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We study a large-N deformation of the S=1/2 pyrochlore Heisenberg antiferromagnet which leads to a
soluble quantum dimer model at leading nontrivial order. In this limit, the ground state manifold—while
extensively degenerate—breaks the inversion symmetry of the lattice, which implies a finite temperature Ising
transition without translational symmetry breaking. At lower temperatures and further in the 1/N expansion,
we discuss an effective Hamiltonian within the degenerate manifold, which has a transparent physical inter-
pretation as representing dimer potential energies. We find mean-field ground states of the effective Hamil-
tonian which exhibit translational symmetry breaking. The entire scenario offers a new perspective on previous
treatments of the SU�2� problem not controlled by a small parameter, in particular showing that a mean-field
state considered previously encodes the physics of a maximally flippable dimer configuration. We also com-
ment on the difficulties of extending our results to the SU�2� case, and note implications for classical dimer
models.
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I. INTRODUCTION

One of the central open questions in the study of frus-
trated systems is what happens when a classically highly
degenerate magnet is subjected to violent quantum fluctua-
tions. A model system which has played an important role in
the discussion of this question is the nearest-neighbor spin-
1 /2 Heisenberg antiferromagnet on the pyrochlore lattice.
This lattice consists of corner-sharing tetrahedra and exhibits
a massive classical degeneracy.1

Very little is known reliably about the quantum model:
exact solutions are unavailable in d=3+1, Monte Carlo
simulations are frustrated by the sign problem, and the pyro-
chlore lattice—being three dimensional and having a unit
cell of four spins—does not yet lend itself to exact diagonal-
izations.

In an important, if somewhat cryptic, initial piece of ana-
lytical work back in 1992,2 Harris, Berlinsky, and Bruder
�HBB� took the approach of considering the bonds belonging
to one of the two sublattices—“weak bonds”—of tetrahedra
perturbatively �the tetrahedra of the pyrochlore lattice are
arranged on the bipartite diamond lattice, which in the cur-
rent context can usefully be thought of as two interpenetrat-
ing face-centered-cubic lattices, see Fig. 1�. The tetrahedra
on the other sublattice, where the “strong bonds” reside, are
thus initially decoupled with doubly degenerate dimerized
singlet ground states, parametrized by a pseudospin �. The
basic idea of HBB is then to switch on the weak bonds per-
turbatively, thus generating an effective interaction between
the �’s on different sites. This interaction determines the
eventual ground state, and in itself defines a difficult quan-
tum problem.

A number of authors have since developed ideas based on
expansions for pseudospins on an fcc lattice.3–5 Tsunetsugu’s
detailed work extended the scope of the mean-field theory,3

while Berg, Altman, and Auerbach implemented a sophisti-

cated numerical procedure projecting the Hamiltonian onto
this Hilbert space.5

These approaches have in common that their starting
point has a lower symmetry than the initial Hamiltonian, as a
distinction between the two sublattices of tetrahedra discards
the inversion symmetry of the pyrochlore lattice. In the same
spirit, a perturbation theory in the weak bonds but for the full
density matrix, which unlike the previous papers does not
impose a restriction to the dimerized singlet subspace, at any
rate found spin ordering to be absent but did not study the
presence of bond ordering.6

In this paper, we take a different route by considering a
Hamiltonian with an enlarged internal, rather than reduced
point, symmetry: we study the spin-1 /2 problem on the py-
rochlore lattice via a large-N quantum dimer model ap-
proach. This approach does not expressly break the symme-
try between the two sublattices of tetrahedra. It provides an
�artificial� small parameter, 1 /N, which we will use to obtain
an analytical solution to the first nontrivial order of the quan-
tum dimer model.

Very unusually, we find that the quantum dimer model
generated at O�1/N� is exactly soluble.7 There turns out to be

FIG. 1. The pyrochlore lattice, a network of corner-sharing tet-
rahedra. The tetrahedra on the two �“up” and “down”� sublattices
are shaded differently. The centers of the tetrahedra of either sub-
lattice form a face-centred-cubic lattice.
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a phase transition in the Ising universality class at a tempera-
ture T�O�1/N�, where the inversion symmetry of the pyro-
chlore lattice is spontaneously discarded. The set of states
selected at this order preserves an extensive entropy.

The question of what happens within this subspace at
higher order in 1/N is closely analogous to that posed in
Refs. 2–5, as the respective starting Hilbert spaces are iso-
morphic. Our approach thus provides a way of reaching this
starting point dynamically, i.e., by spontaneous rather than
explicit symmetry breaking.

We then show that the effective Hamiltonians obtained in
Refs. 2–5 belong to a family which has a simple interpreta-
tion as dimer potential terms in such an approach; as the
natural basis beyond O�1/N� is not a dimer one, however,
they define a quantum Hamiltonian.

