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We suggest a magnetic flux detector that can be optimized with respect to the measurement back action, e.g.,
for the situation of quantum measurements. The detector is based on manipulation of ballistic motion of
individual fluxons in a Josephson transmission line �JTL�, with the output information contained in either
probabilities of fluxon transmission and reflection, or time delay associated with the fluxon propagation
through the JTL. We calculate the detector characteristics of the JTL and derive equations for conditional
evolution of the measured system both in the transmission and reflection and the time-delay regimes. Combi-
nation of the quantum-limited detection with control over individual fluxons should make the JTL detector
suitable for implementation of nontrivial quantum measurement strategies, including conditional measurements
and feedback control schemes.
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I. INTRODUCTION

One direction of current efforts aimed at development of
mesoscopic solid-state qubits is realization of effective
schemes of qubit measurements. Different versions of the
qubits which use quantum dynamics of magnetic flux in su-
perconducting loops1–9 are at the moment among the most
advanced solid-state qubits. Practically all of them employ a
measurement scheme based on modulation by the measured
qubit of the decay rate of the supercurrent of a Josephson
junction or a superconducting quantum interference device
�SQUID�. This process can be viewed as tunneling of a mag-
netic flux quantum and has several attractive features as the
basis for measurement. The most important one is a suffi-
ciently large sensitivity, which comes from strong depen-
dence of the tunneling amplitude on parameters of the tun-
neling potential controlled by the measured system. There is,
however, a practical disadvantage of this approach. Although
few-junction structures like SQUIDs can in principle operate
as quantum-limited detectors, in the typical detection mode,
the supercurrent decay leads to strong energy dissipation,
e.g., by bringing the detector into the finite-voltage state. The
dissipation perturbs both the system and the detector itself,
and makes it impossible to repeat the measurements suffi-
ciently quickly. This prevents realization of nontrivial quan-
tum measurement strategies that are based on continuous
measurements or a sequence of successive discrete weak
measurements. The goal of this work is to suggest and ana-
lyze a flux detector which, similarly to some of the charge
detectors, e.g., superconducting Cooper-pair electro-
meters,10–12 should operate more naturally in the quantum-
limited regime. While still based on tunneling of individual
magnetic flux quanta, the detector nevertheless avoids energy
dissipation by using ballistic motion of the flux quanta in the
Josephson transmission line �JTL�.13 The JTL detector
should combine the quantum-limited back action with time
resolution sufficient for performing several successive mea-
surements within the typical decoherence time of supercon-
ducting qubits. The cost of achieving this is the need for
single-flux-quantum �SFQ� support electronics16 required for
operation of this detector. Adaptation of SFQ circuits to qubit

applications17–19 is an important, and not fully solved, prob-
lem of development of scalable superconducting qubits.

II. JOSEPHSON TRANSMISSION LINE
AS FLUX DETECTOR

As was mentioned in the Introduction, the suggested de-
tector is based on the ballistic motion of fluxons in a JTL
which is formed by unshunted junctions with critical currents
IC and capacitances C coupled by inductances L �Fig. 1�. The
detector can be viewed as the flux analog of the quantum
point contact �QPC� charge detectors �see Ref. 20 and refer-
ences therein� used for measurements of quantum-dot qubits.
Both detectors utilize the ability of the measured system to
control the ballistic motion of independent particles �elec-
trons in the QPC, fluxons in the JTL detector� through a
one-dimensional channel. The JTL detector should, however,
provide more control over the propagation of individual flux-
ons than is possible with electrons in the QPCs. This leads to
additional measurement regimes �e.g., time-delay measure-
ments� impossible with the QPC.

The JTL detector uses the fact that the flux ��e��x� gener-
ated by the measured system creates potential U�x� for the

FIG. 1. �a� Equivalent circuit of the flux detector based on the
Josephson transmission line �JTL� and �b� diagram of scattering of
the fluxon injected into the JTL with momentum k by the potential
U�x� that is controlled by the measured qubit. The fluxons are pe-
riodically injected into the JTL by the generator and their scattering
characteristics �transmission and reflection coefficients t�k� and
r�k�� are registered by the receiver.
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fluxons moving in the JTL �Fig. 1�. The fluxons are injected
one by one, with period 1/ f , into the JTL by the generator,
and are scattered by the potential U�x� localized in some
region of the JTL. The injection frequency f is sufficiently
low so that only one fluxon at a time moves inside the JTL.
The fluxon scattering characteristics, transmission probabil-
ity or the time delay associated with the motion through the
JTL, are registered by the receiver. Since these characteris-
tics depend on the potential U�x� controlled by the measured
system, they contain information about the state of this sys-
tem. For instance, in a simple example of measurement of a
qubit strongly coupled to the JTL, the fluxon can be trans-
mitted through the JTL when the qubit is in one state, and
reflected back when the qubit is in the other state. In this
regime, the outcome of each fluxon scattering gives complete
information on the qubit state and the JTL performs strong
projective measurement of the qubit. In general, when the
coupling to the JTL is weak, the outcome of one scattering
event gives only partial information about the measured sys-
tem.

Quantitatively, Hamiltonian of the uniform JTL can be
expressed in terms of the electric charges Qn and the phases
�n of the Cooper-pair condensate at each of its nodes n:

H = �
n

�Qn
2/2C + EJ�1 − cos �n� + EL��n+1 − �n − �n

�e��2� .

�1�

In this Hamiltonian, EJ=�IC /2e is the Josephson coupling
energy of the junctions, where IC is the junction critical cur-
rent, EL= ��0 /2��2 /2L is the characteristic magnetic energy
of inductances L, where �0=�� /e is the magnetic flux quan-
tum, and �n

�e�=2��n
�e� /�0 is the phase difference across the

inductance L of the nth segment induced by the external
magnetic flux �n

�e� through this segment. The charges and
phases at each node are the conjugate variables that satisfy
canonical commutation relations: ��n ,Qm�=2ei�nm.

In what follows, we are interested in the regime of small
inductances L��0 / IC, when the phase difference across
each segment of the JTL is small, and one can replace the
phases �n with a continuous function ��x� of dimensionless
coordinate x=n along the JTL. �The condition of validity of
this approximation is discussed more quantitatively at the
end of this section.� In this regime, the JTL is equivalent to a
distributed Josephson junction which can act as a uniform
ballistic channel for the fluxons. The Hamiltonian �1� re-
duces in the continuous limit to the standard sine-Gordon
Hamiltonian, which can be written as follows:

H = 2EL� dx�1

2
������2 + ��x��2�

+ 	J
−2�1 − cos �� − ��e��x��x�� . �2�

Here �	ct is the time t normalized to the velocity c
=1/
LC of propagation of excitations along the JTL in the
absence of Josephson tunneling, and 	J= �� /2eICL�1/2 is the
Josephson penetration length of the junction. We note that in
the notations used in Eq. �2� and below, all distances along

the JTL, including x and 	J, are dimensionless, and are mea-
sured in units of the cell size a of the JTL �see Fig. 3�.
Conversion of most equations to absolute units of length can
be achieved simply by changing the interpretation of all
quantities �e.g., L ,C , IC� from “per cell” to “per unit length.”

