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We investigate the electron density distribution and the stability of stripe phases in a realistic two-band
model with hopping elements between eg orbitals at Ni sites on the square lattice, and compare these results
with those obtained for the doubly degenerate Hubbard model with two equivalent orbitals and diagonal
hopping. For both models we determine the stability regions of filled and half-filled stripe phases for increasing
hole doping x=2−n in the range of x�0.4, using the Hartree-Fock approximation for large clusters. In the
parameter range relevant to the nickelates, we obtain the most stable diagonal stripe structures with filling of
nearly one hole per atom, as observed experimentally. In contrast, for the doubly degenerate Hubbard model
the most stable stripes are somewhat reminiscent of the cuprates, with half-filled orbitals at the domain wall
sites. This difference elucidates the crucial role of the off-diagonal eg hopping terms for the stripe formation in
La2−xSrxNiO4. The influence of the crystal field is discussed as well.
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I. STRIPE PHASES IN NICKELATES

Stripe phases are one of the most exciting phenomena of
modern condensed matter physics. They have been observed
in a variety of systems, including nickelates,1–4 cuprates,5,6

and manganites.7,8 Among them, layered La2−xSrxCuO4
�LSCO�, La2−x−yNdySrxCuO4 �Nd-LSCO�, La2−xSrxNiO4
�LSNO�, and La2NiO4+� �LNO� compounds play plausibly
the most prominent role. However the similarity between
them is superficial only, and the stripes in the cuprates differ
from the stripes in the nickelates in many respects. For in-
stance, they are dynamical in the former, and static in the
latter. In addition, in Nd-LSCO �Ref. 5� and LSCO,6 one
finds the so-called half-filled stripes, with the density of one
doped hole per two atoms along the domain wall �DW�. In
contrast, it is clear from a variety of experiments that mag-
netic states within doped NiO2 planes of the nickelates are
filled stripes with density of one doped hole per one atom in
a DW.1–4

The question of filling is not the only difference between
the nickelate and cuprate stripes, however. Neutron diffrac-
tion measurements performed on Nd-LSCO revealed that
magnetic peaks are displaced from the antiferromagnetic
�AF� maximum at QAF=��1,1� to the points Qs

=��1±2� ,1� and Qs=��1,1±2�� and the shift � depends
linearly on hole doping x for x�1/8, while it is almost con-
stant at higher doping. These values correspond to a super-
position of vertical �01� and horizontal �10� DWs. The essen-
tially identical modulation and doping dependence of � was
observed in superconducting crystals of LSCO with x
�0.05. Conversely, experiments on LSNO established that
spin order is characterized by the wave vectors Qs

=��1±� ,1±�� with ��x for x�1/3, corresponding to a
constant charge of one hole per Ni ion along a diagonal DW,
in agreement with the theoretical predictions of the stripe
order made in the pioneering works by Zaanen and
Gunnarsson9 and others,10 and emphasized recently.11 More
precisely, neutron scattering measurements have revealed
static stripe order in the LNO samples with �=0.105, 0.125,
as well as 0.133,12 and even over a wider hole doping regime
0.135�x�0.5 in the case of LSNO.1–4 Moreover, the in-
commensurate �IC� stripe order persists up to x=0.7 in the
Nd2−xSrxNiO4 system,13 in which the low-temperature ortho-
rhombic phase seems to extend to a higher-doping region x
�0.45 as compared to the La compounds, where the high-
temperature tetragonal phase is stabilized instead already at
x�0.22.1

Indications of a charge order �CO� in doped LSNO were
also found in electron14 and x-ray diffraction studies.15 Quite
recently, the one-dimensional nature of the stripe modulation
within NiO2 planes has been directly confirmed in transmis-
sion electron microscopy �TEM� studies of charge stripes in
LSNO.16 In addition, careful examination of the TEM im-
ages has shown that at a low temperature stripes are mainly
centered on rows of Ni atoms. However, a mixture of the
so-called site-centered �SC� and bond-centered �BC� stripes
was also observed in some small regions of the sample. In
contrast to LSCO, charge and spin order in LSNO is charac-
terized by the wave vectors Qc=2��� ,�� and Qs