These Hamiltonians have been studied using different
approaches.2–5 We show that a supertetrahedral ordering pat-
tern proposed by HBB and Tsunetsugu can be represented by
a simple maximally flippable dimer configuration. We also
show that, within the framework of the mean-field theory,
there are further configurations close by in energy, leading to
numerically small characteristic energies. This implies that if
there is translational symmetry breaking, the final ordering
pattern might not be assumed until a temperature low com-
pared to finite-size gaps in exact diagonalizations or to other
perturbations in real compounds.

Our results thus provide an intuitive picture of the domi-
nant physics captured in a class of theories proposed for the
pyrochlore quantum antiferromagnet. As a by-product, our
results also imply that a classical dimer model on the pyro-
chlore lattice with a simple potential term will have an in-
version and translation symmetry broken ground state with
residual entropy.

In the remainder of this paper, we first introduce the
Sp�N� quantum dimer model �Sec. II�, followed by its exact
solution �Sec. III�. In Sec. IV, we discuss the structure of the
problem at higher orders in 1/N and in Sec. V make a con-
nection to previous work via the idea of maximally flippable
dimer configurations. After some remarks on further exten-
sions �higher-order loops, other lattices and SU�2� spins,
Secs. VI–VIII�, we close with a short discussion of further
questions raised by this approach.

II. THE Sp„N… DIMER MODEL

An Sp�N� dimer model is obtained from an SU�2� spin
problem via enlarging the symmetry of spin space from
SU�2��Sp�1� to Sp�N�. Rewriting the Heisenberg Hamil-
tonian in terms of operators sij

† , which create a singlet on the
bond between spins i and j, gives

H = − J�
�ij�
	sij

† sij −
1

4N2
 , �2.1�

where N=1 for SU�2��Sp�1�. The same form of H holds for
the generalization to Sp�N�, with sij

† now creating Sp�N� sin-
glets. Details for this and the following steps are provided in
the Appendix.

A. The dimer model at leading order

A hardcore dimer model is obtained from this Hamil-
tonian at leading order8 as one takes N→�.9 At this order,
any nearest-neighbor dimer covering is an orthogonal, de-
generate eigenfunction of the Sp�N� Hamiltonian, with the
ground state energy per site of E0=−J /2.

The ground state is thus exponentially degenerate in the
volume of the system, although the precise value of the de-
generacy for three-dimensional lattices is not known. As the
temperature is lowered below T�1, the Sp�N� magnet enters
the dimer manifold of ground states. It is possible in prin-
ciple that this manifold already incorporates some form of
order, in which case this would happen via a phase transition.
However, it appears more likely that the correlations aver-
aged over the dimer manifold remain short-ranged for the
case of the nonbipartite pyrochlore lattice,10 in which case
the restriction to the dimer manifold has the form of a cross-
over.

The dimer wave functions obtained here are isotropic in
spin space. This means that any further symmetry breaking
occurring at subleading order can only be of a spatial variety.

B. Derivation of the quantum dimer model

The degeneracy between different dimer coverings exists
only at leading order; at higher order, the model acquires a
nontrivial quantum dynamics. This dynamics is determined
along the lines pioneered by Rokhsar and Kivelson in the
context of the SU�2� Heisenberg model.11 They derived a
Hamiltonian in the space of dimer coverings by formally
carrying out an expansion in a parameter x which in fact has
the finite value of 1 /2, as we will briefly describe below.11,12

In the Sp�N� model, this parameter is �artificially but� truly
small: ��1/2N. The derivation of the dimer Hamiltonian is
hence completely analogous, albeit rigorously organized, in
the orders of the small parameter. Details are again given in
the Appendix.

At O��1�, the resulting quantum dimer Hamiltonian is
very simple. It reads

HQDM = 2J�� . �2.2�

Here, � stands for a resonance term around a closed loop of
length four, i.e., a kinetic term which exchanges occupied
and empty links if they alternate around such a loop. Note
that this quantum dimer model, unlike the Rokhsar-Kivelson
one,11 only contains a kinetic term.8

III. EXACT SOLUTION OF THE QDM: PARTIAL ORDER
BY DISORDER

The quantum dynamics induced by Eq. �2.2� can only
lead to resonances between two dimer configurations which
can be transformed into one another by moving exactly two
dimers. Such moves are only possible for two dimers on a
single tetrahedron, as the shortest closed loop not confined to
a single tetrahedron has length six and therefore would re-
quire moving three dimers in order to satisfy the hardcore
constraint in both the initial and final configurations. On a
single tetrahedron, there are three possible dimerizations in
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Sp�N�, and the Hamiltonian matrix elements between them
read, at this order

Htet = 2J��0 1 1

1 0 1

1 1 0
 . �3.1�

This matrix has one nondegenerate eigenvalue 4J� with cor-
responding eigenvector ��A�= �1,1 ,1� /�3. The other two ei-
genvalues are degenerate at −2J� and eigenvectors ��+�
= �1,� ,�2� /�3 and ��−�= �1,�2 ,�� /�3, with ��exp�2�i /3�.
These two eigenvectors form an E representation of the tet-
rahedral group Td. Note that the asymmetry of the spectrum
under J↔−J is a manifestation of our inability—in contrast
to the case of the square11 and triangular13 lattices—to
choose the sign of the overlap matrix elements at will.