The commutation relations for the charges and phases
give the following equal-time commutation relations for the
field ��x ,�� in the Hamiltonian �2�:

���x�,����x��� = 
2��x − x�� , �3�

where the parameter 
2	�4e2 /��
L /C measures the wave
resistance 
L /C of the JTL in the absence of Josephson tun-
neling relative to the quantum resistance. Known results for
the quantum sine-Gordon model �see, e.g., Ref. 21� show
that when 
2�8�, i.e., 
L /C�h /e2�25 k�, quantum fluc-
tuations of the field � completely destroy the quasiclassical
excitations of the junction. The transition at 
2=8� should
be qualitatively similar to the analogous resistance-driven
transition in small Josephson junctions.22 This analogy sug-
gests that the dynamics of the supercurrent flow in the JTL
with large wave resistance should be described in terms of
tunneling of individual Cooper pairs.23 While this limit might
be reachable in very narrow and thin JTLs of submicrometer
width,24 we assume here a more typical situation, when

L /C is on the order of 10–100 � and 
2�1. In this case,
the JTL supports a number of quasiclassical excitations in-
cluding, most importantly for this work, topological solitons
that carry precisely one quantum of magnetic flux each. The
dynamics of such “fluxons” is equivalent to that of stable, in
general relativistic, particles21 with the terminal velocity c
=1/
LC and the mass

m � 8�p/c2
2 = �2�/e�3/2�ICL�1/2C , �4�

where p= �2eIC /�C�1/2=c /	J is the plasma frequency. An-
other type of quasiclassical excitation in the JTL is the small-
amplitude plasmon waves with frequency

�k� = �p
2 + c2k2�1/2, �5�

for a wave vector k.
In this work, we are interested in the “nonrelativistic”

regime of fluxon dynamics, when the velocity u of its motion
is small, u�c. Equations �4� and �5� show that in this re-
gime, the fluxon kinetic energy �=�2k2 /2m, where k
=mu /�, can be made smaller than the lowest plasmon energy
�p,

� = �p�2u/c
�2, �6�

so that for u�c
 /2 the fluxon cannot emit a plasmon even
when it is scattered by nonuniformities of the JTL
potential.25 Intrinsic dissipation associated with emission of
plasmons is then suppressed, and the fluxon motion in the
JTL should be elastic, provided that other, “extrinsic,”
sources of dissipation are also sufficiently weak. Although
the JTL operation as the flux detector should be possible for
moderately strong fluxon dissipation, the dissipation would
prevent the detector from reaching the quantum-limited
regime.
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The shape of the scattering potential U�x� for fluxons cre-
ated by the measured system is determined by the convolu-
tion of the distribution of the flux ��e��x� with the distribu-
tion of current in each fluxon,26,27 and can be written as

U�x� =
�0

2�L
� dx�

���e��x��
�x�

�0�x� − x� , �7�

where �0�x� is the shape of the fluxon which in general can
be distorted by the potential U�x� itself. If, however, the
potential is smaller than �p, or does not vary appreciably
on the scale of the size of the fluxon given by 	J, the changes
in the fluxon shape are negligible, and one can use in Eq. �7�
the regular fluxon shape in the uniform case, which in the
nonrelativistic limit is �0�x�=4 tan−1�exp�x /	J��. One of the
implications of Eq. �7� is that the width of the scattering
potential U�x� cannot be made smaller than 	J.

If the measured system is coupled to the JTL not induc-
tively �as in Fig. 1� but galvanically, and injects the current
j�e��x� in the nodes of the JTL, potential created by this cur-
rent for the fluxons is still given by Eq. �7� if one makes the
substitution

�1/L����e��x�/�x = j�e��x� . �8�

The discrete version of Eq. �8� is illustrated in Fig. 2. The
external flux �n

�e� through the nth cell of the JTL induces
circulating current jn=�n

�e� /L in this cell. The difference be-
tween the currents jn in the neighboring cells creates the
currents jn

�e� through the Josephson junctions of the JTL:
jn
�e�= jn− jn−1. In the continuous limit, this relation gives Eq.

�8�. It implies that direct injection of the currents jn
�e� in the

JTL junctions indeed produces the same distribution of
phases and currents as magnetic coupling generating the
fluxes �n

�e�. Throughout this work we assume that the mea-
sured system does not inject the net current in the JTL,
�dx j�e��x�=0, i.e., the corresponding flux �8� and the poten-
tial �7� vanish outside the coupling region: ��e��x�→0 for
x→ ±�.

Although the assumed condition 
2�1 makes quantum
fluctuations of the fluxon shape small, the dynamics of the
fluxon as a whole can still be completely quantum. An ex-
ample of quantum dynamics of fluxons of this type was re-
cently observed experimentally.28 The JTL detector uses the

quantum fluxon dynamics in the potential described by Eqs.
�7� and �8�. As was mentioned above, operation of the detec-
tor requires that the fluxons are injected by the generator into
one end of the JTL and observed by the receiver at the other
end �Fig. 1�. Both of these circuits can be designed following
the general principles of the SFQ electronics16–18 and will
not be discussed explicitly here. We simply assume that the
ends of the JTL are matched appropriately to these circuits so
that the fluxons can enter and leave the JTL without reflec-
tion and are injected in the JTL in an appropriate quantum
state. This initial state ��x , t=0� of an injected fluxon is char-
acterized by the average fluxon velocity u and the wave
packet �0�x� defining its position:

��x,t = 0� = �0�x�eik0x, k0 = mu/� . �9�

As we will see from the discussion in the next section, many
properties of the JTL detector are independent of the specific
shape of the wave packet �0�x�, as long as it is well localized
in both coordinate and momentum �k. They depend only on
the wave-packet width � in coordinate space and the corre-
sponding uncertainty of wave vector �k�1/�. These param-
eters should satisfy two obvious conditions: �� l, where l is
the total length of the JTL, and �k�k0. We assume a stron-
ger form of the second condition that follows from the re-
quirement that the broadening of the wave packet by �x
���kt /m because of the uncertain fluxon velocity during the
typical time t� l /u of the fluxon propagation through the
JTL is negligible in comparison to the initial width: �x��.
We will see below that this requirement is necessary for the
quantum-limited operation of the JTL detector in the time-
delay mode. The two conditions mean that the width � is
limited as follows:

�l/k0�1/2� �� l . �10�

In cases when it will be necessary to specify the shape of
the wave packet �0�x� we will take it to be Gaussian:

�0�x� = ���2�−1/4e−�x − x̄�2/2�2, �11�

where x̄ is the initial fluxon position in the JTL. Besides
being well localized as necessary in both the momentum and
coordinate space, the wave packet �10� can be obtained as a
result of the fluxon generation process that can be imple-
mented naturally with the SFQ circuits. This process consists
of the two steps: relaxation of the fluxon to the ground state
of a weakly damped and nearly quadratic Josephson poten-
tial with the required width � of the wave function of the
ground state, and then rapid acceleration to velocity u after
this potential is switched off.

