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We calculate the magnetization of a two-dimensional superconductor in a perpendicular magnetic field near
its Kosterlitz-Thouless transition and at lower temperatures. We find that the critical behavior is more complex
than assumed in the literature and that, in particular, the critical magnetization is not field independent as naive
scaling predicts. In the low-temperature phase we find a substantial fluctuation renormalization of the Abriko-
sov mean-field result. We compare our analysis with the data on the cuprates.
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I. INTRODUCTION

The study of fluctuation superconductivity received a tre-
mendous impetus from the discovery of the cuprate, high-
temperature superconductors.1 It was quickly realized that
these were materials with large Ginzburg parameters with the
additional feature that many of them are also highly two
dimensional. More recently, interest has focussed on the sys-
tematics of their superconducting properties with doping and
it has been found that this anisotropy is further enhanced
with underdoping.2 Conversely, the extent to which the
anomalous properties of the underdoped compounds in the
“pseudogap” region can be attributed to superconducting
fluctuations is a question of considerable interest.3–9

In this context, we report here a study of the magnetiza-
tion of a two-dimensional superconductor, or more precisely
of a stack of decoupled two-dimensional superconducting
layers, in a perpendicular magnetic field H. By combining
Kosterlitz-Thouless �KT� renormalization-group flows and
explicit computations for plasmas, we find the field and tem-
perature dependence of the magnetization density, M�H ,T�,
for temperatures T near to or below the Kosterlitz-Thouless
transition temperature TKT at fields Hc1�H�Hc2. These re-
sults are interesting on three immediate fronts. First, the
rough magnitude of M�H ,T� and the trends exhibited in Fig.
1 are in accord with much of the data on the strongly layered
cuprates in the field regime where a single layer theory is
expected to apply. For example, this holds for the recent data
of Wang and collaborators4 which have demonstrated the ex-
istence of substantial fluctuation magnetization in the same
region of the phase diagram of BSCCO which was previ-
ously observed to exhibit a large Nernst signal.5 Second, we
find that M is not independent of H at criticality, as assumed
in earlier analysis of the “crossing point” phenomenon in
studies of the cuprates.10 Instead, the critical magnetization
follows

M � −
kBTKT

d�0
ln��1 ln

�0

�0Ha0
2�2

� , �1�

where d is the distance between layers, �0 is the flux quan-
tum, H is the magnetic-field component perpendicular to the
layers, and a0 is the microscopic short-distance cutoff length
��1 and �2 are constants�. Third, we find that below TKT, M
exhibits a low-field growth indicative of the expulsion of
vortices from the KT phase,

M � −
��s�T�
2d�0

�1 −
2kBT

��s�T�
�ln

�0

�0Ha0
2�3

, �2�

where �s is the two-dimensional �2D� superfluid density, re-
lated to the in-plane penetration depth via �s
=d�0

2 / �4�2�2�0� ��3 is a constant that vanishes as T ap-
proaches TKT, see below�. Note that this expression gives a
simple relation between the superfluid density and the de-
rivative of the magnetization with respect to the logarithm of
the field, that can be used to determine when the system is
indeed behaving as a stack of essentially decoupled two-
dimensional Kosterlitz-Thouless films.

These results and the limits of their applicability to actual
layered superconductors are derived in Sec. II, with some
details relegated to the Appendix. In Sec. III we consider
experimental signatures of our analysis and the existing ex-
perimental situation. We close with a brief summary and
some open questions.

FIG. 1. Field dependence of magnetization for a range of tem-
peratures between T=77 K and T=83 K, with the dashed curve
corresponding to T=TKT=80 K �others are spaced in 0.5 K incre-
ments�. Here we take Ec=��s0�T�, which then implies kBTKT

�1.13�s0�TKT�. We chose a0=30 A, d=15 A, so that
kBTKT / �d�0��350 A/m and Ba0

2 /�0�0.04 at 10 T. In fact, over
the entire field range up to 50 T this last ratio remains 	1, which
suggests that although our results may become insufficient at
these high fields, they can be of some qualitative use. Finally, we
model the experimentally observed temperature dependence of
the bare superfluid stiffness by �s0�T� /�s0�0�=1−T /120 K �see,
e.g., Ref. 15�.
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II. THEORY

