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Two-fluid behavior of the Kondo lattice in the 1/N slave boson approach
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It has been recently shown by Nakatsuji, Pines, and Fisk [S. Nakatsuji, D. Pines, and Z. Fisk, Phys. Rev.
Lett. 92, 016401 (2004)] from the phenomenological analysis of experiments in Ce,_,La,Colns and Celrlns
that thermodynamic and transport properties of Kondo lattices below coherence temperature can be very
successfully described in terms of a two-fluid model, with Kondo impurity and heavy electron Fermi liquid
contributions. We analyze thermodynamic properties of Kondo lattices using 1/N slave boson treatment of the
periodic Anderson model and show that these two contributions indeed arise below the coherence temperature.
We find that the Kondo impurity contribution to thermodynamics corresponds to thermal excitations into the

flat portion of the energy spectrum.
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I. INTRODUCTION

Anomalous behavior of heavy fermion (HF) metals has
attracted enormous theoretical and experimental interest over
the past 30 years since their discovery.! Due to the almost
localized nature of f-electron bands, electrons in these mate-
rials have strong Coulomb interactions, and exhibit a variety
of very unusual properties, including heavy effective mass of
carriers (with m~ 100-1000m,), non-Fermi liquid ground
state properties,” nontrivial magnetic order [proposed for
UPt;, URu,Si, (Refs. 3-5)], and unconventional supercon-
ductivity, observed in most, if not all of HF superconductors
(see, for example, Refs. 2 and 6 for a review). Recent theo-
retical and experimental interest in these materials has been
focused on the quantum phase transitions. Quantum critical
anomalous power law behavior with temperature of thermo-
dynamic, magnetic, and transport properties’ is observed in
the vicinity of a quantum phase transition in HF compounds
such as CeCu,Si,,} CeCusoAuy;,> YbRh,Si,,? or CeColns
and Celrlns.'>"'? The surprising experimental discovery is
that the quantum criticality in heavy fermion metals is
also unconventional, i.e., it does not follow the usual
Hertz-Millis'>'* scaling analysis of a magnetic quantum
critical point. Instead, the fluctuations remain local, as it
was demonstrated in the inelastic neutron scattering
experiments,” which strongly suggests a Kondo-type local
quantum criticality.”!>

The most interesting question remains the formation and
the origin of heavy mass in these materials. Nakatsuji, Pines,
and Fisk'? (NPF) have recently shown that our understanding
of Kondo lattices is incomplete. NPF propose that formation
of heavy mass in heavy fermion materials (in particular, in
Ce,_,La,Colns and Celrlns), which happens at a crossover
temperature 7", can be described by a phenomenological
theory similar in spirit to Landau theory of superfluidity.'®
The NPF two-fluid phenomenological model'>!7 states that
thermodynamic, magnetic, and transport properties of Kondo
lattices can be described as a sum of two independent con-
tributions, one involving the HF liquid, the other a lattice of
weakly interacting Kondo impurity centers. The relative frac-
tion f of the coherent HF state plays the role of the order
parameter, which develops below the coherence temperature

T.
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We demonstrate below that the same type of phenomenol-
ogy directly follows from the lattice analog of the slave bo-
son broken symmetry ansatz of Read and Newns!® and
Coleman.!” The order parameter, the slave boson average,
gives rise to the coherent heavy fermion liquid component,
while the contribution from almost flat f-electron bands ac-
counts for the Kondo impurity component. Although no ac-
tual symmetry breaking occurs in this case, an analog of the
Landau two-fluid model in superconductors arises in the
slave boson language. The heavy Fermion liquid contribution
corresponds to the bose condensate of slave bosons, while
the Kondo impurity contribution is a complete analog of the
normal part.'®

While the slave boson language provides a very attractive
physical explanation of the NPF phenomenology,'? it does
not completely agree with it. We provide a detailed compari-
son of the slave boson results with the NPF phenomenology
in the summary.