While the assumed condition 
2�1 does not preclude the
quantum dynamics of fluxons in the JTL, Eq. �4� shows that
decreasing 
 increases the fluxon mass. This makes it more
difficult to maintain quantum coherent dynamics of fluxons,
which in the case of large mass becomes more susceptible to
perturbations. For instance, to avoid the effects of discrete-
ness on the fluxon dynamics in the case of the discrete JTL
structure �Fig. 1�, the wavelength of its wave function �9�
should be larger than the size of one cell. This condition can

FIG. 2. Equivalence between the magnetic and galvanic cou-
pling to the detector. External fluxes �n

�e� through the JTL cells
induce the circulating currents jn in them which in their turn create
the currents jn

�e�= jn− jn−1 through the JTL junctions. The situation
would be the same if the currents jn

�e� were injected directly into the
JTL junctions by an external system.
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be written as k0�1 and means that the fluxon velocity and
kinetic energy cannot be larger than, respectively, u=� /m
=c�
2	J /8� and �=�2 /2m, i.e.,

� = �c
2	J/16 = �e2/C��	J/4� . �12�

We see that both the fluxon velocity u and its kinetic energy
� decrease with decreasing 
2 and any external perturbation
�e.g., fluctuations of the critical current of the JTL junctions�
affects the fluxon motion more strongly at small 
. For real-
istic values of 	J and 
 the limitation on the fluxon energy
�12� is stronger than �6�. The fluxon size 	J cannot be in-
creased much for reasons of convenience of fluxon manipu-
lation, so that the energy �12� depends essentially only on the
junction capacitance C and can be increased only by decreas-
ing the junction size. For the fluxons to be generated with
controlled parameters by the generator, the energy �12�
should be at least larger than temperature. This means that in
practice the JTL can operate as the quantum detector only
with submicrometer junctions �see the discussion below�. Al-
though the estimate �12� was made for the discrete JTL, the
same conclusion would be reached in the case of nominally
uniform long Josephson junctions, for which the limitations
on the fluxon wave vector k0 would be set by unavoidable
spatial fluctuations of the junction parameters.

We end this section with a discussion of experimental
realization of the JTL detector with conventional thin-film
“trilayer” fabrication technology of the SFQ circuits. Simpli-
fied but sufficiently realistic geometry of one JTL cell in this
case is shown in Fig. 3. It contains four superconductor �nio-
bium� films, the lowest and highest of which �ground plane
and counter electrode� are used to define inductances, while
the two layers in the middle are separated by a very thin
layer of insulator �the trilayer structure� and are used to pro-
duce the Josephson junctions. Such a discrete multilayer con-
figuration of the JTL is more convenient than a uniform long
Josephson junction, since it enables one to optimize sepa-
rately the junctions and inductances of the JTL, and most
importantly, to reduce the effective junction capacitance.

One possible drawback of the discrete configuration could
be the parasitic periodic potential u�z� for the fluxons pro-
duced by the JTL discreteness �see, e.g., Ref. 29�. This po-

tential, however, is negligible when 	J is not too small,
	J�2. Indeed, using the Hamilonian �1� and equation for the
static distribution �n that follows from it, we can write the
energy E of the static fluxon as

E = EJ�
n

�n, �n 	 1 − cos �n −
1

2
�n sin �n. �13�

Applying the Poisson summation formula to this expression,
we get in the limit of sufficiently large 	J:

E = E0�1 + � cos�2�z�� , �14�

where E0=mc2 is the fluxon rest energy, z is the fluxon co-
ordinate in units of the JTL period a, and

� =
1

8
� dy ��y�ei2�y	J. �15�

Here ��y� is a smooth envelope of the discrete distribution �n

�13� associated with the static fluxon �n. Since ��y� is
smooth in the limit of large 	J, Eq. �15� implies that the
amplitude �� of the z-dependent part of the fluxon energy is
exponentially small in 	J. Specifically, if ��y� is taken as for
the regular “continuous” fluxon ��y�=4 tan−1�ey�, we see
that

� � e−�2	J, �16�

and the periodic potential associated with the JTL discrete-
ness is completely negligible for 	J�2 even on the scale of
small fluxon kinetic energy �12�. Qualitatively, strong sup-
pression of the fluxon pinning potential with increasing
fluxon size 	J is the result of averaging of JTL properties
over the current distribution in the fluxon. Similar averaging
should suppress effects of disorder in the parameters of the
JTL junctions, which in practice can be made quite small, on
the order of few per cent, even before such averaging.

In the multilayer fabrication technology �Fig. 3�, the Jo-
sephson junctions have a critical current density jc that can
be varied within a wide range, 10–104 A/cm2, while specific
junction capacitance cJ changes only a little, from
30 to 60 fF/�m2, in this range of jc’s. This means that there
is a strong limitation on the minimal junction capacitance C
set by the junction diameter D, e.g., C�30 fF for D
�1.0 �m. Inductances in the multilayer JTL �Fig. 3� are
characterized by the specific inductance per square �
=�0�ti+2	� and parasitic capacitance cL��0 / ti per unit
area, where ti is the distance between the external layers and
	 is the superconductor penetration depth. For realistic ti
0.2–0.4 �m, � and cL are 0.5–0.7 pH and
0.2–0.1 fF/�m2, respectively.

The discussion leading to Eq. �12� shows that the main
requirement on the JTL parameters optimizing its operation
as the quantum-limited detector consists in making the junc-
tion capacitance C as small as possible. After this, the induc-
tance L can also be reduced as long as this reduction is at
least partly compensated by increase in jc and does not make
the characteristic fluxon size 	J too large. The actual fluxon
size is about 4	J, and since it is impractical to have signifi-
cantly more than about 30 cells in the JTL, 	J is basically
fixed within the range from 2 to 3. For relatively small junc-

FIG. 3. Geometry of one cell of the multilayer JTL: top view
and vertical cross section. Internal layers of the structure are used to
create Josephson junctions �JJs�, while the two external layers, the
ground plane and the counterelectrode, separated vertically by the
distance ti, define inductance L. The length a of the cell is set by the
distance between the junctions.
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tion size D=0.3 �m and high critical current density jc
=10 kA/cm2, the value of 	J within this range corresponds
to L�4 pH, an inductance that is obtained for the width of
the superconductor strip w=1 �m, and the cell size a
�5 �m. For these parameters, the parasitic capacitance cL
gives noticeable contribution �about 30%� to the effective
junction capacitance C�4 fF. The propagation velocity
along such a JTL is c�1013 cells/ s, i.e., 5�107 m/s, and
the wave resistance is about 30 � giving 
2�0.03. The use-
ful fluxon velocity in the quantum-limited regime �estimated
from Eq. �12�� is 1011 cells/ s, so that the total time of the
fluxon propagation through the JTL �which limits the detec-
tor time resolution� is about 0.3 ns. We see that the JTL
detector should have very good time resolution even in the
quantum-limited regime, but requires in this case JTL param-
eters that are close to the limit of the current SFQ fabrication
technology.