=��1±� ,1±�� �see Ref. 17�, respectively, with ��x corre-
sponding to a constant charge density of one hole per Ni ion
along the diagonal stripe. Note that the doping dependence
of � is exactly the same as that found in the seminal Hartree-
Fock �HF� calculations within the Hubbard model.9,10
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Experimentally the data give clear evidence that the stripe
order is most stable at hole doping x=1/3. Indeed, TCO

IC and
TN increase linearly with x, reach a maximum at x=1/3 at
240 and 180 K, respectively, and then decrease monotoni-
cally upon further doping. The particularly robust stability of
stripes at x=�=1/3 stems from the cooperative spin and
charge modulation expressed by the coincidence of the spin
superlattice peaks at the wave vectors �1/2±� /2 ,1 /2±� /2�
with those of CO, given by �� ,��. One should also emphasize
that � starts to deviate gradually from the value given by the
��x law above x=1/3. In fact, CO is even more stable than
the stripe order at x=1/2 and forms a checkerboard pattern
below the transition temperature TCO

C �480 K. Remarkably,
with decreasing temperature, a stripe CO sets in below TCO

IC

�180 K and its incommensurability is twice as large as that
of the spin order with the much lower onset temperature
TN�80 K.3,4 The low-temperature competition of the check-
erboard and stripe order at x=1/2 has also been clearly in-
dicated by the measurements of Raman and optical
conductivity.18,19 Interestingly, above this doping, incom-
mensurability tends to saturate rapidly with the value �
�0.44.13

Apparently, CO itself induces commensurate values of �
and such a commensurability effect seems to be an intrinsic
property of the stripe order. At the same time, the increased
hole density at the DWs suppresses the superexchange en-
ergy gain, best optimized when all the holes are accommo-
dated within stripes. Therefore, it is the AF order that drives
� to approach the value given by the linear relation ��x
below TN. Obviously, when x=1/3, both effects cooperate
which results in the locked-in value of ��1/3 over the en-
tire T�TCO

IC range.
Furthermore, the temperature dependence of the specific

heat CV shows a distinct anomaly at the same temperature
TCO

IC =240 K suggesting a CO transition.20 This conjecture is
supported by the temperature dependence of the logarithmic
resistivity. Indeed, as expected for this transition, ln � of the
sample with x=0.3 exhibits a steep increase precisely at
240 K.21 Charge fluctuations around TCO

IC =240 K also lead to
conspicuous changes in the optical conductivity spectra
��	�;22 namely, at a high temperature T�TCO

IC , only a broad
peak is observed with a finite low-energy spectral weight.
However, when T is decreased down to TCO

IC , the low-energy
weight below 0.4 eV is gradually transferred to higher en-
ergy so that the opening of the charge gap is clearly ob-
served.

A special character of x=1/3 as well as x=1/2 doping is
best seen in the magnetic susceptibility 
 and logarithmic
resistivity ln �, recorded at 200 K, showing distinct anoma-
lies at these doping levels.21 In this context it is important to
discuss a peculiar behavior of the Hall coefficient RH and the
Seebeck coefficient S at two representative values of tem-
perature below and above TCO

IC =240 K, i.e., at 300 and
210 K. The Hall coefficient at 300 K is almost independent
of doping and takes a small positive value corresponding to
the order of one hole carrier per Ni site.23 The Seebeck co-
efficient shows a similar nearly constant behavior taking,
however, a negative value. In contrast, below TCO

IC , both RH
and S change their signs from negative to positive at x

=1/3 and their absolute values are larger than those at
300 K. In addition, for samples with x=0.3 and 0.33, RH
keeps decreasing with decreasing T, so that the number of
carriers per Ni site gets reduced even down to 0.01.