A. Definition of the problem

The average magnetization density of a superconductor in
an external field H is

�0M = B�H� − �0H , �3�

where B�H� is the average �uniform� magnetic field, com-
puted via

� fscm�B�
�B

= H , �4�

where fscm�B� is the total free-energy density of supercon-
ducting matter coupled to fluctuating magnetic fields with
average field fixed at B. Let us define

fsc = fscm −
B2

2�0
, then �5�

� fsc

�B
=

� fscm�B�
�B

−
B

�0
= − M . �6�

In type-II materials and for H
Hc1 field energy is well-
approximated by its uniform value, and therefore, following
the equation above, the magnetization is to be computed
from the free energy of a charged superfluid in a uniform
external magnetic field.

We consider a stack of decoupled two-dimensional layers.
Hence we will replace the three-dimensional free-energy
density fsc�B� by �1/d�f�B� where f�B� is the free-energy
density of a single layer in the presence of a magnetic induc-
tion B, now restricted to be perpendicular to the layers,
whose effect will be to impose a density B /�0 of field-
induced vortices.

B. Coulomb gas formulation

To compute f and thence M we shall resort to the
standard11 mapping of the two-dimensional vortex problem
onto a two-component Coulomb plasma whose Hamiltonian
is given by �see the Appendix�

H = NTEc0 + ��s0�
i	j

pipj ln
rij

2

a0
2 + HB. �7�

The number of vortices of charge pi= ±1 is N±. The total
number of vortices is NT=N++N− and is allowed to fluctuate
by the addition and removal of neutral vortex-antivortex
pairs, but the net charge Q=N+−N−=L2B /�0 is constrained
by the field B. Ec0 is the bare vortex core energy, a0 is the
bare short distance cutoff �e.g., vortex core radius�, �s0 is the
bare superfluid stiffness �inverse dielectric constant in the
plasma language�, L2 is the area of the system. A uniform
background density of charge to make the system neutral is
necessary to insure a proper thermodynamic limit. The total
Coulomb interaction potential between the vortices and this
background and between the background and itself is in the
constant HB that depends on B and on the size and shape of
the system, but not on the vortex configuration.

C. Renormalization

Standard Kosterlitz renormalization-group �RG�
methods11–13 can be generalized to the present, non-neutral
situation. For convenience, the bare superfluid stiffness and
core energy are captured by the bare couplings x0=1
−��s0 /2kBT and y0=2�e−Ec0/kBT, which we will renormalize.
In addition to these couplings we shall be interested in com-
puting the free-energy density, so we keep track of the
configuration-independent term C in the renormalized Hamil-
tonian, generated as degrees of freedom are integrated out,
i.e., at any intermediate step in the RG process the partition
function is Z=e−L2C/a2

Tre−�H, where a is the renormalized
cutoff. Note C is defined to be dimensionless. We also define
the dimensionless density of field-induced vortices �number
per renormalized cutoff area� as n=Ba2 /�0; its bare value is
n0=Ba0

2 /�0.
Provided the total number of vortices and antivortices per

cutoff area is small compared to one, the following differen-
tial equations describe the renormalization upon increasing
the cutoff to a=a0b and integrating out neutral vortex-
antivortex pairs with spacing less than a:

dy

d ln b
= 2xy , �8�

dx

d ln b
= 2y2, �9�

dC
d ln b

= 2C −
y2

2�
, �10�

dn

d ln b
= 2n . �11�

The last line shows the trivial renormalization of the number
of field induced vortices per cutoff area. A somewhat unex-
pected fact about these equations is that the presence of field
induced vortices leaves the zero-field flow equations13 �Eqs.
�8�–�10�� unaffected �also see Sec. IV�. As we shall see, this
simplifies the calculation of the magnetization.