If one abandons the goal of realizing quantum-limited de-
tection, requirements on the JTL become much more routine.
A typical set of parameters D�1.5 �m, jc=1 kA/cm2, w
=3 �m, and a=10 �m, produces a JTL with c�3
�1012 cells/ s, wave resistance about 2 �, and 	J�2. This
should give a detector that is not quantum limited but is very
fast and has time resolution on the order of 0.1 ns. As dis-
cussed in Sec. V, such a detector could be used in nontrivial
schemes of quantum measurement despite the classical dy-
namics of fluxons in it.

III. MEASUREMENT DYNAMICS OF THE JTL
DETECTOR

As discussed above, the measurement by the JTL detector
consists qualitatively in scattering of the fluxons in the JTL
by the potential controlled by the measured system. This
process has the simplest dynamics if the measured system is
stationary, and it is convenient to consider it then in the basis
of the eigenstates �j� of the system operator �e.g., magnetic
flux in the qubit loop in the example shown in Fig. 1� which
couples the system to the JTL. In each state �j�, the system
creates different potential Uj�x� for the fluxons propagating
through the JTL. Different realizations Uj�x� of the JTL po-
tential produce different scattering coefficients for injected
fluxons: the amplitude tj�k� of transmission through the JTL,
and the amplitude rj�k� of reflection. Since they depend on
the state �j� of the measured system, scattered fluxons carry
information about �j�.

In general, the process of quantum measurement can be
understood as creation of entangled state between the mea-
sured system and detector as a result of interaction between
them. The states of the detector are quasiclassical and sup-
press quantum superposition of different outcomes of mea-
surement. The two consequencies of this process are the ac-
quisition of information about the system by the detector and
“back-action” dephasing of the measured system—see, e.g.,
Ref. 30. For the JTL detector, the detector-system entangle-
ment arises as a result of fluxon scattering, and the rates of
information acquisition and back-action dephasing can be
expressed in terms of the scattering parameters. In this re-
spect, the JTL is very similar to the QPC detector and its

characteristics can be obtained following the derivation20 for
the QPC.

Evolution of the density matrix � of the measured system
in scattering of one fluxon can be obtained by considering
first the time dependence of the total wave function of the
fluxon injected into the JTL and the wave function � jcj�j� of
the measured system:

��x,t = 0��
j

cj�j� → �
j

cj� j�x,t��j� . �17�

Here the initial fluxon wave function ��x , t=0� is given by
Eq. �9� and its time evolution � j�x , t� depends on the realiza-
tion Uj�x� of the scattering potential created by the measured
system. Evolution of � is obtained then by tracing out the
fluxon part of the wave functions �17�:

�ij = cicj
* → cicj

*� dx �i�x,t�� j
*�x,t� . �18�

Qualitatively, the time evolution in Eq. �17� describes
propagation of the initial wave packet �9� toward the scatter-
ing potential and then separation of this wave packet in co-
ordinate space into the transmitted and reflected parts that are
well localized on the opposite sides of the scattering region.
If we assume that the scattering potential U�x� has a simple
shape �for instance, does not have narrow quasibound states�
and is nonvanishing only in some small region of size �� l,
the time tsc from the fluxon injection to completion of the
scattering process is not drastically different from the time
l /u of free fluxon propagation through the JTL. Then at time
t� tsc, the separated wave packets move in the region free
from the j-dependent scattering potential and the unitarity of
the quantum-mechanical evolution of � j�x , t� implies that the
overlap of the fluxon wave functions in Eq. �18� becomes
independent of t.

This overlap can be directly found in the momentum rep-
resentation:

� dx �i�x,t�� j
*�x,t� =� dk�b�k��2�titj

* + rirj
*� . �19�

Here b�k� is the probability amplitude for the fluxon to have
momentum k in the initial state �9�, e.g., in the case of the
Gaussian wave packet �11�,

b�k� = ��2/��−1/4e−�k − k0�2�2/2−i�k−k0�x̄. �20�

Equations �18� and �19� show that the diagonal elements
of the density matrix � do not change in the process of scat-
tering of one fluxon, while the off-diagonal elements are sup-
pressed by the factor

� = �� dk�b�k��2�ti�k�tj
*�k� + ri�k�rj

*�k��� � 1. �21�

The inequality in this relation can be proven as the Swartz
inequality for the scalar product in the Hilbert space of “vec-
tors” �tj�k� ,rj�k�� weighted by �b�k��2. The suppression of the
off-diagonal elements of � due to the interaction with fluxons
is a manifestation of the back-action dephasing of the mea-
sured system by the JTL detector. If we add the suppression
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factors for the fluxons injected into the JTL with frequency f ,
the rate of this dephasing is obtained as

�ij = − f ln�� dk�b�k��2�ti�k�tj
*�k� + ri�k�rj

*�k��� . �22�

Equation �22� is similar, but not identical, to the back-
action dephasing rate by the QPC detector.20 The main dif-
ference from the QPC is the stage at which the summation
over the momentum k is carried out. This difference reflects
the fact that in contrast to electrons in the QPC, different k
components of the fluxon wave function do not scatter inde-
pendently. They are constrained by the condition that one
fluxon as a whole is either transmitted or reflected by the
potential, since scattering events of different fluxons are well
separated in time. As we will see below, this difference
makes it possible to operate the JTL detector in the time-
delay mode that is not possible with the dc-biased QPC de-
tector.

As examples of application of Eq. �22� we consider sev-
eral specific cases motivated by the measurement regimes
discussed below. In one, the phases of the scattering ampli-
tudes are assumed to cancel out from Eq. �22�, while the
variation of the absolute values of the amplitudes with index
j is small. The dephasing rate �22� can be expressed then in
terms of the variations �Tj�k� of the fluxon transmission
probability in different states �j� around some average trans-
mission T�k�: �tj�k��2=�Tj�k�+T�k�, �Tj�k��T�k�. In the
lowest nonvanishing order in �Tj�k� we get

�ij = f � dk�b�k��2
��Ti�k� − �Tj�k��2

8T�k��1 − T�k��
. �23�

This equation describes the “linear-response” regime of op-
eration of the JTL detector, when its properties follow from
the general theory of linear detectors.30 In particular, the
dephasing �23� can be understood as being caused by the
back-action noise arising from the randomness of the fluxon
transmission and relection processes.