These results indicate that the deviation of x from 1/3 can
be considered as an electronlike �x�1/3� or holelike �x
�1/3� carrier doping into the �=1/3 charge-ordered insula-
tor with three Ni sites in the unit cell. Hence, for the doping
level x=1/3 there is exactly one hole per unit cell and such
a state is robust and may be considered as a half-filled one.
Moreover, it would certainly retain this feature if the incom-
mensurability had followed precisely the relation �=x. How-
ever, � has a tendency to shift toward 1/3, for both sides of
the x=1/3 point, which has important implications for the
sign of RH. On the one hand, when x is less than 1/3, the
number of holes is insufficient for filling up the midgap
states entirely, i.e., the states inside the charge transfer �CT�
gap induced by stripe order, and in this case the midgap
states contain some electrons which become carriers. On the
other hand, for x larger than 1/3, the number of electrons is
insufficient for filling up the lower Hubbard band entirely,
which initially contains holes. Consequently, RH is expected
to have the opposite sign to that in the case of x�1/3 �hole
carriers�.

Next, the chemical potential shift �� in LSNO for x
�1/3 deduced either from x-ray �XPS� or ultraviolet photo-
emission spectroscopy24 is suppressed. Certainly, this phe-
nomenon cannot be explained within a simple rigid-band
framework in which � is expected to shift downward with
increasing hole doping. In fact, an increase of x in a system
with a spatially uniform hole distribution should enhance the
average hole-hole repulsion which, in turn, would result in a
higher energy required to add one hole to the system, i.e., in
a larger ���. Therefore, the absence of �� implies that the
average hole-hole repulsion remains nearly unaltered upon
doping. Such a behavior might be easily explained within a
stripe picture in which a constant hole density at the DWs
implies that the interwall distance decreases and � increases
linearly with increasing x. Moreover, a similar suppression of
the shift has been found below x�1/8 in LSCO, suggesting
that an inhomogeneous charge distribution is a common fea-
ture of both systems.

Several methods have been employed to investigate the
stripe phases which go beyond the HF approximation, such
as density matrix renormalization group,25 slave-boson
approximation,26 variational local ansatz approximation,27

exact diagonalization �ED� of finite clusters,28 analytical ap-
proach based on variational trial wave functions within the
string picture,29 dynamical mean field theory,30 cluster per-
turbation theory,31 and quantum Monte Carlo simulations.32

They all address the crucial role of a proper treatment of
local electron correlations in stabilization of the half-filled
stripe phases in the cuprates. In spite of this huge effort, it
remains unclear whether DWs are centered on rows of metal
atoms as in SC stripes, or if they are centered on rows of
oxygen atoms bridging two metal sites in BC stripes.

Although no evidence was presented yet, it seems that the
degeneracy of 3d orbitals plays an important role in stabiliz-
ing filled stripes in the nickelates. In the simplest picture
developed for the cuprates, the Cu3+ ions forming DWs are
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spinless, while the Cu2+ of the AF domains carry a spin S
=1/2. In the nickelates, filled DWs are formed of the Ni3+

ions �S=1/2�, whereas the AF domains consist of Ni2+ ions
�S=1�. Therefore, a realistic Hamiltonian for LSNO has to
contain, besides the x2−y2 orbital which is occupied by one
hole in the parent compounds of the superconducting cu-
prates �such as La2CuO4 and YBa2Cu3O6�, as well the
3z2−r2 orbital at each ion, so as to account for the high-spin
�S=1� state of the stoichiometric compound. Indeed, when
extending their approach to a more realistic four-band
Peierls-Hubbard model for NiO2 planes, Zaanen and Little-
wood have shown33 that doped holes prone to form diagonal
DWs, centered on rows of Ni atoms, with a tendency to have
a ferromagnetic �FM� alignment of the reduced Ni magnetic
moments at a DW. In fact, subsequent multiband HF calcu-
lations emphasized the relevance of the electron-lattice
coupling—depending on its strength one can obtain either
metal- or oxygen-centered structures.34,35 Therefore, it ap-
pears that the semiclassical theory captures the essence of
stripe physics in the nickelates.