II. THE SLAVE BOSON METHOD

The theoretical approach to understanding the physics of
HF usually starts with the Kondo lattice, or more general
periodic Anderson?® model Hamiltonian

H = HO + Hv, (1)
where
HO = 2 ékcltacko + E E(lfj'-afia' + E Uf,'TTflTlf,'lf”. (2)
ko io i

Here the creation and annihilation operators for the f elec-
trons flT(, and f;, carry the site index i, and there is a Coulomb
interaction at each site for the f electrons. The operators cj
and ¢y, correspond to delocalized Bloch states. The hybrid-
ization term Hy accounts for the c-f hybridization between
the f electrons and the Bloch states

HV= 2 VkeikVRiflTO'Cka"i- V;e_ik.Ricle' io* (3)

k.o

Both Anderson and Kondo models have been solved exactly
for a single f-electron site (for a review, see Refs. 21 and 22).
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Even though the Bethe ansatz solution is by no means easy,
most of our basic theoretical knowledge about Kondo sys-
tems is inferred from it. Unfortunately, an exact solution can-
not be obtained for a periodic lattice, where correlations in-
volve several conduction and f-electron spins. Nevertheless,
it can be treated quite successfully using various approxi-
mate methods, such as the noncrossing approximation, the
1/N approach,?' or dynamical mean field theory.??

The large-N slave boson approach was developed in the
mid-1980s by a number of authors'®1%2425 for single impu-
rity Kondo and Anderson models, and was later applied to
lattices.?0~2° The result of this approach for the single impu-
rity models has been shown to approximate well exact results
at both low and high temperatures.>® Following these refer-
ences, we can rewrite the periodic Anderson model Eq. (1) in
the slave boson language. Since the on-site Coulomb repul-
sion U is very large for f-electron materials, it is usually
taken as infinite. Then the creation and annihilation operators
for f electrons need to be applied with special projection
operators, which project out doubly occupied f-electron
states.” A convenient way to deal with this
Hamiltonian'81%% is to introduce a new slave boson field b7,
which creates a hole on site i, and to rewrite the Anderson
Hamiltonian in a way which allows the 1/N expansion in the
number of orbitals. As a result, the infinite-U Anderson
model takes the following form:

H= E [Ekczmckm + E()fltnjkm] + 2 (C,:qumb;_k +H.c. )
km k.q.m

(4)

Here m is a spin index, which runs from 1 to N (i.e., we
assume N degenerate f levels and N conduction bands), and
the sums for k and ¢ run over the Brillouin zone. The ab-
sence of doubly occupied states is ensured by a constraint**
for every f-site i

Q;= 2 fifim+ blb=1. (5)

The large-N slave boson formulation and the 1/N expansion
around it have many well-known difficulties. Nevertheless,
the results of this model capture the low temperature heavy
Fermi liquid properties of Kondo lattices rather well, and
agree with many experiments.”?! The mean field approach
starts with a replacement of the slave boson operators with
their averages'%?+28

(b)=a. (6)
After taking into account the constraint Eq. (5), the resulting

Hamiltonian then can be written as

H= 2 [ekc;c-mckm + ffflnfkm + (Va)(fzmckm +H.c.)
k,m

+ (= Eg)(@®*=1)], (7

where € is the renormalized f-energy level. The parameters
€ and a are fixed by the mean field equations, which are
obtained by minimizing the free energy.

A serious well-known limitation of the 1/N slave boson
approach arises from the necessity to satisfy the constraint
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Eq. (5). According to quantum mechanics, the phase of the
boson field is conjugate to the number operator for it. Thus,
a state in which the boson has a definite phase, such as one
introduced by the usual slave boson mean field ansatz Eq.
(6), results in infinite uncertainty for the boson number op-
erator, and necessarily violates the local constraint Eq. (5).
This introduces unphysical divergences in correlation func-
tions, which do not have direct physical meaning. These di-
vergences must cancel for all physical properties. According
to Read,?! divergent goldstone mode phase fluctuations act to
restore the true symmetry of the system, and (b;)=0. These
phase fluctuations can be integrated out in the functional
integral formalism, while the ansatz Eq. (6) will hold for the
boson amplitude. In this sense, this phase transition is similar
to the Kosterlitz-Thauless phenomenon. In agreement with
x-ray orthogonality catastrophe,’? the local spin correlations
in the single impurity model are critical, i.e., have a power
law decay at large times.?® Fluctuations in the constraint lead
to large deviations from mean field at temperatures 7~ Tk.
Nevertheless, if the limit N— o is taken at finite filling g,
the mean field solution for a single impurity Anderson model
approaches the Bethe ansatz solution at both high and low
temperature end,?® with most deviations occurring around the
mean field transition temperature 7"~ Tx/In N. The conver-
gence is excellent at low temperatures, although it remains
rather poor at 7>T7 3% This well-known problem with the
slave boson method has prevented the development of the
two-fluid microscopic model in the past. In particular, the
Kondo gas thermodynamic contribution from almost flat
band, which appears already in the tree approximation, has
always been dismissed as small, as an artifact of the above-
mentioned problem with the constraint, Eq. (5).

