coupling scheme. This is attractive because the qubits can always remain at their optimal
points. Furthermore, we will show that the resulting coupling also has an optimal point where it is insensitive
to low-frequency flux noise. This is an important feature for the coherence of coupled qubits. The presented
scheme is an experimentally realistic way of carrying out two-qubit gates and should be easily extended to
multiqubit systems.
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I. INTRODUCTION

Superconducting qubits1 have received a lot of attention
during the past few years. The observed coherence times
have been improved from the initial ns �Ref. 2� range to the
�s �Refs. 3–7� range or so with the invention of so-called
optimal bias points. That is, it is possible to set the biases of
a qubit such that the energy difference of the utilized com-
putational states does not depend on bias value to, say, first
order. This makes the system at hand insensitive to harmful
low-frequency noise. It seems that if an optimal bias point
exists, then the qubits should always be biased there.5,8

However, isolated qubits are not usable for quantum com-
puting. Some type of controllable coupling between indi-
vidual qubits is desirable. Typically tunable coupling
schemes1,9–16 require moving away from the optimal bias
point. This is because the “natural” coupling—inductive for
flux qubits and capacitive for charge qubits—is off-diagonal
��x � �x� at the optimal point and affects the qubit dynamics
only in second order provided that the qubits are detuned.
Therefore, constant moderate coupling can often be ne-
glected at the optimal point. Recently, however, two promis-
ing schemes for coupling superconducting qubits �flux or
charge� at the optimal point have emerged. In the so-called
FLICFORQ coupling scheme,17 two ��x � �x�-coupled de-
tuned qubits can be made to interact by applying resonant
microwaves on the qubits at a power such that the sum of the
Rabi frequencies of the individual qubits matches the detun-
ing between the qubits. This causes a kind of a second reso-
nance in the interaction picture, which can be used to realize
a universal two-qubit gate. However, the scheme is challeng-
ing to realize currently with flux qubits since achieving small
enough detunings in the fabrication is hard and they easily
exceed achievable Rabi frequencies. Nevertheless, because
of the above reasons, Bertet et al.18 suggested an alternative
parametric coupling scenario which relies on the modulation
of the coupling energy itself at the sum or the difference
frequency of two detuned qubits. Liu et al.16 suggested ear-
lier a related microwave coupling scheme which does not

unfortunately work at the optimal point. The gained benefit
in the scheme of Bertet et al. compared to FLICFORQ is that
the method is in principle applicable to qubits with a larger
detuning and it may be possible to carry out gates faster. This
scheme of course has an analogy for charge qubits too, but
was suggested primarily for flux qubits. We also concentrate
on flux qubits in this paper. The problem then is what kind of
a physical coupling element to use to achieve the parametric
control of the coupling energy. In the original paper,18 a
method utilizing a current biased dc-SQUID �Ref. 13� was
considered to exemplify the scheme. This requires the modu-
lation of the bias current at a high frequency. Moreover, the
dc current bias of the SQUID must be near switching current
and the flux near half flux quantum. This condition, however,
contradicts with the optimal current bias condition of indi-
vidual qubits5 since the bias current noise linearly couples to
the qubits at such bias condition.

We suggest using an extra high-frequency qubit for the
parametric ac-modulated coupling. The used circuit can be
otherwise identical to the primary qubits, but the splitting
should be larger so that the third qubit is always in the
ground state. The functioning of this coupling can be viewed
also in terms of the so-called quantum inductance. In fact,
the present scheme is very similar to using a Cooper pair
box9 as a coupling element or using an RF-SQUID,15 both of
which were suggested as ordinary dc coupling. The use of a
third qubit has many nice features. First of all, it should be
easy to fabricate this kind of circuitry since the technology is
compatible. It is easy to ensure that the third qubit indeed has
higher frequency than the other two. Secondly, the control
can be all magnetic and frequency multiplexed �assuming
different splittings� with a minimal number of microwave
lines. Also, it turns out that the effective coupling at dc can
be set to zero if desired. This, however, may not be necessary
because of the �x � �x nature of the coupling. What is more
important is that a kind of an optimal point exists for the
effective coupling energy. This may be crucial since at this
point the effective coupling energy is insensitive to low-
frequency flux noise, and therefore two-qubit oscillations can
be expected to be long-lasting. The time to generate a uni-
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versal entangling gate similar to controlled-NOT�CNOT� is on
the order of 10–100 ns with experimentally realistic param-
eters.