By straightforward integration one obtains, with

c 	 
x0
2 − y0

2
1/2 � �
T − TKT
 ,

the solutions

x	�b� = − c cotanh��	 + 2c ln b� ,

y	�b� = c cosech��	 + 2c ln b� ,

C�b� = b2C�0� − b2
0

log b y	
2 �b��

2�b�2 d ln b�,

n�b� = n0b2 �12�

with cosh �	=−x0 /y0 for T	TKT, and the solutions

x�b� = c cotan�� − 2c ln b� ,

y�b� = c cosec�� − 2c ln b� ,
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C�b� = b2C�0� − b2
0

log b y
2 �b��

2�b�2 d ln b�,

n�b� = n0b2 �13�

with cos �=x0 /y0 for TTKT.
The free-energy density of the original problem is then

computed by running the RG to some scale b, where it is
expressed as a sum of two parts,

f =
F�b� + kBTC�b�

a2 , �14�

where F�b� is the free energy per renormalized cutoff area of
the vortices that have not yet been integrated out. �Note:
since we have chosen to rescale lengths in our RG, the free-
energy density f is computed by dividing the residual free
energy, F�b�, and C�b�, by the rescaled area, a2.� In the zero-
field problem originally treated by Kosterlitz for T�TKT one
can carry out the renormalization procedure indefinitely, i.e.,
by setting b=� and F�b�=0. This is because at low tempera-
tures the microscopic problem renormalizes onto one with no
vortices and infinite screening length. Here, on the other
hand, no matter what the temperature we always renormalize
to a problem at strong coupling �finite screening length�, and
so the flow must be stopped at some finite b while Eqs.
�8�–�10� are still valid. The free-energy density is fundamen-
tally independent of b, although both C	C�b� and F
	F�b� manifestly depend on it. Thus although the choice of
b is implicitly governed by many considerations, in particu-
lar, the value of the magnetic field, in computing the magne-
tization this implicit dependence does not contribute. Finally,
the observation that field induced vortices do not affect the
other flows, in particular that C has no explicit dependence
on B, simplifies the calculation of the magnetization density:

M = −
1

d

� f

�B
= −

1

d�0

�F
�n

, �15�

thus reducing the problem to computing F.
Calculations of F can be found in the next section. Here,

we close with a qualitative discussion of different regimes of
interest. The renormalized density of field-induced vortices,
n�b�, grows under the RG flow �see Eq. �11��. For T�TKT

thermally induced vortices become increasingly dilute and
the system approaches a one component plasma in the low-
field limit where the flow can continue to large b. For T
TKT, the renormalized density of thermal vortices first de-
creases and then increases, so that the system is always a
two-component plasma with a scale-dependent charge imbal-
ance. Our principal results for the asymptotic behavior of
magnetization �Eqs. �1� and �2�� follow from the exactly
known free energy of a dilute one component plasma14

whose parameters, the charge density, core energy, and di-
electric constant, are given by the RG flows above. A Debye-
Hückel approximation for the free energy of the two-
component plasma reproduces the correct low-field behavior
for T�TKT and provides a reasonable approximation else-

where, including TTKT; we shall use it to generate plots of
the magnetization versus field in the vicinity of the transi-
tion.

D. Results

1. Low fields, TÏTKT

For T�TKT the above Kosterlitz-Thouless RG flows go to
small fugacity y	y�b� �and x	x�b�	0�, where the leading
terms in the exact free energy are known for low density14

�small field�. Thus we run the RG to a scale a=ba0, where
the parameters are n	n�b�=Ba2 /�0, x and y. We stop and
evaluate F when n, which is growing, becomes of order y.
The free-energy density of the remaining vortices, to leading
order in the small parameters n and y, is14

F = nkBT�ln
2�

y
+ x ln n + O�1�� . �16�

The first term is the �renormalized� core energy of the field-
induced vortices, while the second term contains their en-
tropy and �renormalized� interaction energy. The thermally
excited vortex-antivortex pairs do not enter at this order.
Thus from Eq. �15� the magnetization is

M = −
kBT

d�0
�ln

2�

y
+ x ln n + O�1�� . �17�

To start, we consider the regime of small fields below TKT.
For b2
e2�4/c, where �4 is a constant, the renormalized pa-
rameters are computed from the Kosterlitz RG equations as
�cf. Eq. �12��

x → − c � − �TKT − T , �18�

y →
2cy0

b2c�c + 
x0
�
, �19�

so the low-field magnetization is

M = −
kBT

d�0
�c ln

�0

Ba0
2 + ln

��c + 
x0
�
cy0

+ O�1�� , �20�

in agreement with our Eq. �2� above �with �3�c1/c�. The
low-field regime of validity of this expression requires n
�1, which, with the above constraint on b, translates to

B �
�0

a0
2 e−2�4/c. �21�

Observe that this condition defines a crossover length scale

�	 � a0e�4/c, �22�

which has the functional form of the correlation length above
the transition, and yet is defined—like the Josephson corre-
lation length in Goldstone phases—below the transition.