In the “tunnel” limit of weak transmission �tj�k���1, and
again assuming that the phases of the scattering amplitudes
cancel out, Eq. �22� reduces to

�ij = �f/2� � dk�b�k��2��ti�k�� − �tj�k���2. �24�

Both Eqs. �23� and �24� have direct analogs in the case of
QPC detectors.31–33

As the last example that does not have an analog in QPC
physics, we consider the situation when the reflection ampli-
tudes are negligible, rj�k�	0, and the system-JTL interaction
modifies only the phases � j�k� of the transmission ampli-
tudes: tj�k�=ei�j�k�, so that

�ij = − f ln�� dk�b�k��2ei��i�k�−�j�k��� . �25�

In coordinate representation, this means that the scattering
potential affects only the position and, in general, the shape
of the transmitted wavepacket. If the width �k of the initial
fluxon state in the momentum representation is sufficiently

narrow, and the phases � j�k� do not vary strongly over this
momentum range, they can be approximated as

� j�k� = � j�k0� − �k − k0�xj, xj 	 − � j��k0� . �26�

One can see directly that this approximation neglects distor-
tion of the fluxon wave packet in the scattering process,
while taking into account its shift xj along the coordinate
axis. This shift can be directly related to the “time delay” � j
due to scattering: � j =xj /u �which can be both negative and
positive depending on the scattering potential�. The dephas-
ing rate �25� can then be conveniently written down in the
coordinate representation in terms of the initial fluxon wave
packet �0�x�:

�ij = − f ln�� dx �0�x − xi��0
*�x − xj�� . �27�

Equation �27� shows explicitly that the back-action dephas-
ing by the JTL detector arises from the entanglement be-
tween the measured system and the scattered fluxons which
are shifted in time by an interval dependent on the state of
the system. The degree of suppression of coherence between
the different states of the measured system is determined
then by the magnitude of the relative shift of the fluxon in
these states on the scale of the wave packet width. For in-
stance, if the initial fluxon wave packet is Gaussian �11�, Eq.
�27� gives

�ij = f�xi − xj�2/4�2. �28�

Back-action dephasing represents only part of the mea-
surement process. The other part is information acquisition
by the detector about the state of the measured system. In the
case of the JTL detector, this information is contained in the
scattering characteristics of fluxons, and the rate of its acqui-
sition depends on specific characteristics recorded by the
fluxon receiver. There are at least two different possibilities
in this respect. One is to detect the probability of fluxon
transmission through the scattering region �or, equivalently,
the corresponding probability of the fluxon reflection back
into the generator; see Fig. 1�. Another possible detection
scheme is for the receiver to measure the time delay associ-
ated with the fluxon propagation through the JTL. Even if the
measured system changes the potential Uj�x� in such a way
that the fluxon transmission probability is not affected, po-
tential can still change the fluxon propagation time, which
will contain then information about the state of the system.
In general, one can have a situation when the information is
contained both in the changes of the propagation time and
transmission probability, and one needs to detect both scat-
tering characteristics. In this work, we consider only the two
“pure” cases of transmission and time-delay detection
modes. In general, the goal of realizing quantum-limited de-
tection means that the interaction between the JTL and the
measured system, i.e., the fluxon scattering potential Uj�x�,
should be arranged in such a way that only characteristics of
the scattering processes which are actually detected in the
particular detection mode contain information about the sys-
tem. All other characteristics should not carry any informa-
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tion. Information in them would be lost in the detector, and
can only generate additional dephasing, making it impossible
to reach the quantum-limited regime.

A. Transmission detection mode

If the detector records only the fact of the fluxon arrival at
the receiver, then only the modulation of the fluxon transmis-
sion probability by the measured system conveys informa-
tion about the system. The information contained in all other
features of the scattering amplitudes �e.g., their phases or
propagation time� is lost in the receiver. In this case, the rate
of information acquisition can be calculated simply by start-
ing with the probabilities of the fluxon transmission and re-
flection Tj and Rj, when the measured system is in the state
�j�:

Tj =� dk�b�k��2�tj�k��2, Rj = 1 − Tj . �29�

Since the outcomes of successive fluxon scattering event
are independent, the probability p�n� to have n out of N
incident fluxons transmitted is given by the binomial distri-
bution pj�n�=CN

n Tj
nRj

N−n. The task of distinguishing different
states �j� of the measured system is transformed into distin-
guishing the probability distributions pj�n� for different js.
Since the number N= ft of scattering attempts increases with
time t, the distributions pj�n� become peaked successively
more strongly around the corresponding average numbers
TjN of transmitted fluxons. The states with different prob-
abilities Tj can be distinguished then with increasing cer-
tainty. The rate of increase of this certainty can be character-
ized quantitatively by some measure of the overlap of the
distributions pj�n�. While in general there are different ways
to characterize the overlap of different probability
distributions,34 the characteristic that is appropriate in the
quantum measurement context35,36 is closely related to “fi-
delity” in quantum information:34 �n�pi�n�pj�n��1/2. The rate
of information acquisition �increase of confidence level in
distinguishing states �i� and �j�� can then be defined naturally
as20

Wij = − �1/t�ln �
n

�pi�n�pj�n��1/2. �30�

Using the binomial distribution in this expression we get

Wij = − f ln��TiTj�1/2 + �RiRj�1/2� , �31�

where the transmission and reflection probabilities are given
by Eq. �29�.

Equation �31� characterizes the information acquisition
rate of the JTL detector in the transmission-detection mode.
For an arbitrary detector, the information rate should be
smaller than or equal to the back-action dephasing rate, and
regime when the two rates are equal is “quantum limited.”
Comparing Eqs. �22� and �31� one can see that for the JTL
detector, indeed,

Wij� �ij , �32�

and equality holds if several conditions are satisfied. First
two conditions require that there is no information in the
phases of the transmission amplitudes:

� j�k� = �i�k�, � j�k� 	 arg�tj�k�/rj�k�� , �33�

� j�k� − �i�k� = const. �34�

The two conditions �33� and �34� have different physical
origins. Condition �33� implies that the scattered states con-
tain no information on j that can be used in principle by
arranging interference between the transmitted and reflected
parts of the wave function.20 In practical terms, the simplest
way to satisfy this condition is to make the scattering poten-
tial symmetric Uj�−x�=Uj�x� for all states �j�. The unitarity
of the scattering matrix for the fluxon scattering in the JTL
implies in this case that � j =� /2 for any j. Condition �34�
means that no information on j is contained in the shape and
position of transmitted wave packets that would be lost in the
fluxon receiver operating in the transmission-detection mode.
�Similar condition for the reflected wave packet follows from
Eqs. �33� and �34�.� In general, condition �34� requires that
the spread ��k of the initial fluxon state over momentum
gives rise to the uncertainty in the fluxon energy ����u�k
that is much smaller than the energy scale � of the transpar-
ency variation of the scattering potential Uj�x�.