A single tetrahedron at this order is thus occupied by zero
or one dimers and gains no energy from resonance moves, or
it is occupied by two dimers, in which case it gains an energy
−2J��0. We thus need to maximize the number of tetrahe-
dra occupied by two dimers.

As the number of dimers equals the number of tetrahedra,
this is done by putting no dimers on one half of the tetrahe-
dra, and two each on the remaining tetrahedra. As two tetra-
hedra with two dimers each cannot be neighbors, and as the
tetrahedra reside on the bipartite diamond lattice, this implies
that one sublattice of tetrahedra, containing the “down” tet-
rahedra, say, is empty, whereas the “up” tetrahedra have two
dimers each. This gains an energy of −2J� per up tetrahe-
dron, and hence −J� /2 per site.

The quantum dimer model up to this order thus spontane-
ously breaks the inversion symmetry through the sites of the
pyrochlore lattice �this operation exchanges up and down
tetrahedra�; the point group is broken down from Oh to Td.
This is a model where such symmetry breaking can be dem-
onstrated to occur; this feature is not unimportant as most
treatments use this symmetry breaking as part of the starting
assumptions. We also note that this is a rare case where a
quantum dimer model is analytically soluble—normally,
finding the solution is a hard problem requiring intensive
numerics in itself.7

Despite this symmetry breaking, the ground state at O��1�
retains a large degeneracy as each single tetrahedron contin-
ues to exhibit a twofold degeneracy; the residual entropy per
spin is hence S= �kB /4�ln 2, where kB is the Boltzmann con-
stant.

We thus find a transition at which the point group is re-
duced by discarding inversion symmetry, but spin rotational
as well as real space translational symmetries remain intact.
This is an example of �only partial� order by disorder in a
quantum frustrated system.

IV. THE FATE OF THE RESIDUAL DEGENERACY

So far, to O���, we have been fortunate in dealing with a
quantum dimer model with a simple structure. Configura-
tions differing in the distribution of dimers between tetrahe-
dra define disconnected dynamical sectors, the ground-state
energies of which are given by the number of doubly occu-

pied tetrahedra, with the corresponding wave functions being
outer products over tetrahedron wave functions. Note that
such a simple structure is generically absent for other lat-
tices, the leading dimer model typically not being exactly
soluble.

Here, these problems are deferred to the next order, �2,
where the degrees of freedom are given by one pseudospin-
1 /2 for each doubly occupied tetrahedron. For the ground-
state sector, these pseudospins reside on the face-centered-
cubic lattice defined by one sublattice of tetrahedra. These
pseudospins encode the E-representation of Td provided by
the degenerate wave functions ��±�.

Nonetheless, further insight can be gained by continuing
to use a dimer basis, on the understanding that a diagonal
operator in the dimer basis will not be diagonal in the pseu-
dospin basis. This approach will lead us to a simple interpre-
tation of the effective Hamiltonians of Refs. 2–5. Such a
connection is possible as, formally, the pseudospins on a
face-centered-cubic lattice are also the starting point of those
studies, where the three �linearly dependent� SU�2� dimer
coverings of an isolated tetrahedron reduce to a two-
dimensional E representation.

A. Effective Hamiltonians

Let us consider the possible dimer operators we can write
down beyond the ones for the loops of length 4 already in-
cluded at O���. The next simple kinetic term is that for a
hexagon, ˝, which is in principle generated at O��2�. How-
ever, such a term moves dimers from the occupied sublattice
of tetrahedra to the unoccupied one, and thus does not have a
matrix element of O�1� within the pseudospin subspace in
which we are doing degenerate perturbation theory. It will,
however, contribute via a “virtual” process by first shifting
three dimers onto the empty tetrahedra and then back again.
This process is diagonal in dimer basis, pictorially repre-
sented by a potential term of the form

�4.1�

where the symbol stands for an operator which
projects out the states with zero amplitude of dimer occu-
pancy on the three bonds of the occupied tetrahedra of a
given hexagonal loop. Here, the symbol �

˝

implies a sum
over all such hexagonal loops.

The physics of this term is most transparent in the dimer
basis. However, it is off-diagonal in the basis of states we are
doing perturbation theory in. Let us therefore rewrite the
dimer potential term in pseudospin basis.