For higher fields and temperatures near TKT, there is a
crossover to the critical behavior �1�, that we derive below.
Note that the slope of M vs ln B at low field vanishes linearly
in c as T approaches TKT from below, while the crossover
field below which this is the behavior vanishes exponentially.
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Finally, the singular temperature dependence of the offset in
Eq. �20� �second term� implies that as the transition is ap-
proached the field at which low field M vs ln B extrapolates
to 0 diverges �as �1/�3�.

If, on the other hand, one is near the Kosterlitz-Thouless
transition �so c�1�, the RG flows for 1�b2�e2�4/c follow

− x � y �
1

2 ln b
. �23�

Here when we match at n�y, it is at y�−1/ ln�Ba0
2 /�0� and

the resulting magnetization is

M = −
kBT

d�0
�ln ln

�0

Ba0
2 + O�1�� , �24�

which is the same as Eq. �1�. The field range where this
result applies is

�0

a0
2 
 B 


�0

�	
2 , �25�

which is an intermediate field range for T near to but below
TKT, and is all low fields for T=TKT. Our method of analysis
in principle also gives the functional form of the crossover
scaling function between these two regimes, but we have not
been able to write this function in any concise form. How-
ever, below we obtain an approximate scaling function cov-
ering both regimes.

It is worth noting that in the vicinity of TKT the evaluation
of F, which we choose to do at n�y, occurs at 
x 
 �1, so it
is the renormalized core energy �the first term in Eq. �17��
that is dominant in determining the magnetization.

2. Approximate results, all T

Building on this last observation we now consider a
Debye-Hückel mean-field theory whereby the matching free
energy is approximated by the contributions from the renor-
malized core energy and the entropy. Conveniently, this
Debye-Hückel approximation correctly reproduces the as-
ymptotically exact results for T�TKT and it will also allow
us to obtain numerical results for the magnetization in all
field and temperature regimes of interest. However, we must
caution that these are approximate results, and the overall
value of the magnetization does depend on aspects of the
calculation that are neither a priori constrained by what we
already know about these materials nor universal. These un-
constrained freedoms in the approximation we present below
include �i� the form of the free energy, in particular one
might also include an approximation to the energy of vortex-
vortex interactions, �ii� the scale at which this free energy is
evaluated �matched�, and �iii� the bare vortex core energy.

Specifically, we approximate the residual free-energy den-
sity as

F = �n+ + n−�Ec + kBT�n+ln n+ + n−ln n−� , �26�

where n+ and n− are the residual vortex and antivortex den-
sities, respectively. The field constrains the difference be-

tween these densities to be n+−n−=n, but their mean, n
= �n++n−� /2, can vary and will take on the value that mini-
mizes the free energy:

�F
�n

= 2Ec + kBT ln�n2 −
n2

4
� + 2kBT = 0. �27�

We define the matching condition by asking that the average
density of vortices �as determined from Eq. �27�� be 1:

n =�n2

4
+ � y

2�e
�2

	 1 �28�

and this is used to solve for b�B ,T�. The choice of precisely
unit density is clearly arbitrary—we make it for concrete-
ness. With these assumptions the magnetization is given by

M = −
kBT

2d�0
ln

1 +
n

2

1 −
n

2

�29�

=−
kBT

d�0
ln

1 + �1 − �y/2�e�2

y/�2�e�
�30�

which is plotted in Figs. 1–3.
Above TKT the RG flows at asymptotically small fields are

terminated at a finite fugacity and a0b�� �the zero-field cor-
relation length�, so that as B→0 the magnetization vanishes
as

