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Large-angle magnetization dynamics measured by time-resolved ferromagnetic resonance
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A time-resolved ferromagnetic resonance technique was used to investigate the nonlinear magnetization
dynamics of a 10 nm thin Permalloy™ film in response to a sequence of large-amplitude field pulses. The
magnetic field pulse sequence was set at a repetition rate equal to the magnetic system’s resonance frequency.
Both inductive and optical techniques were used to observe the resultant magnetization dynamics. We com-
pared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The

results for damping and frequency response obtained by these two different methods coincide in the limit of a
small-angle excitation. However, when applying large-amplitude field pulses, there was a substantial increase
in the apparent damping. Analysis of vector-resolved magnetic second-harmonic generation data indicate that
the increase in damping is correlated with a decrease in the spatial homogeneity of the magnetization dynam-
ics. This suggests that unstable spin wave generation occurs in the limit of large-amplitude dynamics.
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I. INTRODUCTION

Recently, there have been several investigations of high-
speed, large-angle magnetization dynamics in thin film sys-
tems using various time-resolved methods.!”> These time-
resolved investigations have been motivated in part by the
inability to make such large-angle measurements using cw
ferromagnetic resonance (FMR) techniques. In the case of
FMR, pumping beyond the instability threshold results in the
unstable generation of spin waves (i.e., the Suhl instability),
thereby causing a collapse of the ac susceptibility on
resonance.* It appears that time-resolved techniques are not
susceptible to the Suhl instability,> thereby permitting inves-
tigations of dynamical properties at large precession angles.

The speed of the magnetization response in thin films re-
sults from the large demagnetization factor associated with
the magnetization component in the surface normal direc-
tion. The role of the demagnetizing factors in establishing the
precession frequency w in the small-angle limit is formulated
in terms of the Kittel equation. For a thin film, the Kittel
equation reduces to w=yug\(M,+H+H,)(H,+H,), where
v is the gyromagnetic ratio, u, is the permeability of free
space, M, is the saturation magnetization, H;, is the uniaxial
anisotropy, and H, is the applied dc bias field along the easy
axis direction. This suggests that high-frequency, large-angle,
steady-state dynamics may be observable in certain experi-
mental geometries where the demagnetizing field is actually
the principle source of magnetic field that drives the magne-
tization precession. Such a possibility is reinforced by recent
results for dynamics generated by spin momentum transfer
effects.

Recent studies of spin-torque-induced dynamics in nano-
pillar structures with in- plane applied fields have shown the
existence of a “self-biased” state at large currents where the
magnetization precesses about a self-induced demagnetizing
field in the surface normal direction.’ In such a self-biased
state, the demagnetizing field is the principle source of the
magnetic field that drives the magnetization precession. The
frequency of precession in the self-biased state is primarily a
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function of the perpendicular component of magnetization
such that w= yuoM,=yuyM,cos 6, where 6 is the cone
angle of precession relative to the surface normal. The dy-
namics for such a state are inherently nonlinear since the
frequency of precession now depends explicitly on the am-
plitude of precession through the dependence on 6.7 The
present study was motivated by the interest in determining if
self-biased dynamical states could be achieved in a macro-
scopic time-resolved measurement using a finite duration
burst of cw microwave radiation to initiate the large-angle
dynamics.