The paper is divided as follows. In Sec. II, we first derive
an approximate Hamiltonian starting from the three-qubit
Hamiltonian. The meaning of the different terms will be dis-
cussed. Then in Sec. III, we discuss the implementation of
the coupling scheme in the context of the present system. In
Sec. IV, we present results of numerical simulations. There
the validity of the effective Hamiltonian is tested in simula-
tion by comparing the dynamics of the truncated system with
that of the full system. Section V is dedicated to discussion.

II. SYSTEM AND THE HAMILTONIAN

We consider a system of three inductively coupled flux
qubits as illustrated in Fig. 1. The qubits consist of, say,
three4 or four5 ideally identical junctions except for one junc-
tion that has an area smaller by a factor �. The large junc-
tions are characterized by a charging energy EC=e2 /2C,
where C is the junction capacitance and by a Josephson en-
ergy EJ= � IC/2e, where IC is the critical current of the junc-
tion. Ideally, the smaller junction has a charging energy
EC/� and a Josephson energy �EJ. Typically, EJ /EC�101

−102. For three-junction qubits, � is around 0.75 and for
four-junction qubits around 0.5. These choices ensure that a
two-well potential forms and, furthermore, a two-level �qu-
bit� approximation of the system is valid. We neglect the
effect of loop inductances in the single-qubit energies, which
should be valid as long as Josephson inductance dominates.
For a rigorous derivation of the coupled-qubit Hamiltonian,
see Ref. 19.

The three-qubit Hamiltonian reads in the persistent cur-
rent basis

H3q = H3dc + H3MW. �1�

The dc part of the Hamiltonian reads

H3dc = −
1

2�
j=1

3

�� j�x
j + � j�z

j� −
1

2�
k�l

Jkl�z
k�z

l , �2�

where � j =2Ipj�� j −�0 /2�, Ipj is the maximum persistent cur-
rent of the qubit j, � j is the flux threading the loop of the jth

qubit, and �0=h /2e is the flux quantum. The approximation
is valid near the optimal point for the qubits, i.e., � j
��0 /2. The tunneling amplitudes � j are defined by the Jo-
sephson energies and capacitances of the qubit junctions.
These splittings depend in particular exponentially on �.
Moreover, the couplings are defined by the mutual induc-
tances Mkl, i.e., Jkl=Jlk=MklIpkIpl. The couplings can be ei-
ther ferromagnetic �Mkl	0� or antiferromagnetic �Mkl
0�
depending on the geometry. The microwave controlled
Hamiltonian simply reads

H3MW = −
1

2�
j=1

3

�� j�t��z
j . �3�

Here �� j�t�=2Ipj�� j�t�, and �� j�t� is the ac component of
flux threading the loop of the qubit j.

Let us assume that �1 ,�2
�3, where � j =�� j
2+� j

2. Ap-
plying the unitary transformation

Ũ =
1
�2

��1 +
�3�t�
�3�t�

I3 + i�1 −
�3�t�
�3�t�

�y
3� �4�

yields �H̃3q= ŨH3qŨ†�

H̃3q = −
1

2�
j=1

2

�� j�x
j + � j�z

j� −
1

2
�3�t��z

3 − J12�z
1�z

2

− �J13�z
1 + J23�z

2�� �3�t�
�3�t�

�z
3 −

�3

�3�t�
�x

3� −
1

2�
j=1

2

�� j�t��z
j .

�5�

We denote the identity operation on qubit j by Ij. Here we
have included the temporal dependence of the bias of the
third qubit in the transformation, i.e., we are transforming to
the adiabatic basis of the third qubit. That is �3�t�=�3

+��3�t� and �3�t�=��3�t�2+�3
2. We will use an adiabatic ap-

proximation for the third qubit.
By looking at Eq. �5�, we see that in the lowest-order

adiabatic approximation for the third qubit, i.e., when �z
3

→ 	�z
3
=1 and �x

3→ 	�x
3
=0, the flux biases of the qubits 1

and 2 will be shifted. The �x
3 component will have no effect

on the dynamics of the two qubits to lowest order. But going
to higher order in J13 and J23 will yield an effective coupling
term. In order to eliminate the third high-frequency qubit, we
use a trick known as the Schrieffer-Wolff transformation
�see, e.g., Ref. 20�. We look for a transformation exp�−S�
such that the anti-Hermitian operator S=−S† is first order in
Jkl such that it eliminates the �x