To do this, we write the wave function on each occupied
tetrahedron in terms of two angles, � and 	:

�	,�� � sin��/2�exp�i	/2���+� + cos��/2�exp�− i	/2���−� .

�4.2�

Next, we observe that the probability of finding a dimer on a
given link of the tetrahedron is given by
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�1 + sin �i cos�	i − 

˝,i��/3, �4.3�

where 
o,i=0, ±2� /3 according to which of the three pos-
sible dimer pairings is selected.

Using this parametrization, the potential term for the
pseudospins on the face-centered-cubic lattice has the form

Hfcc = − �̋ �
i=1

3

�1 + sin �i cos�	i − 

˝,i��/3. �4.4�

Here, the angles 
o,i depend on the loop under consideration
and are such that 	=
o,i together with �=� /2 corresponds to
the state which maximizes the dimer amplitude on the link
which forms part of the hexagonal loop. Put another way, the
factors in the product are the probabilities of finding dimers
on the respective links. The sum on i runs over the tetrahedra
to which these links belong.

This form can in turn be rewritten by introducing pseu-
dospins �represented by Pauli matrices �� on each tetrahe-
dron with the quantization axis along the azimuthal axis �
=0, and êo,i denoting the preferred directions 	=
o,i and �
=� /2:

Hfcc = − �̋ �
i=1

3

��1 + �� + �� i · ê
˝,i�/3. �4.5�

For the hexagonal potential, H
˝

, one has �=0. ��0 corre-
sponds to an additional potential term involving only two
dimers on a hexagon, pictorially represented as .

The form of Hfcc is in fact the same as that of the effective
Hamiltonians obtained in Refs. 2–5. The intermediate steps
in the algebra differ between Sp�N� and SU�2� on account of
the nonorthogonality of the dimerizations of a tetrahedron in
SU�2� �see Sec. VII�. This makes the sum of all three dimer-
izations, �1,1 ,1� /�3 vanish for SU�2�, rather than it being a
linearly independent state, as in Sp�N�. As a consequence,
the vector with maximal dimerization in the first entry,
�−2,1 ,1� /�6 in Sp�N�, corresponds in SU�2� to �0,1 ,1� /�2,
which encodes the triplet on that bond pair.

As a result, the 
o,i are shifted by �. However, in the end
the effective SU�2� Hamiltonians correspond to dimer poten-
tials like H

˝

�Eq. �4.1�� in the same way that Hfcc does. This
common equivalence states in a crisp geometrical form that
both the Sp�N� �Eq. �4.5�� and the SU�2� effective Hamilto-
nians of Refs. 2–5 encode dimer potentials.

B. Mean-field theory for Hfcc

Even with the restriction to this class of Hamiltonians,
one is still left with the hard problem of minimizing Hfcc,
which has the form of a S=1/2 Heisenberg model with spin-
orbit coupling.

A proper quantum mechanical treatment of this problem is
beyond the scope of this paper. Rather, to shed some light on
the physics unearthed in previous studies, we considered this
problem in a mean-field theory, treating the pseudospins-1 /2
as being effectively classical.2–4

For �=0, we have considered four sublattice
configurations—akin to the ones of Refs. 2–5—analytically,
and checked the result by a numerical search, although we

have not systematically looked for configurations with larger
unit cells. The best state we have discovered is described by
angles ��� /2 and �	i�= �0,0 ,�−� ,�+��, where �
=arccos�7/8��0.5054. It is represented in Fig. 2.

This state has an energy per loop �and therefore per spin�,
, with =−289/3456�−0.08362. The highest possible en-
ergy, realized for 	i��, gives =0. Even a state with �
significantly different can have a closeby energy: for ex-
ample, for �=0, one obtains =−1/12�−0.08333. This
state has a higher symmetry as it only represents a two-
sublattice ordering.

As � is changed, � evolves, and it passes through �
=� /3 at �=−1/2; this point is special as it in fact becomes
possible to disorder one of the four sublattices at zero cost in
energy; this we call Harris-Bruder-Berlinsky-Tsunetsugu
�HBB-T� state. For �=0, this configuration �	i�
= �0,	2 ,2� /3 ,−2� /3� is no longer optimal in our case but
still rather close: =−35/432�−0.08102.

These results raise two points. The first is the observation
that the particular four-sublattice ordering with one disor-
dered sublattice is not entirely generic, as even in mean-field
theory, it does not correspond to an extended parameter re-
gion in �.

The second is the recurring theme of the emergence of a
numerically small energy scale. There are configurations the
symmetry properties of which differ significantly but whose
energies are very similar. The configurations discussed above
are degenerate at O��0� and O��1�, and their variational en-
ergies with respect to Hfcc differ only by a few percent.