We report on the magnetization dynamics initiated by
small- and large-amplitude time-resolved ferromagnetic
resonance (TR-FMR). We define TR-FMR as the excitation
of a magnetic system by a sequence of magnetic field pulses
with a repetition rate that is close or equal to the resonance
frequency of the magnetic system under study, and the de-
tection of the resultant dynamics using time-resolved meth-
ods. Here, we use both an inductive detection technique,
similar to that employed in a pulsed inductive microwave
magnetometer (PIMM),! and time-resolved magnetic
second-harmonic generation to acquire the TR-FMR signal.
A sequence of magnetic field pulses (ranging from 1 to 16
pulses) was used to investigate the magnetodynamics in a
thin Permalloy™ (Nig,Fe,,) film. This sequence of pulses
was generated by a commercial pulse/data pattern generator.
In this way we could directly compare the TR-FMR (com-
parable to conventional FMR when the number of pulses is
large) and the conventional PIMM-method (which makes use
of a single-step magnetic field pulse). We show that TR-FMR
and PIMM yield the same results, regardless of the number
of pulses in the sequence, for the extracted damping param-
eter and frequency response of the sample under investiga-
tion in the limit of small-angle excitations. However, for
large-amplitude excitations that should be sufficient to in-
duce self-biased dynamics, the apparent damping is en-
hanced by a factor of 5 compared to the PIMM and small-
amplitude TR-FMR results. The enhanced damping prevents
the formation of a self-biased state in these experiments. The
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FIG. 1. Landau-Lifshitz simulation of thin Permalloy™ film
response due to a pulse field pattern (dotted line). The solid line
shows the component of the magnetization along the y axis and the
dashed line shows the component along the x axis. The parameters
for the simulation are given in the lower inset.

data suggest that this enhanced damping is the result of non-
linear instabilities that lead to parametrically pumped spin
wave generation.

Figure 1 shows a simulation of a self-biased precessional
state for a thin Permalloy™ film due a large-amplitude field
pulse sequence (dotted line). The repetition rate of the field
pulse sequence was equal to 786 MHz. The dashed and solid
lines in Fig. 1 represent the two in-plane components of the
magnetization for a thin Permalloy (NigyFe,,) film, calcu-
lated with a Landau-Lifshitz macrospin model.® For this
simulation, we chose a static bias field H,, of 80 A/m
(1.0 Oe), a uniaxial anisotropy field H,(cz) of 600 A/m
(7.55 Oe) and a damping parameter a of 0.01. The pulse
pattern had peak-to-peak amplitude of 1.5 kA/m(19 Qe).
This macrospin simulation clearly shows a 90° phase shift
between the x and y components of the magnetization indi-
cating that the magnetization follows a continuous 360° in-
plane rotation mode after the first cycle of the pulse se-
quence. This continuous rotational mode is synchronous with
the applied field for the duration of the remaining pulse se-
quence. The synchronization mechanism is characterized by
a nearly constant out-of-plane component of the magnetiza-

tion M. The out-of-plane component of M results in a de-

magnetizing field that increases the rotation frequency of M
in proportion to the tilt angle of the magnetization, i.e., self-
biasing occurs due to the constant out-of-plane component.

As a result, M can be synchronized to the external frequency
source even when the driving frequency is slightly higher
than the film’s natural resonance frequency for small-angle
motion about the equilibrium axis.

Despite the fact that single-domain simulations show the
possibility of exciting a continuous rotation mode in re-
sponse to a finite sequence of large amplitude field pulses,
we will show that we were not able to detect a self-biasing of
the magnetization in a 360° rotation mode by TR-FMR in a
quasi-infinite thin Permalloy™ film. Vector-resolved data
suggest that M undergoes a highly nonlinear process, com-

parable to the Suhl instability,'” which prevents the self-
biased state from being established.
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FIG. 2. The experimental configuration as used throughout this
study. The easy axis of the sample is always parallel to the x axis
and the pulse field is always applied along the y axis. The bias field
may be applied along both the x and the y axes. Trajectory “A” is
that for small amplitude elliptical precession in response to a weak
ac field. Trajectory “B” is for a self-biased state where the magne-
tization precesses about the quasistatic demagnetizing field along
the z axis.