M � −
kBT

2d�0
2�2B 	 −

kBTa0
2

2d�0
2 e�/cB . �31�

This expression is consistent with an earlier linear-response
result.16

3. Comments

Finally, three comments are in order. First, the divergence
of M below TKT signals the expulsion of vortices from that

FIG. 2. Semilogarithmic plot of magnetization. Parameters are
as in Fig. 1.
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phase—indeed the logarithmic divergence of the free energy
of a single vortex with system size. The divergence we find
at TKT likewise signals the now weaker expulsion of vortic-
ity; at TKT the free energy of a single vortex grows with
system size as ln�ln L�.

Second, the divergence of M�B� at low B is a correct
statement about the magnetic induction dependence of the
free energy of a single layer in the limit of infinite penetra-
tion depth. It does not imply the divergence of an actual
three-dimensional magnetization density. For a stack of
planes, the self-consistency implicit in Eq. �6� keeps M��0H�
from blowing up—instead we get the Meissner phase �B
=0� at sufficiently low applied fields. Our results are valid in
the experimentally relevant regime M �H �equivalently H

Hc1� where this distinction is not important.

Finally, for T�TKT as we have already remarked B*

��0 /�	
2 separates the small field behavior from the critical

ln ln 1/B dependence at larger fields. Interestingly, the mag-
netization displays a noticeable temperature dependence
even at these larger fields. It is noteworthy that this depen-
dence is opposite to that implied by the explicit prefactor of
temperature �e.g., in Eq. �30��, which by itself predicts an
unintuitive enhanced diamagnetism at higher temperatures.
To understand this important detail consider raising T in the
vicinity of TKT. This leads to an increase in y, which in turn
gets strongly amplified by the singularity at y=0 of the func-
tional dependence M � ln 1 /y. This variation always over-
whelms the contribution from the prefactor of kBT, so the
combined effect is a reduction of 
M
 upon raising the tem-
perature, as expected.

E. Dimensional crossovers in layered and quantum systems

In sufficiently anisotropic materials we expect that vari-
ous weak interlayer couplings present will only affect the
physics at long length scales and can therefore be treated to
simply restrict the domain of applicability of the purely two-
dimensional treatment above. As the application of the mag-
netic field introduces a new length scale, the intervortex
separation or the magnetic length, this restriction means our
two-dimensional behavior will cross over to three-

dimensional behavior near a low crossover field. There are
two basic types of interlayer interactions here: Josephson
couplings induced by charge fluctuations transverse to the
layers, and electromagnetic couplings between currents in
different layers mediated by the fluctuating magnetic field.
We consider their effects in turn.

The Josephson coupling, J, will �i� induce true three-
dimensional long-range order in the low-temperature phase
in zero field and alter the universality class of the transition
to that of the 3D XY model, �ii� shift the transition tempera-
ture upwards to Tc, and �iii� cause the vortices to crystallize
three dimensionally at any temperature below Tc for fields
less than the melting field Bm�T�. While this is a problem that
has been studied in some detail17 we can get a feeling for the
scales involved by considering renormalization of Ja2, the
Josephson coupling per cutoff area, near the �decoupled
layer� Kosterlitz-Thouless fixed point,

��Ja2�
� ln b

= �2 −
kBT

2��s
��Ja2� . �32�

From this equation we can obtain the scaling of both the shift
of the critical temperature in zero field, �Tc, and the field
scale, BJ, marking the crossover between two- and three-
dimensional behaviors. This is done by evaluating the length
scale at which the renormalized value of Josephson coupling
is comparable to the in-plane stiffness, Ja2��s �which we
shall set to its critical value �s=2kBTKT /�, since its renor-
malization is comparatively less important than that of Ja2�.
The upward shift of the critical temperature due to the Jo-
sephson coupling, �Tc, can be estimated by identifying this
scale with the zero-field correlation length, giving18–20

�Tc

TKT
=

�7��5/8�2

ln2 kBTKT

�6J0a0
2

, �33�

where �5 is a nonuniversal constant related to the behavior of
c near TKT via �5c���T−TKT� /TKT, �6 is another constant
of order 1, and J0 is the bare Josephson coupling per unit
area. Similarly, by substituting the magnetic length in place
of �, we find for the crossover field at TKT