3 component in first order.
That is, we require

�S,H0� = H1 + O�Jkl
2 � , �6�

where

H0 = −
1

2�
j=1

2

�� j�x
j + � j�z

j� −
1

2
�3�t��z

3 − J12�z
1�z

2 �7�

and

FIG. 1. Schematic illustration of three antiferromagnetically
coupled flux qubits.
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H1 = �J13�z
1 + J23�z

2�
�3

�3�t�
�x

3. �8�

If Eq. �6� is satisfied, we get up to second order

exp�− S��H0 + H1�exp�S�

= H0 + H1 + �H0 + H1,S� +
1

2
��H0,S�,S� + O�Jkl

3 �

= H0 + �H1 − �H0,S�� +
1

2
�H1,S� + O�Jkl

3 � �9�

such that the term H1 is eliminated to first order since �H1

− �H0 ,S�� is second order. The total Hamiltonian has also the
terms

H2 = − �J13�z
1 + J23�z

2�
�3�t�
�3�t�

�z
3 �10�

and

H3 = −
1

2�
j=1

2

�� j�t��z
j . �11�

It turns out that Eq. �6� is solved by choosing

S = i��y
3 + i��x

3, �12�

where � and � contain only operators operating on the qubits
1 and 2. A straightforward calculation gives up to first order

� =
J13�3

�3�t�2 − �1
2 −

�1
2�1

2

�3�t�2 − �1
2

�z
1

+
J23�3

�3�t�2 − �2
2 −

�2
2�2

2

�3�t�2 − �2
2

�z
2

−
J13�3�1�1

��3�t�2 − �1
2���3�t�2 − �1

2� − �1
2�1

2�x
1

−
J23�3�2�2

��3�t�2 − �2
2���3�t�2 − �2

2� − �2
2�2

2�x
2 �13�

and

� =
J13�1�3�3

��3�t�2 − �1
2���3�t�2 − �1

2� − �1
2�1

2�y
1

+
J23�2�3�3

��3�t�2 − �2
2���3�t�2 − �2

2� − �2
2�2

2�y
2. �14�

Now the effective Hamiltonian reads

exp�− S��H0 + H1 + H2 + H3�exp�S�

� H0 +
1

2
�H1,S� + H2 + H3. �15�

The second-order terms �H2 ,S� and �H1− �H0 ,S�� were
dropped because they are off-diagonal in the qubit 3 opera-
tors. Since the single-qubit MW term H3 is weak anyway, we
will not consider its transformation. We also neglect dS /dt
since it vanishes when the adiabatic approximation is made.
We need to calculate

1

2
�H1,S� =

i

2

 �3

�3�t�
�J13�z

1 + J23�z
2�,��

−
1

2
� �3

�3�t�
�J13�z

1 + J23�z
2�,���z

3, �16�

where �· , · � stands for the anticommutator. We get

i

2

 �3

�3�t�
�J13�z

1 + J23�z
2�,�� =

J13
2 �1�3

2

�3�t�2��3�t�2 − �1
2 − �1

2�
�x

1

+
J23

2 �2�3
2

�3�t�2��3�t�2 − �2
2 − �2

2�
�x

2

�17�

and �up to constant when the approximation �z
3�1 is made�

1

2
� �3

�3�t�
�J13�z

1 + J23�z
2�,���z

3 �
J23J13�3

2

�3�t�3 � �3�t�2 − �2
2

�3�t�2 − �2
2 − �2

2 +
�3�t�2 − �1

2

�3�t�2 − �1
2 − �1

2��z
1�z

2 −
J23J13�3

2

�3�t�3 � �1�1

�3�t�2 − �1
2 − �1

2�x
1�z

2

+
�2�2

�3�t�2 − �2
2 − �2

2�z
1�x

2� . �18�

We may safely neglect the �x
1�z

2 and �z
1�x

2 terms if the
third qubit frequency �3�t� is significantly higher than � j and
� j for j=1,2. The effective Hamiltonian for two qubits can
thus be compactly rewritten as