These facts suggest that the magnet will break transla-
tional symmetry—by assuming whatever ordered configura-
tion it chooses—only at very low temperatures, provided
quantum fluctuations do not prevent this ordering altogether.

V. THE HBB-T STATE AS A DIMER STATE

Given that the Hamiltonian Hfcc is most simply written in
dimer basis, it is natural to ask whether the mean-field

FIG. 2. �Color online� Representation of the configurations with
quadrupled unit cell. Top: the numbers on the tetrahedra indicate the
sublattice, and the four inequivalent hexagonal loops are shown �by
solid, dashed, dot-dashed, and dotted bonds, respectively�. Bottom:
For the configuration with �	1 ,	2 ,	3 ,	4�= �0,0 ,�−� ,�+��, and
�i�� /2, the different dimer probabilities on the sublattices are
indicated by bonds of different width and varying grayscale. For
this configuration, the dotted and the dot-dashed loops �red� have
the same energy.
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ground states have a natural interpretation in terms of dimer
coverings. This is most pertinent for states with angles �
=� /2 and 	 integer multiples 2� /3, as these correspond to
maximal dimer amplitudes on one of the three pairs of links,3

and are thus naturally identified with a hardcore dimer con-
figuration.

The HBB-T state in fact has a very simple interpretation:
it can be represented as the dimer configuration with the
maximal number of flippable hexagons, that is to say as the
ground state of the classical dimer model with a hexagonal
potential of the type H

˝

�Eq. �4.1��. Why one sublattice of
tetrahedra remains disordered for the maximally flippable
configuration also becomes apparent in this language.

As an aside, we note that the appearance of such maxi-
mally flippable configurations is a generic feature of quan-
tum frustrated systems. In a nutshell, a large number of flip-
pable loops implies a wide range of possible fluctuations,
and hence undetermined degrees of freedom. These the per-
turbation can make use of by arranging them to its liking.
Such a route to quantum order by disorder14 has been dis-
cussed in detail in the context of frustrated transverse field
Ising models.15

To demonstrate this, we first need to show which classical
dimer states optimize this problem; then, we render the
HBB-T state in a way which makes its identity manifest.

In the case where the 	 do not equal integer multiples of
2� /3, one can of course still interpret the configurations in
terms of flippable loops. The four-sublattice configuration
�0,0 ,�−� ,�+�� discussed above thus corresponds to three
inequivalent loops �two for �=0�, which are shown in Fig. 2.

However, the identification with hardcore dimer configu-
rations becomes problematic as the dimer amplitudes �i� on
the bonds are no longer extremal and �ii� around a loop are
not uniform.

A. Maximally flippable configurations

To maximize the number of flippable hexagons, n
˝

fl , we
note that the hexagons lie in the �111� kagome planes, and
that each bond of the pyrochlore lattice is part of hexagons in
two different planes, e.g., �111� and �−1−11�. Thus each
dimer can be part of at most two flippable hexagons; as the
number of hexagons, n

˝

, equals the number of spins, and
hence twice the number of dimers, and as three dimers are
needed for a flippable hexagon, this provides an upper limit
of n

˝

fl /n
˝

=1/3.
However, it turns out to be impossible to saturate this

bound, as can be seen by explicitly constructing configura-
tions which are locally maximally flippable. Consider first a
configuration with independently flippable loops. In this
case, one needs at least three dimers per resonant loop, and
one obtains for the upper bound n

˝

fl /n
˝

=1/6. A more favor-
able state would be one in which two flippable hexagons
share one dimer in two different kagome planes, e.g., �111�
and �−111�. For such a local configuration one needs at least
five dimers for each pair of resonant loops, and this yields
the upper bound n

˝

fl /n
˝

=1/5.
This local configuration might in principle be used as a

building block for a new configuration if other dimers are

added locally to form other flippable hexagons. There is only
one possibility of adding a sixth dimer to build a third flip-
pable hexagon, and this automatically yields a forth one,
with one flippable hexagon in each kagome plane. This local
configuration of four flippable hexagons, constructed by six
dimers, has the form of a flippable supertetrahedron shown
in Fig. 3.

This flippable supertetrahedron has four dimer-free tetra-
hedra at its corners. None of the dimers emanating from the
outer vertices of these tetrahedra can be part of a flippable
hexagon, and thus at least two dimers are lost �four dimers
each shared between two flippable supertetrahedra�.

To obtain four flippable hexagons, one thus needs to in-
vest 6+2=8 dimers, and hence 16 sites. As the number of
sites equals the number of hexagonal loops, this establishes
the upper bound of

n
˝

fl /n
˝

� 1/4.