One more condition of the quantum-limited operation is
that the fluxon transmission probabilities are effectively
momentum- and energy-independent in the relevant momen-
tum range:

�tj�k��2 = Tj . �35�

This condition again requires that ����. It is more restric-
tive than the corresponding condition for the QPC detector
which can be quantum limited even in the case of the energy-
dependent transmission probability.20,37,38 To obtain Eq. �35�,
one starts from the back-action dephasing rate �22� which
can be written as

�ij = − f ln� dk�b�k��2��ti�k�tj�k�� + �ri�k�rj�k���

under the conditions �33� and �34�. The Swartz inequality for
the functions �tj�k��:

�TiTj�1/2�� dk�b�k��2�ti�k�tj�k�� ,

and the similar inequality for �rj�k�� show that this �ij and the
information acquisition rate Wij satisfy the inequality �32�.
Equality in Eq. �32� can be reached only when

�tj�k�� = 	 jt�k�, �rj�k�� = 	 j�r�k� , �36�

where the 	’s are some constants, so that the ratios
�ti�k�� / �tj�k�� and �ri�k�� / �rj�k�� are independent of k. Similarly
to Eq. �34�, Eq. �36� demands that no information about the
state of the measured system is contained in the shape of
transmitted or reflected wave packets. In general, when both
the transmission and reflection probabilities are not small,
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the two relations in �36� are incompatible. They have only a
trivial solution in which all amplitudes are independent of
k in the relevant range of k’s, thus proving Eq. �35� for
Tj �Rj �1/2. The transmission and reflection probabilities
have roughly the same magnitude when the fluxon energy �
is close to the maximum U of the scattering potential. In this
case, small spread of �, ����, implies that the range � of
the scattering potential U�x� should be small: ���.

Condition �35� of the quantum-limited operation of the
JTL detector is not necessary when either Tj�1 or Rj�1. In
this case, one of the relations in �36� reduces to a trivial
statement �rj�k���1 or �tj�k���1. The other relation gives
then the actual condition of the quantum-limited operation
that can be satisfied in principle with an arbitrary
k-dependent function t�k� or r�k�.

Finally, we show how Eq. �35� applies in the linear-
response regime, when the variations �Tj of JTL transparen-
cies between the different states �j� are small and back-action
dephasing is given by Eq. �23�. Expanding Eq. �31� in �Tj;
Tj =T+�Tj, where all transparencies are defines as in Eq.
�29�, we get

Wij = f��Ti − �Tj�2/�8T�1 − T�� . �37�

This equation differs from Eq. �23� only by the order in
which the integration over momentum is performed. This
means that the information and dephasing rates satisfy the
inequality �32� and are equal only if the transparency is con-
stant in the relevant momentum range.

In the linear-response regime, each individual fluxon car-
ries only small amount of information, and it is convenient to
employ the quasicontinuous description in which the fluxon
receiver acts as the voltmeter registering not the individual
fluxons, but the rate of arrival of many fluxons, i.e., the volt-
age V�t� across the junctions of the JTL. The average voltage
in the state �j� is

�V�t�� = fTj�0, �38�

where �¯� implies an average over the scattering outcomes
and over time t within the fluxon injection cycle. Because of
the randomness of the fluxon scattering, the actual voltage
fluctuates around the average values �38� even at low fre-
quencies. The voltage fluctuations can be described as the
shot noise of fluxons and its spectral density

SV�� =� d� e−i���V�t + ��V�t�� − �V�t��2� �39�

is constant at frequencies  below the fluxon injection fre-
quency f . Straightforward calculation similar to that for the
regular shot noise shows that this constant is

S0 = fT�1 − T��0
2, �40�

where in the linear-response regime we can neglect small
differences �Tj of transparencies between the different states
�j� in the expression for noise. This equation shows that in
accordance with the general theory of linear quantum mea-
surements, the information rate �37� can be interpreted as the
rate with which one can distinguish dc voltage values �38� in

the presence of white noise with the spectral density
�40�.30,36

To summarize this subsection, we see that in the most
relevant regime Tj �1/2 which maximizes the detector re-
sponse to the input signal, conditions of the quantum-limited
operation of the JTL detector are given by Eqs. �33� and �35�.
These conditions are satisfied if the scattering potential for
the fluxons created by the input signal is symmetric and has
the range � smaller that the size � of the fluxon wave packet.

B. Time-delay detection mode

Since the range � of the scattering potential �7� cannot be
smaller than the fluxon size 	J, it might be difficult in prac-
tice to realize the condition ��� needed for the quantum-
limited operation of the JTL detector in the transmission-
detection mode. For “quasiclassical” potential barriers that
are smooth on the scale of the fluxon wave packet, � �, the
“transition” region of energies near the top of the barrier
where the reflection and transmission amplitudes have com-
parable magnitude, is narrow. If the interval �� of the fluxon
energies avoids this narrow region, then either transmission
or reflection coefficient can be neglected. Ballistic motion of
fluxons in this regime still contains information about the
potential Uj�x� that can be used for measurement. This infor-
mation is contained in the time shift � j caused by the propa-
gation through the region of nonvanishing potential.
Quantum-mechanically, the time-shift information is con-
tained in the phases of the scattering amplitudes. To be spe-
cific, we discuss here the regime when the JTL detector is
operated in this time-delay detection mode using the trans-
mitted fluxons, i.e., �tj�k��=1. In the energy range where
�rj�k��=1, the same detection process is possible using the
reflected fluxons, the advantage of the transmission case be-
ing the possibility to make use of the full range of values of
the scattering potential: Uj�x��0 and Uj�x��0.

For sufficiently smooth potential Uj�x�, the phase � j�k� of
the transmission amplitude can be calculated in the quasi-
classical approximation:

� j�k� =� dx

�
�2m�� − Uj�x���1/2. �41�

If the potential is weak, Uj�x���, the potential-induced con-
tribution to the phase �41� is

� j�k� = −
1

�u
� dx Uj�x� . �42�

Under the adopted assumption of quasiclassical potential
and vanishing reflection, condition �10� of the negligible
broadening of the fluxon wave packet still works in the pres-
ence of potential. In this case, one can use the approximation
�26� for the phases � j�x� which implies the shift of the wave
packet as a whole without distortion. The potential-induced
part of the shift xj =−� j��k0� follows from Eq. �41� and has
the classical form
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xj =� dx�1 −
u

uj�x�
�, uj�x� = �2�� − Uj�x��/m�1/2.