H2q = −
1

2�
j=1

2

��̃ j�x
j + �̃ j�z

j� − J̃12�t��z
1�z

2 −
1

2�
j=1

2

�� j�t��z
j

�19�
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with

�̃ j = � j +
2�3�t�Jj3

�3�t�
, �20�

�̃ j = � j −
2�Jj3�3�2� j

�3�t�2��3�t�2 − � j
2 − � j

2�
�21�

and

J̃12�t� = J12 +
J23J13�3

2

�3�t�3 � �3�t�2 − �2
2

�3�t�2 − �2
2 − �2

2 +
�3�t�2 − �1

2

�3�t�2 − �1
2 − �1

2� .

�22�

Let us discuss the physical meaning of the different terms in
the approximate Hamiltonian in Eq. �19�. Recalling that Jj3
=Mj3IpjIp3 and since the ground-state expectation value of
current for the third qubit is in the absence of the coupling

	03�I3�03
 = −
1

2

d�3

d�
= −

Ip3�3

�3
, �23�

we see immediately that the correction in Eq. �20�,
2�3�t�Jj3 /�3�t�=−2Mj3Ipj	03 � I3 �03
, can be interpreted as a
shift of the qubit j bias due to the circulating current of the
third qubit. From now on we consider the modified “sweet
spot” �̃ j =0. Note that this cannot be perfectly achieved at dc
because the time average of �̃ j =0 depends on the modulation
amplitude of the third qubit microwave. However, the devia-
tion from the ideal case is only second order in ��3�t� /�3,
where �3 is the dc value of the third qubit frequency and
��3�t� is the microwave modulation of the third qubit bias.
Other than that, we neglect the time dependence of �̃ j since it
can be absorbed in the microwave Hamiltonian and results in
a weak cross-coupling. Since we are considering a resonant
control scheme, such omissions are well justified. The inter-
pretation of the renormalization of � j is more complex.

The effective coupling term in Eq. �22� can most easily be
understood as coupling through the quantum inductance of
the third qubit. By quantum inductance, we mean the inverse
of the coefficient by which the circulating current of the aux-
iliary qubit responds to a change in its bias flux, i.e.,

1

LQ�t�
=

d	03�I3�03

d�

= −
2Ip3

2 �3
2

�3�t�3 . �24�

In the limit of large �3, we therefore obtain

J̃12�t� � J12 +
2J23J13�3

2

�3
3 = �M12 −

M23M13

LQ�t�
�Ip1Ip2.

�25�

From this form, it is clear that the effective mutual induc-
tance between the qubits is affected by the quantum induc-
tance of the auxiliary qubit; qubit 3 generates a shielding
current in response to changes in the flux of qubit 1 �2�,
which in turn changes the flux through qubit 2 �1�. In order
to cancel the effective dc coupling, the following conditions
must be satisfied since LQ
0: If M12
0, then M13 and M23
must have the same sign, but if M12	0, then M13 and M23
must have a different sign. Naturally the magnitudes need to

be suitable, too. Figure 2 illustrates the coupling term as a
function of flux with realistic experimental parameters. Note
that two points exist where g0=0.

To conclude the present section, we rewrite the Hamil-
tonian conveniently at the optimal point �̃ j =0, via rotating it
by exp�i� /4��y

1+�y
2��, as

H2q
opt = −

1

2�
j=1

2

��̃ j�z
j − �� j�t��x

j� − J̃12�t��x
1�x

2. �26�

Because at the optimal point the observed single-qubit coher-
ence times are much superior to those measured elsewhere,
we will focus our attention there.

III. IMPLEMENTATION OF THE PARAMETRIC
COUPLING SCHEME

As suggested in Ref. 18, the form of the Hamiltonian in
Eq. �26� is ideal for the realization of a coupling scheme in
which the coupling constant J12�t� is modulated sinusoidally

at the angular frequency �±= ��̃2± �̃1� /�. The essence of the
scheme is seen easily by considering a general modulation of
the form

J̃12�t� = g0 + g+�t�cos��+t� + g−�t�cos��−t� . �27�

Here

g± �
dJ̃12

d�3
��3±, �28�

where ��3± is the amplitude of the modulation of �3�t� at
either the sum or the difference frequency and g0 is the dc

component of the coupling J̃12�t� of Eq. �22�. For single-
qubit operations, we use Rabi oscillations driven by a reso-
nant microwave,