BJ =
�0

a0
2 � J0a0

2

kBTKT
�8/7

. �34�

The case of electromagnetic interactions alone is a little
muddier. The situation in finite magnetic fields is that the
vortices in different layers now experience an attraction and
thus can crystallize three dimensionally even when a single
layer is a vortex liquid. Following Glazman and Koshelev21

one can use the elastic theory of such a crystal to identify a
field scale, Bcr, at which crossover to two-dimensional be-
havior takes place. In the limit of zero Josephson coupling
our estimate reads

Bcr � �0/�2, �35�

up to �potentially large� factors of order ln � /d. Ideally, one
would have liked to complement this estimate with an RG

FIG. 3. Magnetization at 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40,
45, and 50 T as a function of temperature. Parameters are as in Fig.
1, in particular, TKT=80 K.
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based analysis starting in the vortex liquid �as in the previous
paragraph�. Unfortunately, we have not managed such an
analysis, partly because the impact of these magnetic inter-
layer couplings on the zero-field transition does not appear to
be a settled problem. The interlayer interactions are also
logarithmic and thus are marginal operators at face value.
This has led to assertions that the actual transition is still in
the Kosterlitz-Thouless universality class.1,22 However, a
renormalization-group analysis by Timm23 finds flows at
variance with this scenario.

The scales BJ and Bcr mark the rough boundary between
two- and three-dimensional physics. At TKT the low-field
three-dimensional state is crystalline, and the high-field two-
dimensional dependence of M crosses over to fairly standard
�but with renormalized parameters� low-field behavior in the
Abrikosov vortex lattice. At higher temperature �at the three-
dimensional Tc�, in the presence of Josephson couplings, the
crossover is instead to the M �−�H behavior expected at
low field in the 3D XY critical regime.

Finally, one additional crossover, this time at large fields,
is possible when the thermal phase transitions take place in
proximity to a quantum phase transition out of the supercon-
ducting state—as may be germane in the case of the under-
doped cuprates. Standard scaling, when applied to magneti-
zation of the 2+1-dimensional quantum critical theory
predicts M �−�H, with crossover to this behavior taking
place at sufficiently large fields where quantum fluctuations
of the order parameter are important. The transition between
the forms derived in this paper and this regime would be a
striking signature of such fluctuations.

F. Prior work

Early experiments on the most anisotropic cuprates saw a
near crossing point for the curves M�T� taken at varying
fields B. This is equivalent to the statement that they found a
temperature at which the magnetization was field indepen-
dent. This was interpreted in the scaling framework2 as evi-
dence for two-dimensional critical behavior with the one-
parameter scaling form,

f�t,B� =
1

�2 f̃�B�2� , �36�

for the free-energy density. As we have shown in this paper,
the scaling is not so simple at the Kosterlitz-Thouless tran-
sition, with its two marginal operators, and magnetization
instead has a weak double-logarithmic dependence on the
field. Aside from this general scaling argument, there are
three types of prior computations that we are aware of �not
listed in chronological order�:

First, Gaussian fluctuations for the Ginzburg-Landau
theory in d=2, yield a field-independent magnetization at the
Gaussian �mean field� transition temperature.24 This is con-
sistent with the absence of any marginal operators at this
unstable fixed point, but inconsistent with the true low-field
critical scaling of M, as demonstrated by our calculation.

Second, the so called “lowest Landau level” approxima-
tion has been used by Tesanovic and others to study strong
amplitude fluctuations at high fields near mean field Hc2 �see,

e.g., Refs. 25 and 26�. Calculations of this kind have no
overlapping regime of validity with ones presented above for
the low-field regime. It would be worthwhile to see if the
two sets of results can together capture the behavior over the
entire range of fields of interest.