�43�

For weak potential Uj�x���

xj = −
1

2�
� dx Uj�x� . �44�

Back-action dephasing rate by the JTL detector in this
regime is given by Eqs. �27� and �28�. The information about
the states �j� contained in the shift � j of the fluxon in time or,
equivalently, the coordinate xj =� ju, can be read off by dis-
tinguishing different shifts xj against the background of the
finite width � of the fluxon wave packet �0�x�. Since ��0�x��2
gives the probability of finding the fluxon at coordinate x,
this task is equivalent to the task of distinguishing two
shifted probability distributions �see Fig. 4� that was dis-
cussed above for the transmission-detection mode. Similarly
to Eq. �30�, we can write the information acquisition rate of
the JTL detector in the time-delay mode as follows:

Wij = − f ln� dx��0�x − xi��0�x − xj�� . �45�

Comparing this to the dephasing rate �27�, we see that in
general the two rates satisfy the inequality �32� as they
should. The rates are equal if the phase of the initial wave
packet �0�x� of the injected fluxon is independent of x, i.e., if
�0�x� is essentially real. In particular, in the case of the
Gaussian wave packet �20�, the JTL detector is quantum lim-
ited, Wij =�ij, and the two rates are given by Eq. �28�. These
considerations also imply that the JTL detector in the time-
delay mode would lose the property of being quantum lim-
ited if the fluxon wave packet spreads noticeably during
propagation through the JTL. This process creates a non-
trivial x-dependent phase of the wave packet and makes the
information acquisition rate smaller than the back-action
dephasing rate.

IV. CONDITIONAL EVOLUTION

As is the case with any dephasing, the back-action
dephasing by the JTL detector can be viewed as the loss of
information. In the regime of the quantum-limited detection,
the overall evolution of the detector and the measured system
is quantum-coherent and the only source of the information

loss is averaging over the detector. For a detector, different
outcomes of the evolution are, however, classically distin-
guishable, and it is meaningful to ask how the measured
system evolves for a given detector output. In the quantum-
limited regime, specifying definite detector output eliminates
all losses of information, and as a result there is no back-
action dephasing present in the dynamics of the measured
system conditioned on specific detector output.

Conditional description in the quantitative form is ob-
tained �see, e.g., Refs. 36, 39, and 40� by separating in the
total wave function the terms that correspond to a specific
classical outcome of measurement and renormalizing this
part of the wave function so that it corresponds to the total
probability of 1. In the case of the JTL detector in the
transmission-detection mode, for each injected fluxon there
are two classically different outcomes of scattering: trans-
mission and reflection of the fluxon. Accordingly, the wave
function of the measured system should be conditioned on
the observation of either transmitted or reflected fluxon in
each cycle of fluxon injection. The evolution of the total
wave function “detector+measured system” during the scat-
tering of one fluxon is described by Eq. �17�. If conditions
�34� and �35� of the quantum-limited detection are satisfied,
the transmission and reflection amplitudes are effectively
momentum independent.41 Coordinate dependence of the
scattered fluxon wave packets is then the same in different
states �j�, and can be factored out from the total wave func-
tion. The evolution of the measured system can then be con-
ditioned on the transmission and reflection of a fluxon simply
by keeping in Eq. �17� the terms that correspond to the actual
outcome of scattering. If the fluxon is transmitted through
the scattered region or reflected from it in a given injection
cycle, amplitudes cj for the system to be in the state �j�
change, respectively, as follows:

cj →
tjcj

�! j�cjtj�2�1/2 , cj →
rjcj

�! j�cjrj�2�1/2 . �46�

It is important to stress that the changes in the coefficients cj
for a system with vanishing Hamiltonian �as we assumed
from the very beginning� is unusual from the point of view
of Schrödinger equation, and provides quantitative expres-
sion of reduction of the wave function in the measurement
process. Equations �46� are similar to those obtained in the
“bayesian” approach36 for the QPC detector in the tunnel
limit.

If dynamics of the JTL detector is not quantum limited,
then information is lost and dephasing is nonvanishing even
in conditional evolution. To generalize Eqs. �46� to this case
of finite “residual” dephasing, we need to start with Eq. �18�
for the change of the density matrix �ij of the measured
system due to the scattering of one fluxon. To condition this
change on the specific outcome of scattering, we limit the
trace over the fluxon coordinate to the range containing only
transmitted or reflected fluxons. In this way we see that �ij
changes as

�ij → �ij� dk�b�k��2�ti�k�tj
*�k��/! j� j jTj , �47�

FIG. 4. Illustration of the information acquisition process by the
JTL detector in the time-delay mode. The fluxon wave packet is
shifted by the distance xj dependent on the state �j� of the measured
system. In conditional description, observation of the fluxon with
position x� changes the system wave function according to Eq. �49�.

RAPID BALLISTIC READOUT FOR FLUX QUBITS PHYSICAL REVIEW B 73, 094504 �2006�

094504-9



�ij → �ij� dk�b�k��2�ri�k�rj
*�k��/! j� j jRj , �48�

if the fluxon is, respectively, transmitted or reflected in a
given cycle. Using the discussion of the transmission-
detection mode in Sec. III, one can see immediately that the
requirements �34� and �35� of the JTL detector being quan-
tum limited are equivalent to the density matrix �ij remaining
pure in the conditional evolution described by Eqs. �47� and
�48�.

The above derivation of conditional evolution equations
can be repeated with only minor modifications in the time-
delay mode of the detector operation. In this case, different
classical outcomes of measurements are the observed in-
stances of time when the fluxon reaches the receiver, that for
convenience can be directly translated into different fluxon
positions x at some fixed time. If the fluxon is observed at the
position x� in a given injection cycle �Fig. 4�, the evolution
of the amplitudes cj of the measured system due to interac-
tion with this fluxon is

cj → �0�x� − xj�cj/�! j�cj�0�x� − xj��2�1/2. �49�

Qualitatively, and similarly to the conditional evolution in
the transmission mode, the sequence of transformations �49�
describes “weak measurement.” The system wave function is
localized gradually in one of the states �j� with increasing
number of the fluxon scattering events which lead to accu-
mulation of information about �j�. In contrast to the
transmission-detection mode, conditional evolution �49� al-
ways remains pure under the simplifying assumptions
adopted in this work for the JTL detector: coherent propaga-
tion of fluxons with fixed wavepacket �0�x� and the same
velocity. Fluctuations in the fluxon generator or finite dissi-
pation in the JTL would create information losses also in this
regime.