�� j�t� = 2� j�t�cos��̃ jt/ � + � j�t�� . �29�

In our setup, all the temporal dependence of the Hamiltonian
is assumed to arise from the time-dependent flux. The

FIG. 2. The dependence of the effective coupling term on flux
when Ipj =0.4 �A, �3 /h=10 GHz, �2 /h=�1 /h=1.72 GHz, �1 /h
=3.1 GHz, �2 /h=4.3 GHz, M13=M23=−6 pH, and M12=−1 pH.
�For these choices, �̃1= �̃2=0 if �3 /h=7.375 GHz.�
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rotating-wave approximation, which is also valid if cross-
couplings are taken into account, results in a rotating frame
Hamiltonian of the form

H2q
rot =

1

2�
j=1

2

� j�t��cos � j�t��x
j − sin � j�t��y

j �

−
g+�t�

4
��x

1�x
2 − �y

1�y
2� −

g−�t�
4

��x
1�x

2 + �y
1�y

2� .

�30�

This can be taken as our logical Hamiltonian. The approxi-
mation is valid when g0 ,g±
�± and � j 
� j. We must in-
clude the possibility of phase shift to get arbitrary one-qubit
gates, hence the temporal dependence of the microwave
phase. All the control is carried out by a combination of
phase and amplitude modulation. We have set the phase of
�± to zero for simplicity.

The Hamiltonian in Eq. �30� is clearly universal. All the
single-qubit operations can be obtained easily, e.g., by rotat-
ing three times around two different axes. From the point of
view of two-qubit operations, Eq. �30� is extremely nice be-
cause it can in principle be used to realize directly the so-
called B gate,21 which is known to be the best all-purpose
two-qubit gate there is. Namely, two applications of the B
gate suffice to realize any two-qubit gate. Essentially, the B
gate up to some local one-qubit operations is given by

UB � exp
i
�

4
��x

1�x
2 +

1

2
�y

1�y
2�� . �31�

To realize this with a MW pulse of the length �t, one just
sets � j =0, g+�t /h=1/8, and g−�t /h=3/8.

If the modulation of the coupling is not possible at both
the sum and the difference frequencies, say, due to a too
small difference in �+ and �3, we may still do a universal
quantum gate when g+=0. The easiest way to achieve this is
to do a gate essentially equal �i.e., locally equivalent� to the
so-called double-CNOT, or DCNOT. The nontrivial two-qubit
part of this gate can be written, e.g., as

UDCNOT � exp�i
�

4
��x

1�x
2 + �y

1�y
2�� . �32�

Choosing � j =0, g+=0 and g−�t /h=1/2 realizes the gate.
Three applications of UDCNOT with some one-qubit gates suf-
fice to realize any two-qubit gate.22 The gate is thus just as
good as the better known CNOT.

In order to seriously evaluate the viability of the present
scheme, one needs to consider the matter of decoherence. We
are operating in the optimal point of the individual qubits so
that there is more hope in this respect than in some nonop-
timal point scenario. However, in the presence of coupling,
the situation is more complicated. As has been previously
shown,18 if g0
�−, the coupling circuit does not add seri-
ously to decoherence, meaning the single-qubit transition
frequencies are stable. Especially if g0=0, the individual qu-
bits are truly first-order insensitive to fluctuations in all the
fluxes � j. If g0 is, however, too large compared to �−, then
the benefits of the optimal point may unfortunately be lost.

It is also important to consider the phase coherence of the
�01
 to �10
 �or �00
 to �11
� oscillation. It turns out that our
scheme is nice in this sense. Namely, we would like the
frequency of oscillation to be stable against low-frequency
noise, i.e., dg± /d�3=0. There indeed exist points symmetri-
cally around �3=�0 /2 at which this is satisfied, i.e., ap-
proximately at �3= ±�3 /2. Figure 3 illustrates the form of g±
with the same parameters as in Fig. 2. However, there is no
reason for these special points to be ones in which g0=0. For
perfect first-order insensitivity to 1/f flux noise, it is neces-
sary to design the circuitry so that the conditions g0=0 and
dg± /d�3=0 are fulfilled simultaneously. Currently the tech-
nology may not be there yet, though, since in particular �3 is
hard to control in fabrication. It should be, however, possible
to satisfy g0
�− well enough and set still dg± /d�3=0. One
possible solution is to fabricate qubits with comparably high
� j.