Finally, Bulaevskii, et al.27 have considered the effects of
thermal fluctuations on the magnetization of an Abrikosov
lattice in a layered superconductor with the Josephson cou-
pling being the dominant source of the three-dimensional
order. Treating the phonons of the lattice to quadratic order
they compute the entropic correction to the Ginzburg-
Landau-Abrikosov free energy. At low fields B�Bcr they
find a field-independent correction to the leading �Abriko-
sov� logarithm. For B
Bcr they report a correction which is
itself a logarithm and leads to an expression identical to our
Eq. �2�. However, the Lindemann estimate for the melting
field of the three-dimensional vortex lattice in a layered su-
perconductor is, in fact, comparable to Bcr in the regime of
weak interlayer Josephson coupling and temperatures near
TKT of interest here. Moreover, since even the 2D quasi-long-
range crystalline order is absent near TKT, the method em-
ployed by Bulaevskii et al. is not really valid in the relevant
regime of the logarithmic dependence where the system is a
vortex liquid, rather than a crystal. Nevertheless, at suffi-
ciently low fields B��0 /�	

2 and T	TKT their result and
ours agree, a sign that the vortex liquid is locally quite simi-
lar to the crystal for these parameters. At higher fields and at
TKT, however, their reasoning breaks down as our calculation
explicitly demonstrates.

These and other results were nicely summarized and ex-
tended by Koshelev.24 Indeed, this paper contains an expres-
sion for the magnetization �Eqs. �51� and �55� taken to-
gether� that is claimed to apply the vortex liquid state and
uses results from the theory of the one-component plasma
and thus, prima facie, anticipates our work. However, it ap-
pears that the basic physics, e.g., in our Eq. �2�, that at low
fields the logarithmic field derivative should vanish as TKT is
approached from below is missed in this work. Also, as this
work explicitly ignores thermally excited vortex-antivortex
pairs it cannot account for the critical field dependence of
magnetization in Eq. �1�.

III. EXPERIMENTS

We now turn to the existing data on the cuprates, the
systems that have motivated this work, and some suggestions
for experimental tests of the theory.

Many of the cuprates are highly two dimensional and ap-
pear to become increasingly so with underdoping. The two
most commonly used diagnostics of anisotropy are the resis-
tivity and superfluid density tensors. Using either of these in
materials such as BSSCO-2212 we arrive at estimates of the
anisotropy of order 10−4–10−6 between the ab �Cu-O� planes
and the c axis. A somewhat more direct measure of the an-
isotropy can be obtained from observations of the c-axis
plasma resonance due to interlayer Josephson coupling.
From the results of Ref. 28 for Josephson coupling per area
J0�10−8 J /m2 we obtain
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J0a0
2

kBTc
� 10−6. �37�

For such anisotropies and other parameters appropriate to the
cuprates, e.g., as in the caption of Fig. 1, we find �Tc /TKT
�0.02, BJ�0.0002 T, and Bcr�0.004 T using the estimates
derived in Sec. II E. This indicates that our two-dimensional
theory should give a useful account of the superconducting
fluctuations for a reasonable range of fields.

The scale for magnetization effects is set by kBTKT /d�0
which is �350 A/m for our parameters. The dimensionless
factors multiplying it in our expressions are not too different
from unity. This order of magnitude estimate is consistent
with experimental observations.4,29,30 The trends in the tem-
perature and field dependence of the magnetization we show
in our figures here are mostly in good qualitative agreement
with those seen in the experiments.4,29,30 The most detailed
published investigation is that by Kogan and collaborators29

�see also Ref. 30� who were inspired by the predictions of
Ref. 27. They reported evidence that M � ln H with a coef-
ficient that changes sign at TKT. While this claim below TKT
is consistent with our analysis, this is not so above TKT where
the functional form is no longer a logarithm. This suggests
that a reexamination of that regime is in order.

Finally, we record the salient results of our analysis that
can be tested against careful measurements:

�i� A logarithmic variation of the magnetization with field
in the low-field two-dimensional vortex liquid below TKT,
with a coefficient set by the superfluid density and the tem-
perature. Specifically,

�M

� log H
�

��s�T�
2d�0

�1 −
2kBT

��s�T�
� .

Thus the theory predicts this simple relation between these
directly measurable quantities, that can be checked in any
sufficiently two-dimensional material where this regime
should exist.