II. EXPERIMENT

Figure 2 shows the field geometry used throughout this
study. The excitation field H, is always applied along the y
axis and the uniaxial anisotropy easy axis of the magnetic
sample lies along the x axis. Static magnetic bias fields H,,
and H,, can be applied along both the x and y axes, respec-
tively. We used a commercial pulse/pattern generator with a
bandwidth of 3.3 GHz to produce the excitation pulse se-
quences. The pattern generator was capable of generating a
32-bit burst data pattern with a maximum output voltage of
3.3 V. In order to achieve large-amplitude field pulses, the
pulse pattern was externally amplified by 30 dB. The mini-
mum “bit” length was limited to 286 ps. The maximum “bit”
length was 30 ns. The pattern generator was capable of ap-
plying TR-FMR pulse patterns of up to 16 pulses with a 50%
duty cycle and variable repetition frequency. The pulse pat-
tern was launched into a coplanar waveguide structure with
110 wm center conductor width, yielding a maximum H, of
1.5 kA/m (19 Oe), peak-to-peak. The dotted line in Fig. 1
shows a representative experimental pulse pattern with a rep-
etition rate of 786 MHz, measured with a sampling oscillo-
scope and converted to units of magnetic field by use of the
Karlqvist equation.!!

We measured the small-angle response using the PIMM.
The PIMM is a nonlocal broadband instrument and therefore
stroboscopically measures the average response of the com-
plete excited sample. Further details on the PIMM and data
analysis technique can be found in earlier work by Silva er
al.' and Alexander et al.'”

The large-angle response was measured utilizing the time-
resolved magnetization-induced optical second-harmonic
generation (MSHG). MSHG is sensitive to the different com-
ponents of in-plane magnetization and therefore allows ex-
traction of the deflection angle and absolute value of M.'3!4
Our measured value for |M| is spatially averaged over the
optical spot size of approximately 10 um, and is a measure
of the coherence of the magnetization motion at the length
scale of the probe size.'> Thus, determination of |M| allows
us to infer nonlinearity (i.e., generation of spin waves) dur-
ing large-angle deflections.
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To improve our signal-to-noise ratio, the data for |1\71 | were
temporally filtered with a running average over a 2.4 ns wide
window, decreasing the effective bandwidth of the magni-
tude data to 200 MHz. The data for the deflection angle were
not filtered.

The MSHG system uses a mode-locked Ti:sapphire laser,
producing 100 fs optical pulses that generate second-
harmonic light upon reflection from a metallic surface. The
repetition rate of the laser pulses is fixed to the laser’s cavity
length and is about 82 MHz. The repetition rate of the laser
pulses was set by an external pulse picker to about 10 MHz.
In order to achieve time resolution, the pattern generator was
synchronized to the laser oscillator using a phase-lock loop.

The sample was a 10 nm Permalloy™ (NigFe,,) film
with a 5 nm Ta capping layer to prevent oxide formation at
the Permalloy surface. The sample was dc magnetron sput-
tered directly onto a glass substrate. The glass substrate was
etched with Ar/O, and Ar ion milling to improve adhesion
prior to the deposition of the Permalloy film. We deposited
Permalloy at an Ar pressure of 0.53 Pa (4.0 mTorr). The Ta
was sputtered at an Ar pressure of 0.67 Pa (5.0 mTorr).

III. RESULTS

In the following sections, we will present the results ob-
tained by conventional PIMM, small-angle inductive TR-
FMR, and large-angle optical TR-FMR using a single thin-
film sample.

Small-amplitude response

We first measured the response of the magnetic film to a
single small magnetic field step by use of the PIMM. The
step-excitation amplitude was 60 A/m (0.8 Oe) for these
measurements. From the free induction data, we could deter-
mine the resonance frequency, dynamic anisotropy field, and
the damping parameter as a function of bias field.""!> The
precession frequency was varied by adjusting the applied
bias field. The dynamic anisotropy field of the sample was
found to be 62020 A/m (7.7+0.2 Oe), which is 160 A/m
(2 Oe) higher than the static uniaxial anisotropy. This indi-
cates that a rotatable component of anisotropy is present in
the sample, in agreement with earlier studies.'®!” The nor-
malized relaxation rate 2/7w,,, where w,,=7yuoM,, is ex-
tracted from the measured relaxation time 7 of the free in-
duction decay. In the absence of any additional relaxation
mechanisms besides intrinsic damping, 2/ 7w,, is equivalent
to the Gilbert damping parameter «. The normalized relax-
ation rate is plotted in Fig. 3 as a function of precession
frequency (filled upside-down triangles). At low frequencies,
the relaxation rate increases as shown in earlier
studies.!>18-20