A consequence of the local flippable supertetrahedron
structure is that an optimal configuration, with n

˝

fl /n
˝

=1/4,
automatically breaks the inversion symmetry, i.e., all up-
tetrahedra contain two dimers and all down-tetrahedra are
dimer-free.

As an aside, we note that a classical attractive potential
for dimer pairs on a tetrahedron would have selected the
dimer manifold �with entropy kB ln 3 /4 per site� with all
dimers on one sublattice of tetrahedra. The attractive hexago-
nal loop term �by itself or in combination with this term� in
addition imposes the creation of the supertetrahedra.

B. Connection to the HBB-T state

An optimal flippable supertetrahedron tiling is shown in
Fig. 4. The dimers which do not take part in the flippable
supertetrahedron formation are found on the ?-tetrahedra in
Fig. 4�a� and may be chosen freely. The ground-state degen-
eracy of the optimal configuration therefore remains macro-
scopic, and the entropy per site is S�2 = �kB /16�ln 2.3 Because
the up-tetrahedra form an fcc-lattice, the ?-tetrahedra now
live on a cubic lattice and connect the flippable supertetrahe-
dra. This is reminiscent of the HBB-T state; indeed, the car-
toon for this state is precisely our state of flippable supertet-
rahedra, see Fig. 4, where we have shown the flippable
supertetrahedra, together with the dimer configurations on

FIG. 3. A flippable supertetrahedron consists of six dimers,
which form four flippable hexagons in the four �111� kagome
planes, and four surrounding dimer-free tetrahedra of the down-
sublattice, such as �1234�.
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the shaded tetrahedra as dictated by the HBB-T state. How-
ever, by focusing on the up-tetrahedra, rather than the flip-
pable loops, the geometry is harder to visualize.

One may ask whether there exist other tilings of flippable
supertetrahedra which are also optimal. Indeed, if one
chooses the ?-tetrahedron in the cubic lattice cell in Fig. 4�b�
in such a manner that its dimerization coincides with that of
the tetrahedron at lattice point �110� �3-dimerization�, one
may displace one layer of cubes with respect to a neighbor-
ing layer in the �110� direction, as indicated by the gray
arrow.

However, this one choice forces us to fix the dimerization
of all ?-tetrahedra at the interface of the displacement. The
resulting interface energy will thus generically win over the
displacement entropy and lift this degeneracy.

VI. HIGHER-ORDER LOOPS

In the absence of an exact solution at O��2�, our present
approach does not per se justify pursuing the physics of

longer loops. For completeness, however, we mention some
geometric facts about the entropics of the residual degrees of
freedom in the dimer model with the uniform four-sublattice
ordered state, with one disordered sublattice, as a starting
point. We will discuss this topic more completely
separately.16

The as yet undetermined dimers can only participate in
virtual resonance loops of length 12 �involving moving six
dimers�. One rather contorted loop can connect a pair of
nearest-neighbor ?-tetrahedra �Fig. 5�. The other involves
three ?-tetrahedra which are mutually next-nearest neighbors.
This is displayed in Fig. 6�a�.

The nearest-neighbor loop can only �virtually� resonate if
the dimers are oriented perpendicular to the line joining the
?-tetrahedra, and it thus favors the formation of rods of
?-tetrahedra with identical alignment, somewhat reminiscent
of the supertetrahedral ordering pattern found in Ref. 5.

The next-nearest-neighbor loops only connect tetrahedra
living on the same sublattice of the �bipartite� cubic lattice
on which the ?-tetrahedra reside. Trying to maximize the
number of flippable next-nearest-neighbor loops thus leads to
two identical copies of the same problem. Amusingly, the
maximally flippable next-nearest-neighbor loop configura-
tion is self-similar: one now finds flippable
�super�2tetrahedra, with one out of four ?-tetrahedra remain-
ing again undetermined �Fig. 6�b��.

The maximal total number of flippable loops of length 12
is obtained by taking the two copies of this flippable
�super�2tetrahedron state and arranging the ?-tetrahedra to
satisfy the rod-arrangement dictated by the nearest-neighbor
loops.

VII. THE SU(2) LIMIT

The Rokhsar-Kivelson quantum dimer model for SU�2�
spins is based on an expansion in the same small parameter,
�, appearing in the overlap matrix. However, this parameter
is not infinitesimal—1/2, in fact—and this leads to a certain
arbitrariness in assigning an order to a given matrix element
as a change in its order can be offset by a numerical factor 2.
This is most plainly seen for the case of the constant

FIG. 4. �Color online� Optimal dimer configuration. �a� Gray
tetrahedra form the up-sublattice, and white tetrahedra �dimer-free�
form the down-sublattice. Four flippable supertetrahedra meet in
one ?-tetrahedron of the up-sublattice. The dimer configurations of
these ?-tetrahedra may be chosen arbitrarily. The flippable supertet-
rahedron on the right-hand side is represented in such a manner to
make clear the relation to the mean-field configuration of Ref. 3. �b�
�Color online� Cubic lattice cell of the flippable supertetrahedron
configuration. The flippable supertetrahedron is shown in light red
�light gray�.