The mean field Hamiltonian (7) can be diagonalized by
the canonical transformation, which results in a
well-known'8 spectrum with a gap,

1
€1,k) = E(Ek"' €+ Ey) (8)

Ep = (- €)+4(Va). 9)

The new energy spectrum gives rise to the mass enhance-
ment given by
m" Va?
PR +1, (10)
mo&
which becomes rather dramatic in the Kondo regime.
It is convenient to introduce redefined bare-fermion
Green’s functions

Gk, 7) = = (T 101D () g (11)
Gk, 1) = = (T of 1D, (ODasps (12)
1k, ) = = (T ofion D fon (0D (13)

where the thermal average is taken in a system described by
Eq. (7) and 7 is imaginary time. Transforming to Matsubara
frequencies, it is easy to find
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W, — €

G"(k,w,) = , 14
k) (iw,— €)(iw, — &) — V2a? (14)
iw,1— €
Gk, w,) = : 15
ff( wn) (iw, - €)(iv, — &) — V242 (15)
Vi
" (k. ,) = < (16)

(.wn - ef)(lwn - Ek) - V2a2 .

The mean field parameters are determined by minimizing the
free energy for the Hamiltonian in Eq. (7), which diagram-

matically leads to vanishing of the sum of the “tadpole”
graphs,?8
N~ Eg)a+ VT 2, Gh(k,0,) =0, (17)
k.nm ’
N@®-qp) +T 2, Gjlk,w,)=0, (18)
k.nm

where ¢ is the filling factor, go=1/N. For free f electrons
above T', Eq. (18) gives

1

”f(ff)=6]0= ]T/’ (19)

so that the entropy for the f levels

— Nl goln gy + (1 = go)In(1 - go)]. (20)

Setting the filling go=1/N gives S=In N+1. Exact entropy
at high temperatures is not hard to find—one has N half-
filled bands and In N coming from each N-fold degenerate f
level. Thus, S.y,=In N, and we make a mistake of the order
of 1/InN in the entropy when we do mean field. In the
Coleman approach?® the 1/N expansion takes place at a
given ¢, and ¢ is set to 1/N in the end. Formally this gives
a correction

Sexact -§=-05 ln(27TNqO[1 - QO]) > (21)

which is O(In N/N), which makes such 1/N expansion
somewhat better suited for calculating finite temperature
properties.>* However, the two-component physics is not evi-
dent in the Coleman approach. The reason is that the Fermi
liquid Sommerfeld expansion, which appears as an expan-
sion in 1/In N in the Read and Newns'® approach, becomes
divergent at T~T" in the Coleman approach. Hence, the
Fermi liquid contribution cannot be easily identified. In what
follows, we use the approach of Read and Newns!® to calcu-
late two-component thermodynamics at the mean field level.

III. THE MEAN FIELD EQUATIONS

The mean field Egs. (17) and (18), together with the con-
servation of the total number of particles

N=T > [Gfk,w,) + Gk, w,)] = const,  (22)

k,n,m

define the order parameter for the second order phase transi-
tion in the slave boson method.
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Transforming the integration variable in the mean field
Egs. (17) and (18) to the new energy spectrum Eq. (8),

e=€5(k), we get'®
€ €d
€—Eo= pOVZ[ f + f ]mde, (23)
6{! 6(,' ef_ E
1 K “ | nde)
— =14 pyV? J + f —L=de. 24
NaZ Po l 5 . (Gf_ )2 ( )

The limits for the integrals are easily calculated from the
energy spectrum, Egs. (8) and (9)

(Va)’
EQ=—U—-""""",
D+¢
(Va)?
€, = €f— .
D - Ef
(Va)’
€. = €f+ N
Va)?
€d=D+ ( ) . (25)
D - Ef

The effective Kondo temperature €, can be calculated
from Eq. (23). This integral is the Cauchy limit integral
around the Kondo gap, which is not divergent. In the Kondo
limit, E, | >V, the zero-temperature value of € €n,
is easily calculated from Eq. (23)

EfO = De_‘E()l/POVZ. (26)