The frequency response obtained from the PIMM mea-
surements was used to set the field pulse pattern repetition
rate for small amplitude TR-FMR measurements with H,
=60 A/m (0.8 Oe). We then measured the sample response
by inductive TR-FMR for H,,=240 A/m(3 QOe),
480 A/m(6 Oe), 720 A/m(9 Oe), and 1.2 kA/m(15 Oe),
and H,, set to zero. Figure 4 shows the response of the thin
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FIG. 3. Extracted normalized relaxation rate as a function of
frequency from PIMM measurements (down triangles). The solid
circles show the normalized relaxation rate extracted from the fits to
the driven damped simple harmonic oscillator model. All open sym-
bols represent the extracted normalized relaxation rate from the free
induction decay after the field pulse sequence was turned off.

film when excited by a sequence of 16 field pulses with a
repetition rate of 1.16 GHz and for H,, =720 A/m(9 Oe).
The data were fit to a driven damped simple harmonic oscil-
lator model at the oscillator resonance. The time required for
the system to reach steady state is inversely proportional to
the damping. The fit is in good agreement with the data and
yields a relaxation rate that can be expressed in terms of a
Gilbert damping parameter a=0.0094+0.0005 and a dy-
namic anisotropy field H;, of 59010 A/m(7.4+0.1 Oe).
The fitted anisotropy is in good agreement with the values
obtained by conventional PIMM. For all four bias fields, the
value for the extracted anisotropy ranges from
570+10 A/m(7.2+£0.1 Oe) to 620+10 A/m(7.8+0.1 Oe).
Additional extracted values of the relaxation rate for all four
bias fields are given by the solid dots in Fig. 3. We verified
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FIG. 4. Time-resolved ferromagnetic resonance for a 10 nm thin
Permalloy™ film, measured with the inductive technique. The
dashed line represents the driven damped simple harmonic oscilla-
tor fit.
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that the fitted parameters were insensitive to pulse amplitude
for H,<60 A/m(0.8 Oe).

We also investigated whether the number of generated
field pulses has any effect on the relaxation rate of the sys-
tem when the pulse sequence is turned off. We used three
different pulse amplitudes and pulse sequences ranging from
one pulse up to a sequence of 16 pulses. The three pulse
amplitudes H, were 24 A/m(0.3 Oe), 42 A/m(0.5 Oe) and
60 A/m(0.8 Oe), calculated using the Karlqvist equation.!!
The extracted relaxation rate did not show any significant
change when the number of pulses was changed. In addition,
the relaxation rates were also insensitive to the different
pulse amplitudes, shown by the open symbols in Fig. 3. Fig-
ure 3 shows that the relaxation rates obtained by both, the
conventional PIMM and the TR-FMR technique are similar.
This stems from a uniform magnetization motion during
these small-angle excitations. Because the extracted relax-
ation rates have the same value in the small angle limit, we
may also speculate that the relaxation rate will be the same
for both an infinite number of pulses (conventional FMR)
and single pulse (PIMM) measurements. Indeed, work in
progress indicates that conventional FMR and PIMM mea-
surements of damping in thin Permalloy™ films are in
agreement.”!

IV. LARGE-AMPLITUDE RESPONSE

In the following section we will discuss the results of
magnetization dynamics generated by large-amplitude mag-
netic field pulse patterns of 1.5 kA/m(19 Oe), peak-to-peak.
In order to determine whether a large-angle motion or even a
full 360° rotation occurs, a magnetization vector-resolved
technique must be utilized. However, inductive techniques
cannot measure the dynamics of the magnetization vector.
Thus, we used time- and vector-resolved magnetization-
induced optical second-harmonic generation (MSHG) to
measure the large-angle dynamics.'?