�ii� The low-field measurements of M can be used to de-
fine an effective Hc2 by extrapolating M vs ln H �which starts
off a straight line� to zero �see, e.g., Ref. 4�. Contrary to the
standard, mean-field, behavior of Hc2→0 near transition, our
results predict that the thus defined Hc2 diverges �as �1/�3�
near the transition, although too close to the transition the
procedure breaks down as the size of the linear regime
shrinks.

�iii� The double logarithmic variation of M in Eq. �1� at
TKT or at intermediate fields away from TKT. Optimistically,
one might hope for a direct fit to this functional form. This
field dependence also implies that in an M vs ln H plot, the
curves for T	TKT, though straight in the low-field regime,
should exhibit an upward curvature at larger fields �see Fig.
2�.

�iv� Correspondingly, plots of M�T� at different fields
should exhibit a systematic drift of the “crossing point.” This
is clear from plotting our results, as in Fig. 3, which explic-
itly shows the downward creep of the crossing point towards
TKT from above as the field is decreased within the two-

dimensional vortex liquid regime. This trend definitely ap-
pears to be there in the recent BSSCO data of Wang, et al.4

for underdoped and optimally doped samples.

IV. SUMMARY AND FUTURE DIRECTIONS

The mechanism of superconductivity in the cuprates re-
mains one of the outstanding puzzles of the physics of cor-
related electrons. Nevertheless, the proposition that aspects
of their finite temperature behavior can be understood as
consequences of sizeable thermal fluctuations of the super-
conducting order parameter has gained support in recent
work. In this work we have examined the effects of such
fluctuations in the two-dimensional limit near the Kosterlitz-
Thouless transition and presented an asymptotically exact
calculation of the magnetization in this vortex liquid state.
The preliminary comparison with the highly anisotropic cu-
prates such as BSSCO is encouraging.

On the theoretical side, it would be very useful to extend
our calculation to higher fields, e.g., by keeping terms of
higher order in vortex density in deriving flow Eqs. �8�–�10�.
The high-field behavior is one aspect of experimental mag-
netization data that does not appear to be captured well by
our calculation. Strong signatures of superconducting fluc-
tuations are also present in the Nernst coefficient. Indeed,
Ref. 4 has reported that the magnetization and the Nernst
signal track each other. It would be desirable to have a theory
of the Nernst effect near the Kosterlitz-Thouless transition.
We hope to report on this in the near future.
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APPENDIX: SUPERCONDUCTOR IN A FIELD
TO COULOMB PLASMA

For completeness, we sketch the mapping between a su-
perconductor in a transverse field and a non-neutral Coulomb
plasma.11 The Hamiltonian of a two-dimensional supercon-
ductor with a uniform magnetic induction �0Hc1�B
��0Hc2 can be approximated as

HSC = d2x
�s0

2
��� −

2e

�c
A�2

, �A1�

where �, A, and B= ẑ ·��A are the usual phase, gauge, and
perpendicular magnetic fields. We also impose the constraint
that the net vortex charge density matches B. Next, we ex-
plicitly separate the phase field into its longitudinal and
transverse components by introducing a spin-wave field �
and vortex charge density field n and Fourier-transform the
Hamiltonian
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HSC = L2 �
q�0

hq, �A2�

hq =
�s0

2
�q�q + nq

z � q

q2 �2

�A3�

=
�s0

2

q�q
2 +

�s0

2
�nq

z � q

q2 �2

. �A4�

We then ignore the spin-wave part as it decouples from the
rest of the problem. Transforming back into real space we

arrive at the Hamiltonian of a non-neutral two-component
Coulomb gas,

HCG =
��s0

4
 d2xd2y�n�x�ln� �x − y�2

a0
2 ��n�y� , �A5�

where �n�y�=n�y�−B /�0. The range of integration above
excludes the infinite self-interaction x=y of each vortex. One
last remaining ingredient is the bare core energy Ec0 deter-
mined by the physics omitted in this derivation, it is usually
taken as the energy cost of suppressing the order parameter
inside the vortex core. So, finally, the Hamiltonian of a su-
perconductor in the external field is written HSC=HCG
+Ec0NT, which is a continuum version of Eq. �7�.
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