Now, for T#0, but 7< €/, ONe can use the Sommerfeld ex-
pansion to get

|Eo| = poV IH[D} + fpovz 1 , (27)
€ (B f)2
or, equivalently,
i 5
e(T) = Efo(l + z(ﬁffo) ) (28)

The second mean field equation, Eq. (24), determines the
order parameter a, or the Kondo gap. The integral diverges
strongly as (e— ef)‘2 at €e— €. To deal with this divergence,
we can integrate by parts

1 V2 poD Via? Va?
Na TPt e T )T et Ty

€ % |ni(e)de
+p0V2|:J +j ]—b (29)
@« Jel €&

The latter integral is now convergent in Kondo gap region,
so it can be taken using the Sommerfeld expansion

% |nj(e)d Vo ow T
poV? f +f ni(elde _ po [1+ . (30)
« Jolee gl 39

To solve for T, we take the limit a*>— 0 in Eq. (29)
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q0=2poDny€y), (31)
which gives
_ &) (32)
In[2poDN]

The zero-temperature value of the order parameter a, a(T
=0)=a,, can also be easily found from Eq. (29)

= 1—61‘0—2. (33)
N 6]‘0 + pOV

The transcendental Eq. (29), which gives the temperature
dependence of the order parameter a, is considerably simpli-
fied if we only calculate the lowest terms in 1/In N. Indeed,
since T<Tk~ef/ In N, the asymptotic Sommerfeld expan-
sion becomes an expansion in 1/In N. To keep the lowest
order in 1/In N in the Sommerfeld expansion, we take

(T < T) = € (34)

in Eq. (32). One can simplify the gap Eq. (29) in the Kondo
regime, where

Vea

Assuming a square band 2p,D=1, following Newns and
Read,'® keeping the leading terms in O(1/In N)

a*(T)

a_(z) =1 —an(ef). (36)
The third equation, Eq. (22), determines the shift of the
chemical potential in the slave boson phase transition. In the
Kondo limit the number of electrons per f level approxi-
mately stays at 1, and no significant shift of the chemical
potential occurs.

IV. THERMODYNAMICS OF THE KONDO LATTICE—
THE TWO-COMPONENT PICTURE

Thermodynamic properties can easily be calculated from
the mean field free energy for the Hamiltonian (7). From
Luttinger functional, we can write for the Grand free energy
density without the small free conduction electron contribu-
tion

Q=—P=E QO+ 5Q+2N(a2—610)(5f—E0), (37)
k k

where (), is the grand free energy density for free nonhybrid-
ized f centers, & is the effect of hybridization (mixed con-
tribution). Since (), corresponds to a free fermion at renor-
malized energy €, with respect to chemical potential

Qp=-NTIn(1 + e Pe). (38)

The third term in Eq. (37) comes from the energy shift due to
a slave boson average. The interaction energy &) can be
expressed through the mixed Green’s function
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N =2V f daT Y, G(iw,.k). (39)
0 k.nm

We note that the right-hand side (rhs) of this equation corre-

sponds to the Green’s function expression in Eq. (18). We

can use Eq. (18) to replace the expression under the integral.
Since from Eq. (18)

VT Y Gy(iw, k) = - c,N(e— Ep)a, (40)

k.,n,m

3028 [ (- Egada= - Neg’(~ Ep. (41
0

where ¢y is the density of f levels. As a result, we easily
obtain

Q =-Ne,TIn(1 + eP%) - Ne g€y (42)

Houghton, Read, and Won*} have found that a similar ex-
pression for the Grand free energy for a single-impurity
model holds to two loops. Thermodynamics is obtained, as
usual, by differentiating the Grand free energy with respect
to temperature

aQ de
: _ —Be ot
S=_ _3T _chln(l +e B 1) + cde[l —an(ff)]

Comparing this with expression (36) for a?, and keeping the
terms of lowest order in O(1/In N) (the first term is then
small compared with the last term), we can write

2
ag—a* Via®

S = IBefcf a% + ?NpO?T, (44)
or
S = yur TA(T) + Bec {1 - f(T)], (45)
where
2
=22 (46)
ay

and 7HFL=2_Tﬂ2NP0’,nT;~ The heat capacity can be found by dif-
ferentiating the entropy S:

— T, (47)

where we have neglected all terms smaller in 7/€,~ 1/In N
in the first part, although all of them can be written out in the
same fashion

1B o0 eBE 0o (48)
= = + 5.
ar= g T

Here Cpy is the usual heavy Fermi liquid contribution

CrL= YurL T, (49)

while
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Kondo gas

\ Kondo liquid

FIG. 1. The heavy liquid component comes from the renormal-
ized band contribution, while the gas component appears due to
thermal population of almost localized part of the spectrum.