Figure 5 shows the data for a vector-resolved MSHG
measurement. The bias fields were H,,=220 A/m(2.75 Oe)
and H,,=0 A/m, respectively. The squares are the magneti-

zation angle relative to the x axis. The open circles are |M]|
normalized to the saturation magnetization. The dashed and
dotted lines in Fig. 5 are the results from two macrospin
simulations that utilize the pulse pattern shown in Fig. 1 as
the driving term. A uniaxial anisotropy field H,(f) of
440 A/m(5.5 Oe) and a rotational anisotropy field cho) of
160 A/m(2 Oe)were used for the simulations. For this par-
ticular combination of bias fields and anisotropy fields simu-
lations predicted that the system would not enter a self-
biased state. Indeed, the data confirm this prediction.
However, using a damping of a=0.013, the simulation re-
sults shown in Fig. 5 as a dashed line are in poor agreement
with the data. The data show that the magnetization remains
confined to a smaller precession cone than what is predicted
with the simulations. It was necessary to increase the damp-
ing parameter to a value in the range of 0.045 <« <<0.055 to
get reasonable agreement between the simulations and the
data. The need for such a large damping parameter to fit the
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FIG. 5. Vector-resolved large-angle excitation response, as mea-
sured by MSHG. The open circles are the normalized absolute value
of the magnetization. The data for the magnetization value were
low-pass filtered with a bandwidth of 200 MHz to improve the
signal-to-noise ratio. The solid squares show the magnetization de-
flection angle relative to the x direction. The dashed and solid lines
are the results of Landau-Lifschitz-Ginsburg (LLG) simulations for
damping parameters of 0.013 and 0.050, respectively.

data suggests that the dynamics are no longer well described
with a macrospin model, as we will discuss in more detail
below.

None of the bias field combinations that we tested re-
sulted in the formation of a self-biased state. In addition, the
damping parameter needed to fit the measured dynamics was
in the range 0.045<a<<0.055, independent of the applied
bias fields. Figure 6 shows the dynamics for the particular
bias field combination of H,,=120 A/m(1.5 Oe) and H,,
=170 A/m(2.2 Oe). For this particular bias field combina-
tion, one would expect a 360° in-plane rotation after the first
few cycles of the pulse sequence based on our simulations
using the macrospin model with =0.013. In addition, the

data in Fig. 6 also show a strong decrease of |A71 | to a value of
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FIG. 6. Vector-resolved large-angle excitation measured by
MSHG. The open circles represent the normalized absolute value of
the magnetization. The data for the magnetization value were fil-
tered down to a bandwidth of 200 MHz for the sake of clarity. The
squares show the magnetization deflection angle from the x direc-
tion. The solid line shows the LLG simulation for a=0.050.
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FIG. 7. Solid squares show the absolute value of the magneti-
zation for various bias field combinations. The data were low-pass
filtered down to 200 MHz, indicating a drop in the normalized ab-
solute value of M. The determination of Am was done by determi-
nation of the adjacent average values of |]\71 | at 1 ns and at 7 ns
(dashed lines). The hatched areas represent the 360° locking state of
the magnetization, calculated by the LLG model with a damping
parameter of 0.013. Note that the graphs are plotted in a waterfall
plot. The data are shifted upwards by n(0.25)|M|/M,(n=0,1,2,3)
for the sake of clarity.

about 0.8 Ms in response to the field pulse sequence.