Let us compare the proposed scheme with the earlier
scheme of coupling through a dc-SQUID. In our scheme, the
added improvement is the existence of the additional stabil-
ity in the form of dg± /d�3=0. Also, the bias conditions are
more favorable for the individual qubits. Although the effect
of the dc-SQUID on the single-qubit terms analogous to Eqs.
�20� and �21� was not included in the consideration of cou-
pling through a dc-SQUID in Refs. 13 and 18, the SQUID
will couple directly to the individual qubits. At high bias
current and close to �0 /2, the bias current noise always
couples in first order to �x. This is known to especially cause
a rapid decrease of the relaxation time T1 �Ref. 5� and thus
also of the dephasing time. Because of the expected signifi-
cant decline in T1, we argue that the use of a third high-
frequency qubit may be a more viable option for realizing
the promising parametric coupling scheme.

IV. SIMULATION

In order to confirm the validity of the approximations
made, we present some simulation results. We can conve-
niently simulate the dynamics of the system both with the

FIG. 3. The effective ac coupling constant g± as a function of dc
flux when the flux amplitude through the third qubit has the realistic
value ��3=2�10−4�0.
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full three-qubit Hamiltonian and with the effective Hamil-
tonian in Eq. �26�. The form of the full Hamiltonian that we
use is the Hamiltonian in Eq. �1� rotated by the time-
independent version of Eq. �4� so that the Hamiltonian is
exact but in a more convenient basis. Also the qubits 1 and 2
are rotated. That is,

Hfull sim = −
1

2�
j=1

2

�� j�z
j − � j�x

j� −
1

2
�3�z

3 − J12�x
1�x

2

+ �J13�x
1 + J23�x

2�� �3

�3
�z

3 −
�3

�3
�x

3� +
1

2�
j=1

2

�� j�t��x
j

−
1

2
� �3

�3
�z

3 −
�3

�3
�x

3���3�t� . �33�

No rotating-wave approximation has been used for the simu-
lation, but rather we solve the full Schrödinger equation. The
results are obtained using Floquet states23 since the problem
is time-periodic for the duration of the two-qubit pulse. Be-
low, the initial state of the qubit 3 is always assumed to be
�03
 in the basis of the above Hamiltonian. The reduced den-
sity matrix �1,2 is obtained by tracing over the third qubit.
We concentrate here on the use of the difference frequency
since this should be experimentally easier to achieve.

As an illustrative example, let us consider the initial state
�1102
. Figure 4 illustrates the probability of different out-
comes in the single-qubit eigenbasis versus time with the
example parameters of Fig. 2.24 In this example, the dc com-
ponent of the coupling is g0�0. In this simulation, we as-
sumed that the microwave couples only to qubit 3. However,

even if the microwave cross-couples to all the qubit loops, it
is still possible to carry out the operations with high fidelity.
We see that after a time h / �2g−� the probabilities of the states
�1102
 and �0112
 are flipped. This corresponds to a gate lo-
cally equivalent to the DCNOT, i.e., the operation in Eq. �32�.
The fact that the full three-qubit simulation shows reduced
amplitude after tracing over the third qubit is attributable to
the fact that the third qubit entangles slightly with the pri-
mary qubits due to its finite frequency. At best the fidelity
F=�	� ��1,2 ��
 between the reduced density matrix and the
target pure state ��
=exp�i� /4��x

1�x
2+�y

1�y
2�� �1102
 is about

98%.
The above example is not perfect but indicates clearly that

the scheme should be comparably easy to demonstrate in an
experiment. To see how increasing �3 affects the situation,
we consider the case �3=15 GHz in Fig. 5. It can be seen
clearly that while the gate time stays reasonable �about
60 ns�, the amplitude of the oscillation and thus the fidelity is
improved above 99%.

So far we have given examples of operation at g0�0. It
is, however, possible to work with finite g0. Particularly, we
would like to operate at dg± /d�3=0. To demonstrate, we
simulate the first example again at this point. The results are
shown in Fig. 6. We now work at the frequency �̃−=�−
+2g0

2 /�−. If this correction18 is not taken into account, the
amplitude of oscillation is roughly halved, but with the cor-
rected operation frequency, the best fidelity is again about
99%. This is extremely promising since at this point the de-
coherence is expected to be reduced.