V. NON-QUANTUM-LIMITED DETECTION

Quantum-limited operation of the JTL detector discussed
in the preceding sections requires, in essence, quantum-
coherent dynamics of fluxons in the JTL. While this dynam-
ics can be observed experimentally,28 the task of realizing it
is certainly very difficult. From this perspective, it is impor-
tant that several attractive features of the JTL detector, e.g.,
large operating frequency and reduced parasitic dephasing
during the time intervals between the fluxon scattering, re-
main even in the non-quantum-limited regime. Although the
Josephson junctions of the JTL and those in the “external”
parts of the JTL detector �generator and receiver� can give
rise to dissipation and dephasing not related directly to mea-
surement, in the JTL geometry �Fig. 1�, parasitic dissipation
is suppressed due to screening by the supercurrent flow in
the JTL junctions.17

The dominant deviation from the quantum-limited detec-
tion should be associated then with the fluctuations in the
fluxon motion. These fluctuations make the dephasing factor
� �21� due to fluxon scattering larger than the amount of
information conveyed by the scattering. Some interesting
measurement strategies are still possible with the JTL non-

ideality of this type. The most natural example is the quan-
tum nondemolition �QND� measurements of quantum coher-
ent oscillations in a qubit42,43 which are designed to make the
back-action dephasing by the detector irrelevant. Dynamics
of the fluxon scattering in the JTL detector makes it particu-
larly suitable for the “kicked” version of the QND qubit
measurements of a qubit43 or harmonic oscillator.44

Consider, for instance, a qubit with the Hamiltonian

H = − ��"/2�#x, �50�

which performs quantum coherent oscillations with fre-
quency ". The qubit is coupled to the JTL through its #z
operator, i.e., the states �j� of the preceding sections are the
two eigenstates of #z. We assume that the Hamiltonian �50�
already includes renormalization of parameters due to the
qubit-detector coupling. If the qubit oscillations are weakly
dephased at the rate $�" �e.g., by residual parasitic dissi-
pation in the JTL detector�, the time evolution of the qubit
density matrix � during the time intervals between the suc-
cessive fluxon scattering events can be written in the #z rep-
resentation as follows:

��t� =
1

2
�1 + e−$t� x − iy

iy − x
�� , �51�

ṙ = − i"r, r = x + iy , �52�

where r�t=0�= ±1 depending on whether the qubit starts at
t=0 from the #z=1 or #z=−1 state.

The fluxon scattering at times tn=n / f leads to partial sup-
pression of the off-diagonal elements of �:

y�tn + 0� = �y�tn − 0� . �53�

However, if the fluxons are injected in the JTL with the time
interval 1 / f close to the half period � /" of the qubit oscil-
lations �Fig. 5�, the qubit density matrix �52� is nearly diag-
onal at the moments of scattering, y�tn��1, and suppression
�53� does not affect the qubit strongly. Such a QND measure-
ment is possible with the JTL detector operating in any de-
tection mode; to be specific we assume the transmission
mode. The dependence of the fluxon transmission probability
on the qubit state can be written then as T+#z�T, where
�T�T in the “linear-response regime.” For quantum-limited
detection, the linear-response condition �T�T implies that

FIG. 5. Schematics of the QND fluxon measurement of a qubit
which suppresses the effect of back-action dephasing on the qubit
oscillations. The fluxon injection frequency f is matched to the
qubit oscillation frequency ": f �" /�, so that the individual acts of
measurement are done when the qubit density matrix is nearly di-
agonal in the #z basis, and the measurement back action does not
introduce dephasing in the oscillation dynamics.

AVERIN, RABENSTEIN, AND SEMENOV PHYSICAL REVIEW B 73, 094504 �2006�

094504-10



�→1. In the non-quantum-limited case, the back action can
be stronger, and we take � to be arbitrary within the �0,1�
interval.

If the frequency f is matched precisely to the qubit oscil-
lations, f =" /�, the detector does not affect the qubit dynam-
ics at all. If the mismatch is nonvanishing but small, �
	" / f −��1, diagonal elements of � �52� evolve quasicon-
tinuously even if suppression factor � is not close to 1. Equa-
tions �52� and �53� give the following equation for this qua-
sicontinuous evolution:

ẋ = − ��1 + ��/�1 − ����f�2/2�x . �54�

In the assumed linear-response regime, the qubit oscilla-
tions manifest themselves as a peak in the spectral density
SV�� �39� of the voltage V across the JTL junctions. For f
�" /� the oscillation peak in SV�� is at zero frequency.
Equations �51� and �54� describing the decay of correlations
in the qubit dynamics in the #z basis imply that the oscilla-
tion peak has Lorentzian shape

SV�� = S0 +
2�f2��T�2�0

2

2 + �2 , �55�

and the oscillation linewidth � is

� = $ +
1 + �

1 − �

�" − �f�2

2f
. �56�

For the quantum-limited detection, �→1, and Eq. �56�
reproduces previous results for the QND measurement,43 if
one introduces the back-action dephasing rate �d= f�1−��. In
this case, Eq. �56� is valid for sufficiently small mismatch
between the measurement and oscillation frequencies, ���
�1−�. For larger �, the oscillation peak in the detector out-
put SV�� moves to finite frequency "−�f and the QND
nature of the measurement is lost.42 Equation �56� shows also
that in the limit of “projective” measurements �=0, the
broadening of the oscillation peak is weaker, and the peak
remains at zero frequency for all reasonable values of the

detuning parameter ����1. Therefore, the stronger back-
action of the JTL detector is advantageous for the QND mea-
surements of coherent oscillations. The last remark is that
although our discussion here assumed that the fluxon arrival
times are spaced exactly by 1/ f , Eqs. �55� and �56� should
remain valid even in the presence of small fluctuations of the
measurement times. These fluctuation can be described by
taking into account that the detuning ��� cannot be made
smaller that the relative linewidth of the fluxon generator.

VI. CONCLUSION

We have suggested and analyzed a ballistic “JTL” detec-
tor for the rapid read-out of flux qubits which can be imple-
mented with the present-day SFQ fabrication technology.
The detector should combine quantum-limited dynamics
with time resolution that is better than the decoherence time
of typical flux qubits, making it possible to perform measure-
ments on quantum-coherent qubits. To operate in the
quantum-limited regime, the JTL detector requires junctions
with submicrometer size, and its time resolution in this re-
gime should reach the range of 0.3 ns. The detector is poten-
tially useful even in the non-quantum-limited regime, when
the time resolution can be improved further, and the detector
can perform, for instance, QND measurements of coherent
oscillations. Although the JTL detector is intended for mea-
surements of flux qubits, it can also can be used for charge
qubits, if the information in the charge degrees of freedom is
converted into the flux form. This can be done directly in
qubits which combine the charge and flux dynamics—see,
e.g., Ref. 45.
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