A similar decrease in |[M| over the course of the field pulse
sequence occurred for other bias field combinations, as can

be seen in Fig. 7. The graph shows a waterfall plot of |M] as
a function of time for various bias field combinations. We

designate |M| at t=1 ns (just after the onset of the pulse
sequence) and at =7 ns, as the initial and steady-state mag-

netization values, respectively. |Z\71 | does not appear to change
any further for r>7 ns. The magnetization difference, Am,
between steady-state and initial magnetization values are
15%, 9%, 11%, and 4% for the data sets, shown from top to
bottom. The first three bias field settings are all expected to
exhibit self-biased states based upon our simulations. The
data sets associated with the same bias fields all show a
substantial magnetization decrease Am>9%. The last bias
field set of H,,=220 A/m, H,,=0 did not result in a self-
biased state in simulations. The associated data set also ex-
hibited the smallest magnetization decrease of Am=4%. The
hatched areas represent the time intervals where macrospin
simulations with a=0.013 predict that the magnetization

should be in a self-biased state. The moment in time when M
is expected to enter a self-biased state roughly coincides with

the time when |M| actually starts to decrease in the measure-
ments. The enhancement of the apparent damping, as well as

the reduction of |M/|, both suggest that the dynamics in these
experiments are characterized by the unstable growth of spin
wave modes when the sample is subjected to large-amplitude
pulse sequences.
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V. DISCUSSION

Further theoretical consideration supports our hypothesis
that the difference in behavior for small-amplitude versus
large-amplitude TR-FMR experiments is due to spin wave
instabilities. While spin wave instabilities have been clearly
observed for large-amplitude FMR experiments with
Permalloy™ films,?? the field pulse amplitudes used for the
small-amplitude measurements reported here are marginally
below the theoretical threshold for resonance saturation (i.e.,
the second-order spin wave instability) for all combinations
of pump and bias field amplitudes. We need not consider the
first-order instability since the pump field employed here is
always at the resonance frequency of the uniform mode. The
first-order instability, also known as subsidiary absorption, is
most often of concern when pumping off resonance. That we
are below the threshold for nonlinear spin wave generation
may be easily shown using common expressions for the spin
wave instability. The threshold pump field amplitude H,, for
the second-order instability may be approximated as*

2AHk>”2 0

H, = AH(

s

where AH and AH, are the field linewidths for the uniform
and degenerate magnon modes, respectively. Using the
Landau-Lifshitz model for the dynamics, and assuming that
the damping for degenerate spin waves is the same as for the
uniform mode, we find that

2w
AHjy=—. (2)
Yo

Substituting Eq. (2) into Eq. (1), and then converting to a
threshold angle 6, for the in-plane precession, we arrive at

o 20 52
o=505) - 3
Wy

where x| is the dc susceptibility and w,, = yuoM,. Using Eq.
(3), the threshold angle 6, is calculated to be 5° at the highest
frequencies used in the small-amplitude measurements. The
estimated experimental in-plane precession angle is 4.0° for
resonant pumping with a peak-to-peak pump field H,
=60 A/m(0.8 Oe) and a bias field H,,=1.2 kA/m(15 Oe).
Since the onset of premature saturation would have mani-
fested itself as a dependence of the apparent damping on
pump amplitude, we conclude that the instability for para-
metric spin wave generation is not operative in our low-
amplitude experiments.

It was previously shown that spin wave instabilities are
not evident in PIMM studies that employ a single-step exci-
tation even for pulse excitations well in excess of the second-
order instability threshold.’ This is not surprising in the case
of single-pulse excitations at low bias fields since the para-
metric pumping of derivative spin wave modes requires the
continuous application of a microwave field that drives the
dynamics. This can be qualitatively understood in terms of a
simple rate equation for the spin wave population. If N be
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the zero-temperature magnon density at wave vector k, then
the nonlinear magnon population dynamics near the instabil-
ity threshold may be simply described by!'°