Since we are interested in creating a unitary gate, it is not
sufficient to consider one initial state alone. One possible
measure is to calculate the fidelities for a complete set of
initial states. It, however, turns out that the fidelities with the
other logical qubit states for the present scheme are equally
good as for the state �1102
. This means that we can indeed
carry out the DCNOT with high fidelity.

We conclude that the present scheme is an experimentally
realistic scheme for realizing two-qubit gates at the optimal
points of the qubits. We can also conclude that the derived
two-qubit Hamiltonian is in good agreement with the full

FIG. 4. �Color online� Example of the coherent oscillations in-

duced by a microwave at the frequency ��̃2− �̃1� /h. Above, the
two-qubit approximation was used, whereas the lower plot is the
result of the full three-qubit simulation. The black line starting from
probability 1 at t=0 corresponds to �1102
, whereas the blue line
starting from probability 0 at t=0 corresponds to �0112
. The green
and red lines with small amplitude correspond to the states �1112

and �0102
, respectively. Here �t�27.5 ns results in a gate equiva-
lent to DCNOT. We use �3 /h=7.375 GHz. Here the microwave am-
plitude was ��3=497 MHz, which corresponds to Fig. 3. With these
choices g0�0 but dg± /d�3�0.

FIG. 5. �Color online� Same as in Fig. 4 but with �3=15 GHz
and �3 /h=5.73 GHz. The fidelity is at best above 99%.
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three-qubit Hamiltonian. The desired behavior of the three-
qubit system is only observed when the renormalization of �
and � are taken into account. In the case of a finite g0, the
operation frequency is further renormalized, as can be seen
in the example above. The predicted gate time also agrees
reasonably well with the full dynamics.

V. DISCUSSION

We have shown how to realize a tunable coupling scheme
for optimally biased flux qubits using an extra qubit as a
coupling element. Although the mutual inductances are fixed,
the primary qubits can be effectively coupled and decoupled
at will using microwaves at a suitable frequency. As a first
test of the scheme, we suggest the coupling to be demon-
strated with just one measurement SQUID with all the three
qubits sitting inside the loop. The seeming visibility problem
between �0112
 and �1102
 in this kind of a measurement can
be overcome easily. To realize coherent two-qubit oscilla-
tions of the kind presented in the previous section and to see

a signature of the tunable coupling, one can convert the os-
cillation in the subspace spanned by �0112
 and �1102
 into an
oscillation of �0102
 and �1112
 by just one �-pulse. Scanning
the MW frequency around �− should give adequate proof of
the tunability. This experiment could be carried out even
with a continuous wave at �− and two chopped �-pulses, one
to prepare either �0112
 or �1102
 and one to overcome the
visibility problem. Scanning the interval between the pulses
should result in an oscillation between �0102
 and �1112
.

For more sophisticated control of the qubits, all the mi-
crowaves need to be chopped and attention needs to be paid
to phases. It is of course important that the signals are phase-
coherent. The choices made in this paper should be realizable
in an experiment by properly adjusting the phase of the mi-
crowave source addressing the qubits. Once this is done, the
exact timing of the coupling pulse is not important as time
does not appear explicitly in the rotating frame Hamiltonian.
In the case of the FLICFORQ scheme, timing is more crucial
since the rotating frame Hamiltonian still has an explicit time
dependence. The phases in Eq. �30� could of course be cho-
sen differently from what we have done. Like in FLICFORQ, it
should be possible to utilize frequency multiplexing in the
present coupling scheme.

Let us comment on the scalability of the present scheme.
A generalized version of the presented transformation may
be used to derive an effective Hamiltonian for a larger mul-
tiqubit register without changing the form of the result. For
instance, in the case of a linear chain of qubits with every
second qubit acting as a coupling element, the bias �̃ j of any
computational qubit will have a contribution from both of its

neighboring coupling elements and the same holds for �̃ j.
The coupling between neighboring computational qubits will
be exactly the same as in the text up to second order. We can
therefore conclude that the scheme is potentially scalable to
multiple qubits since figuring out the controls required for a
more complicated multiqubit unitary gate is a tractable task.
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