The stripes were also obtained in the theory using either
the HF approximation applied to a multiband CT model, in
which both the nickel and oxygen degrees of freedom are
explicitly taken into account,33–35 or by the ED of finite clus-
ters within the effective two-band model �1� extended by the
coupling of eg electrons to the lattice.36 However, due to a
large number of basis states, the latter calculation has solely
been done for an eight-site cluster which can describe only
stripe phases with small unit cells, observed experimentally
at high doping levels x=1/3 and 1/2. In contrast, the HF
approximation used here allows one to describe charge and
spin modulation within larger unit cells and hence it should
provide an answer to the important question whether the de-
scription of NiO2 planes by the simplified effective eg model
described below yields results consistent with the predictions
of the CT model.33–35 An important aspect of these studies,
qualitatively different from the pioneering work on the cu-
prates where the relevant models yield DWs with nonmag-
netic Cu3+ ions,9,10 is that DWs in the nickelates are formed
of Ni3+ ions carrying a finite spin S=1/2 leading to a FM
polarization around them.

In this work we investigate various stripe phases resulting
from an effective Hamiltonian for eg electrons relevant to the
NiO2 layers, and compare them with those obtained in the
doubly degenerate Hubbard �DDH� model. We use the HF
approximation in order to gain the qualitative insight into
possible stripe phases and their stability. This approach is the
first step to make in order to identify possible generic insta-
bilities toward stripe phases in NiO2 planes, in analogy to the
early work on CuO2 planes which predicted the existence of
stripes in the high-Tc cuprates.9 The HF approximation is
well suited to compare the energies of different types of
magnetically ordered phases—in fact, it approaches the same
limit at large local Coulomb interaction U→ as better
mean-field theories, such as the slave-boson approach or the
Gutzwiller ansatz.37 In addition, the HF method allows for
efficient calculations at low temperatures that are necessary
to obtain unbiased results concerning the stability of various
stripe phases, particularly when the magnetic �and charge�
unit cells are large at low doping. The calculations were per-

formed at finite but sufficiently low temperature �t=100 in
order to avoid additional averaging over degenerate ground
states obtained for certain fillings.

The paper is organized as follows. The models with or-
bital degeneracy are introduced in Sec. II. The energy of
various stripe phases, filled vs half-filled, diagonal vs verti-
cal, together with the influence of the various parameters of
the model, are presented in Sec. III. Their structures are fur-
ther described in Sec. IV, together with the mechanism that
leads to their stability, illustrated by the double occupancy
distribution and by the respective densities of states. The
paper is summarized in Sec. V, where we also present our
main conclusions.

II. TWO-BAND HUBBARD MODELS

Even though the doped nickelate LSNO is isostructural to
its cuprate counterpart LSCO, the electronic degrees of free-
dom in LSNO are more involved. In fact, a minimal realistic
Hamiltonian for LSNO must contain, besides the x2−y2 or-
bital states included in the cuprate oxide models, also the
3z2−r2 orbital states. Such a two-dimensional model of in-
teracting eg electrons in an �a ,b� plane may be written as
follows:

H = Hkin + Hint + Hz, �1�

with two orbital flavors �x��x2−y2 and �z��3z2−r2 forming
a basis in the orbital space. The kinetic energy is described
by

Hkin = �
�ij�

�
���

t��ci��
† cj��, �2�

with

t�� = −
t

4
	 3 ±
3

±
3 1
� , �3�

where t stands for an effective �dd�� hopping matrix element
due to the hybridization with oxygen orbitals on Ni-O-Ni
bonds, and the off-diagonal hopping tij

xz along a and b axes
depends on the phase of the �x� orbital along the considered
cubic direction. The electron-electron interactions contain
only on-site terms, which we write in the following form:

Hint = U�
i

�nix↑nix↓ + niz↑niz↓�

+ �U − 5
2JH��

i

nixniz − 2JH�
i

Six · Siz

+ JH�
i

�cix↑
† cix↓

† ciz↓ciz↑ + ciz↑
† ciz↓

† cix↓cix↑� , �4�

where U and JH stand for the intraorbital Coulomb and Hund
exchange elements. We also used ni�=��ni�� for total elec-
tron density operators, given by the sum of densities in or-
bitals �=x ,z. The last term Hz describes the uniform crystal-
field splitting between �x� and �z� orbitals along the c axis,
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Hz = 1
2Ez�

i�

�nix� − niz�� . �5�

The splitting between the eg orbitals originates from the te-
tragonal Jahn-Teller distortion of the NiO6 octahedron. In
La2NiO4, however, the octahedron where the Ni-O-Ni in-
plane �out-of-plane� bond lengths are 1.95 �2.26� Å,38 re-
spectively, is much less distorted as compared to 1.89 and
2.43 Å bonds in La2CuO4,39 which reflects the difference in
electron filling. In what follows we consider only a realistic
positive Ez favoring, due to elongated octahedra, the �z� elec-
tron occupancy over the �x� occupancy in doped compounds.

In order to elucidate the mechanism leading to the stabi-
lization of the stripes, we also investigate the DDH model. It
is obtained using the hopping matrix

t�� = −
t

2
	1 0

0 1
� �6�

instead of Eq. �3�. Note that the total bandwidth is W=6t in
the eg model and W=4t in the DDH model �at Ez=0�, but the
average diagonal hopping elements are the same—this en-
sures that electrons are approximately similarly correlated
for a given U in both cases, while the electron-electron in-
teractions have the same form as that given by Eq. �4�, pro-
vided one labels the orbitals as x and z.

The model given by Eq. �1� is very rich. Even when re-
stricting oneself to solutions with only two atoms in the unit
cell, one obtains an intricate competition between numerous
FM and AF phases, even on the level of the mean-field �MF�
approximation.40 In particular, we obtained phase diagrams
showing, in the regime away from half filling, a clear ten-
dency toward ferromagnetism for JH�U /4, or at least to the
C-AF phase for JH�0.15U.

Some of the richness of the present model �1� can be
traced back to the peculiar features of the electronic disper-
sion for eg electrons in two dimensions.41 Unlike for spins,
two bands obtained by diagonalizing the Hamiltonian �1� in
the noninteracting limit are nondegenerate �except for some
high-symmetry directions�:42

�k,� = − t�X + Y� + �t�X2 + Y2 − XY − ��X + Y� + �21/2,

�7�

with �= ±1, X=cos kx, Y =cos ky, and

� =
Ez

2t
. �8�

For �=0 the corresponding Fermi surfaces are depicted in
Fig. 1. At half filling one piece of the Fermi surface is build-
ing a “Swiss cross,” while the second one is building a
square. The filling of the upper band is then by 1/4 electron,
while that of the lower band is by 3/4 electron per spin. The
Fermi surface of the upper band shrinks rather fast with in-
creasing doping x and below �=−t �x=0.93� one finds that
this band is empty and all electrons are in the lower band.
However, both bands are partly filled in the doping regime
x�0.4 relevant for the nickelates, and they will both play a
role also when electron interactions are included.