FIG. 5. �Color online� Twelve-bond loop connecting two nearest
neighbors of ?-tetrahedra �dashed-dotted line�. The dimerization of
the connected ?-tetrahedra has to be the same.
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1/4N2�O��2� in the Hamiltonian, which in the case of
SU�2� simply becomes a constant 1 /4�O��0�. Here, we
evaluate the matrix elements between two dimer configura-
tions exactly and assign them the order of the overlap be-
tween the two configurations.

On the pyrochlore lattice, the main obstacle lies in the fact
that SU�2� dimerizations of a tetrahedron are not linearly
independent. In the quantum dimer model, this shows up in
the form of a noninvertible overlap matrix S. In such a situ-
ation, Eq. �A5� is no longer meaningful.

One can adopt two different stances with respect to this
observation. First, one can hope that—by continuity—the
large-N physics will nonetheless be relevant to the SU�2�
�Sp�N=1� case. Alternatively, one can decide that SU�2� is
special, and that the physics discussed so far in this paper

will qualitatively have to be modified for the N=1 case.
Here, it is useful to note that one also finds that the reso-

nance energy of a single tetrahedron vanishes—for the SU�2�
RK model, the matrix elements in Eq. �3.1� are zero. Let us
thus sidestep the orthogonality issue by ignoring the length
four loops altogether, with a leading term of the QDM pro-
portional to the hexagonal resonance term −J�2

˝. This is
fundamentally different from Hfcc in that it represents a ki-
netic, and not a potential, dimer term. The ground state of
this quantum dimer model �and whether it breaks the lattice
inversion, or indeed any other symmetry� is not known. Can-
didate variational states for this problem can be constructed
along the lines explored in Ref. 15. One such candidate is the
maximally flippable supertetrahedron configuration dis-
cussed above.

As the flippable hexagons there are not independently
flippable, other candidate states can be constructed to maxi-
mize the number of maximally flippable hexagons; one ex-
ample can be obtained from the proposal of Ref. 17. This has
one in six hexagons flippable and does not break the inver-
sion symmetry. We leave a detailed analysis of this quantum
dimer model as a subject for future study.

VIII. OTHER LATTICES

The approach developed here can easily be extended to
other lattices. However, the exact solubility discovered here
is in general not encountered elsewhere. In fact, the situation
can differ from the pyrochlore one in several respects.16

First, the lattice under consideration may not admit any
dimer coverings. Second, all dimer states may have a fixed
number of flippable shortest loops of even length, thereby
rendering the leading order dimer model trivial. Third, the
shortest loops may be inequivalent or overlapping in a way
so as to destroy the solubility. In addition, the appropriate
low-energy sector may at any rate be better described by a
different type of effective model.18

IX. CONCLUSION

In conclusion, we have presented an exactly soluble de-
formation of the highly frustrated quantum pyrochlore anti-
ferromagnet. This provides an instance in which the inver-
sion symmetry of the pyrochlore lattice by itself is
spontaneously broken.

From an experimental perspective, this is perhaps the
most interesting observation in this paper: upon lowering the
temperature from the paramagnetic phase, the current sce-
nario implies the presence of an initial Ising transition into a
nonmagnetic phase with finite entropy and full translational
and rotational symmetries.

Of course, the presence of such a symmetry broken phase
is in a sense already implicit in the starting points of Refs.
2–5. With respect to these, our approach has provided a
simple physical picture by shedding some light on the “natu-
ral” degrees of freedom arising in such treatments, the

FIG. 6. �Color online� Next-nearest-neighbor loops �thick gray
lines�. �a� Closest packing of 12-bond loops connecting next-nearest
neighbors of ?-tetrahedra �dark gray�. The tetrahedron in light gray
is part of the other square sublattice. The superstructure is again a
flippable supertetrahedron, but with unequal bonds �flippable
�super�2tetrahedron�. �b� Elementary lattice cell of the flippable
�super�2tetrahedron configuration. The ?-tetrahedra on the cubic
sublattice, which are connected by next-nearest-neighbor loops, are
represented by closed circles �black and colored �gray��. The open
circles represent ?-tetrahedra on the second cubic sublattice. The
four resonant next-nearest-neighbor loops are those connecting
AFD, BED, BFC, and AEC.
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hexagonal resonating loops. This reinforces the idea of a
nonmagnetic ordering pattern with an enlarged unit cell.