. > 12
@*‘Mll‘(M‘l) }N,;, (4)

th

where \; is the magnon decay rate, P(k=0) is the pump
power for the uniform mode, and P, is the threshold pump
power for the spin wave instability. For P(k=~0)> P, the
magnon density grows exponentially and the system is un-
stable. In a conventional cw FMR experiment, P(k=0) is
essentially constant over time. However, in a time-resolved
single-pulse excitation experiment, the dynamics are insti-
gated by a sudden reorientation of the equilibrium magneti-
zation direction. In such a broadband experiment, all pos-
sible modes that are accessible within the spatial and
temporal bandwidth of the pulsed field source are excited.!”
However, none of the excited modes are actually pumped; an
initial short burst of energy AE is delivered to a multiplicity
of modes, but none of the modes are driven in a manner that
allows for the parametric pumping of degenerate spin wave
modes. In terms of Eq. (4), P(k=0) is nonzero only on a
time scale short compared to the precession period in the
case of free induction decay, i.e., P(k=0;7)=~AE&(t). Even
in the case that AE>E,,, the magnon population dynamics
remain stable after the application of the field pulse for most
experimental geometries. The exception to this rule is in the
case of a transversely biased, free induction decay experi-
ments, which is discussed in more detail below.

It is only in the case of oscillatory pumping that any ad-
ditional damping due to spin wave generation was observed.
While this result is not surprising in itself, since the pumping
amplitude was far in excess of the instability threshold for
the large amplitude studies presented here, what is of note is
how quickly the nonlinear effects act to substantially in-
crease the viscosity of the observed magnetization dynamics.
Though it takes 3 ns for the system to arrive at steady state
for the small amplitude dynamics shown in Fig. 4, it only
takes 1.5 ns for the same system to display the highly vis-
cous response shown in Figs. 5 and 6. This implies that only
one full period of microwave radiation is required to insti-
gate any spin wave instabilities. The rapid onset of the non-
linear behavior can be understood in terms of the particular
mode that we have attempted to excite. If the precession
frequency in the case of continuous 360° in-plane rotation is
predominantly a function of the perpendicular component of
magnetization (as single domain simulations indicate), then
any spatial variations in the mode amplitude will result in
local fluctuations of the mode frequency, necessarily causing
the magnetization distribution to become even more nonuni-
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form. This is exactly the scenario for runaway spin wave
growth that was considered in the original treatment by
Anderson and Suhl.!'”

Similar considerations lead to a physical understanding of
the rapid spin wave growth observed in Ref. 14 in the case of
a small bias field applied along the hard axis of a
Permalloy™ film. When the transverse bias field is approxi-
mately equal to the anisotropy, the linear restoring force act-
ing on the magnetization is compensated and the mode dy-
namics are a strong function of mode amplitude. Thus, any
magnetization dynamics generated in this special geometry
are inherently unstable, leading to spin wave population
growth even in the absence of any pumping field.

Such spin wave instabilities are not operative in SMT
experiments even though it has been shown that the fre-
quency of the excited modes depends strongly on mode
amplitude.?>?* In such experiments, the dynamics result from
the regenerative amplification of persistent nonlinear
self-oscillations.?> This is in sharp contrast to FMR experi-
ments because the observed limit cycles are not the product
of resonant pumping, as is the case for FMR, but are instead
the result of the local compensation of damping by the spin
torque effect. As such, the instigation of magnetization dy-
namics in an SMT experiment is highly analogous to the
population growth of higher order spin wave modes de-
scribed by Eq. (4).

In summary, we were not successful in observing continu-
ous, 360°, self-biased magnetization dynamics in time-
resolved measurements, even though such modes are ob-
served in single-domain simulations that utilize the
dynamical parameters obtained from small amplitude reso-
nant pumping experiments. The failure to excite such modes
is understood in terms of the second-order spin wave insta-
bility that is usually observed in high-field-pumping FMR
studies. Such instabilities would appear to be unavoidable in
the experimental geometry that we have chosen, even though
such instabilities do not limit either large-amplitude free in-
duction decay experiments or microwave emissions from
spin torque nano-oscillators. We conclude that the spin wave
instability is not applicable in the absence of a cw micro-
wave pumping field, as in the case of single-step PIMM stud-
ies, nor is the instability operative when the excited mode is
regeneratively amplified, as is the case for SMT studies.
However, the spin wave instability is a dominant effect in
any experimental geometry where the resonantly pumped
mode has a strong frequency dependence upon the mode
amplitude.
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