(

f(T) = a’(Ty/a’,

L

Cl = T2,

(50)

a factorized contribution. We note that unlike Ref. 12, the
dominant contribution in 1/In N comes from differentiating
the order parameter a*(T)

2
) G- ad). 51)

In magnetic field we can write, neglecting the free con-
duction electron contribution

Q=- chE In(1 + ¢~ Plerthmy - Cr€f. (52)

Now, N in mean field (MF) equations is replaced by sum
over different €/{/,T)+hm. Taking a partial derivative with
respect to h=gugB, we find the magnetic moment

M Jde Je
—=—Cf2 (j+m>nf(ef+hm)+cf;}‘f (53)

SMB
For small i
M de ’
=S gL~ Nndep] = he 2 mnj(e).  (54)

This obviously separates into two contributions. After some
simple algebra, we find that the bulk spin susceptibility also
has two separate contributions

2 2.0 2
_a (gpp)j(+ Degl  a”

X = XurL 3 t+ = I- , (55)
ag 3T a,

where

N(gpp)jG+1) m
XurL="_ 5, Po__> (56)
3 m

and m"/m is the mass enhancement at 7=0, j=N%1. The sec-
ond term on the rhs corresponds to the typical Curie impurity
contribution. A correct logarithmic correction to it appears in
the next order in 1/N.3

The origin of the two components in thermodynamics is
shown schematically on Fig. 1. Indeed, the new energy spec-
trum for free fermions gives a singularity in density of states
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Order parameter for N = 6 (Ce)
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FIG. 2. The temperature dependence f(T):aT for Ce
0

(N=6).

2
(Va) } (57)

p(e) =P0[1 + (- e

This singularity contributes to thermodynamic properties.
Since the mean field equations are derivatives of the free
energy, the singularities that are encountered are of the same
type as those for €, and a’®. Therefore, the final results can be
expressed in terms of a*(7).

V. SUMMARY

Comparing the mean field results with experimental phe-
nomenology of Ref. 12, we find many similarities. For ex-
ample, thermodynamics for the Kondo lattice in the slave
boson approach clearly factorizes into the Kondo impurity
and heavy electron liquid contributions. Similar to the situa-
tion in superconductivity this factorization is a direct result
of the appearance of anomalous mixed averages of the type
(c'f), which produces the energy gap, or the mean field order
parameter a®, which corresponds to the fraction of the Kondo
liquid, Eq. (46). The linear behavior of f(T) for T<T",
which is different from that given by Eq. (36), was found by
fitting experiments in the 1-1-5 family in Ref. 12. In the case
of Ce (N=6) we find that numerically Eq. (36) gives an order
parameter which is almost linear (See Fig. 2). The spin sus-
ceptibility x(7) follows the experimental behavior, and the
behavior of thermodynamic functions factorizes into two
components as well. Clearly this is a very rough approxima-
tion, and many effects observed experimentally in Ref. 12
are not captured. For example, at zero temperature we find
that f(T=0)=1, and the Kondo impurity contribution is ab-
sent, unlike the limit f(7=0)=0.9 found in Ref. 17. This
discrepancy could, in principle, be explained by disorder,
which would produce a finite population of the DOS peak at
zero temperature. We also note that the above model is con-
siderably oversimplified. For example, the k dependence of
V was neglected. In a realistic case V(k) may have zeroes on
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the Fermi surface, which will lead to a k-dependent energy
gap with a nodal structure, similar to that observed in uncon-
ventional superconductors.

We also find that thermodynamics (C, S, etc.) does not
completely follow the NPF phenomenology. While the sepa-
ration in two components is always present, we found that it
is necessary to differentiate f(T) to get the correct answer for
some quantities. It is also, perhaps, necessary to get to the
next approximation, in order to find the log(T) dependence
of effective mass, observed in Ref. 12. Calculation of trans-
port properties requires going beyond the mean field

PHYSICAL REVIEW B 73, 094455 (2006)

approximation,”® which, in principle, could also explain
f(T=0)# 1 without introducing disorder. Nevertheless, this
approach can be regarded as the first approximation to un-
derstanding experimental results.
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