Our work therefore goes some way towards providing a
rationale for the sequences of symmetry-breakings discussed
before.2–5 Whether or not the scenario discussed here pro-
vides the appropriate framework for understanding the
nearest-neighbor S=1/2 pyrochlore Heisenberg antiferro-
magnet remains an open question.
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APPENDIX: THE SP„N… DIMER MODEL

As a first step, one introduces bosonic operators
�“Schwinger bosons”� �b↑ ,b↓� to represent the spin operators
in the following way: Sz= �b↑

†b↑−b↓
†b↓� /2, S+=b↑

†b↓. In order
to represent SU�2� spins 1/2, one needs to supplement the
bosonic description with the constraint nb�b↑

†b↑+b↓
†b↓=1 on

each site.
In terms of these operators, the antiferromagnetic nearest-

neighbor Heisenberg Hamiltonian becomes �J�0�

H = J�
�ij�

Si · S j = − J�
�ij�

�����bi�
† bj�

† /�2����
bi�bj
/�2� − 1/4� ,

�A1�

where Si are spin-1 /2 SU�2� operators. This expression is
formally generalized to Sp�N� by the introduction of an ad-
ditional flavor index for the bosons, which we label by a
capital letter. In Sp�N�, there are N such flavors; the case of
SU�2� corresponds to one flavor: SU�2��Sp�1�. The Sp�N�
generalization, JAB

�
, of the Levi-Civita symbol continues to
be off-diagonal and antisymmetric in the spin index but sim-
ply diagonal in the flavor index: JAB

�
 =��
�AB. We define the
singlet �hereafter called dimer� annihilation operator for
bond �ij�:

sij � JAB
�� bi�

A bj�
B /�2N , �A2�

where summation over spin and color indices is implicit. The
Sp�N� Hamiltonian reads

H = − J�
ij
	sij

† sij −
1

4N2
 . �A3�

1. The dimer model at leading order

A hardcore dimer model is obtained from this Hamil-
tonian at leading order8 as one takes N→�.9 To see this,
consider the properties of dimer coverings of the lattice. Let
P denote an ordered pairing of the sites of the lattice and
��P� the corresponding singlet wave function: ��P�
��sp2n−1p2n

† �0�, where �0� is the state with no bosons present
and p2n−1 and p2n are the two members of the nth pair con-
tained in P. n runs from 1 to Ns /2, where Ns denotes the
number of sites.

Any such state ��P� satisfies the constraint nb=1 for every
site. At leading order, O�1/N0�, these coverings are orthogo-
nal, degenerate eigenfunctions of the Sp�N� Hamiltonian:
H��P�=E0��P�, with the ground state energy E0=−JNs /2.
Due to the constraint on the boson number, it is not possible
to have more than one dimer per site, and due to the form of
the Hamiltonian, it is disadvantageous to have less. At
O�1/N0�, the ground states are thus all the hardcore dimer
coverings, denoted by P, of the lattice.

2. Derivation of the quantum dimer model

As the different dimer coverings are not exactly orthogo-
nal, one obtains an overlap matrix, S, between different cov-
erings which has the following schematic form:

S = 1 − �� + �2
˝ + �2� � � + O��3� . �A4�

Here, 1 is the unit matrix, and the symbols �, ˝ denote a
nonvanishing matrix element between two dimer configura-
tions differing in the positions of two and three dimers, re-
spectively.

The signs of the overlap matrix elements cannot be cho-
sen freely; in fact, there is no convention which uniformly
yields a positive sign in front of the � term. This is in con-
trast to the case of the square and triangular lattices, where
this choice is a matter of convention.11,13 However, one is
free to choose the sign of the ˝ terms to be, for example, all
positive or all negative.

We can now formally orthonormalize the basis set by in-
troducing basis states ��p���p��S

−1/2�pp���p��. Here, S−1/2 is
the �symmetric� inverse square root of S, which can be ob-
tained from S by a Taylor expansion in �. The ��p� can be
labeled uniquely by a parent dimer configuration P, as the
other dimer states are admixed only to higher order in �.
Explicitly, orthonormality follows from

��p��q� = �
p�q�

Spp�
−1/2Sqq�

−1/2��p���q�� = �S−1/2SS−1/2�pq = 1pq.

�A5�

The matrix elements of H in the orthogonalised basis now
read

Hpq � ��p�H��q� = �
p�q�

Spp�
−1/2Sqq�

−1/2��p��H��q��

= �S−1/2HS−1/2�pq. �A6�
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This expression is useful as it is also possible to expand
��p��H��q�� in powers of �. It turns out to be convenient to
subtract off the energy of a dimerized state, −J�1
−1/4N2�Ns /2, so that diagonal terms are absent:

��p��H��p��=O��2�, and the expansion of the Hamiltonian
matrix contains no terms of O��0�. Thence

HQDM = S−1/2HS−1/2 = 2J�� + O��2� . �A7�
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