At half filling the edges of the pieces of the Fermi surface
�FS� for both bands are connected by the nesting vectors:
Q1= �0,�� and Q2= �� ,0�. At the same time, the edges of
one piece are connected to the edges of the other one by the
nesting vector Q3= �� ,��. In addition, at half filling both
components of the velocities vanish on their respective
Fermi surfaces. Therefore, several competing instabilities are
expected once the interaction is turned on. Their relative im-
portance can be estimated by computing the spin-spin corre-
lation function in the noninteracting limit for the correspond-
ing wave vectors. In the static limit it reads


S�Q� =
2

N
�
k

�
����

fF��k�� − fF��k+Q��
�k+Q� − �k�

� U���k�U��
† �k�U���k + Q�U��

† �k + Q� . �9�

Here the matrices U�k� diagonalize the hopping matrix Eq.
�3�, and �k� are given by Eq. �7�.

Since ferromagnetism is an expected feature of the model
�1�, we also evaluate the homogeneous spin-spin correlation
functions. It shows an intricate interplay of all the three in-
stabilities �see Fig. 2�. They were all reported, regardless of
the approach �see, for instance Refs. 36 and 40�. One finds
that the van Hove singularity takes place at �=−
3+�2t for
the crystal-field splitting � �see Eq. �8�. At this point the line
where the velocity vanishes has a large component on the
FS, and the singularity is logarithmic. Note that there is no
nesting vector connecting different pieces of the FS, as can

FIG. 1. �Color online� Fermi surfaces of the higher �top� and
lower �bottom� bands, as obtained for different values of the chemi-
cal potential � in the two-band tight-binding model for degenerate
eg orbitals �Ez=0�. Note a different scale for both Fermi surfaces.
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be understood by looking at Fig. 1. Here one finds a distinct
difference between the present eg model and the DDH
model, where instead the FS is nested and takes the shape of
a square for both bands at the van Hove point �for x=0�.
Therefore, nesting and van Hove singularities in the eg elec-
tron model influence the physical properties at different elec-
tron densities than in the DDH model.

In the following the Hamiltonian given by Eq. �1� is
treated in the HF approximation. We introduce explicitly four
“diagonal” expectation values �ni��� and four “off-diagonal”
ones �ci��

† ci���, with � ,�=x ,z and ���, that we determine
self-consistently in order to get a complete characterization
of the ground state. Due to symmetry the last four Fock
averages vanish for a square lattice, and one gets the simpler
MF Hamiltonian

HMF = �
ij,��,�

ci��
† Mij,��,�cj��, �10�

with

Mij,��,� = tij
�� + �ij���Mi�� �11�

and

Mix� = 1
4�

i

��3U − 5JH��ni� − ���U + JH��mi� − �U − 5JH��oi�

− ���U − JH��pi� + 1
2Ez, �12�

Miz� = 1
4�

i

��3U − 5JH��ni� − ���U + JH��mi� + �U − 5JH��oi�

+ ���U − JH��pi� − 1
2Ez, �13�

where we introduced ��= ±1 for �=↑ �↓� spin and ��= ±1
for �=x �z� orbital, and the operators:

ni = �
��

ni��, �14�

mi = �
��

��ni��, �15�

oi = �
��

��ni��, �16�

pi = �
��

����ni�� �17�

for total charge �14� and magnetization �15� density, and for
orbital anisotropy in the charge �16� and magnetization �17�
distributions, respectively.

III. GROUND-STATE ENERGIES

Site-centered and bond-centered stripes represent equally
relevant candidates for the ground state. However, it numeri-
cally turns out that the energy of SC stripes is substantially
larger than that of the BC stripes, in agreement with the early
study of Yi et al.35 �see Table III in Sec. V as well�. We
therefore concentrate on BC stripes. They are made out of
pairs of atoms with a FM spin polarization within the model
Hamiltonian �1� in the wide doping regime 0.05�x�0.4. In
order to obtain unbiased results, we performed calculations
on large clusters implementing the symmetry of stripe phases
in reciprocal space. We worked on squared clusters with the
linear dimension along the x direction chosen as an even
multiplicity of the elementary stripe unit cell dimension.
Their sizes are listed in Table I.

To ensure that the model �1� is indeed relevant for the
nickelates, it is necessary to use realistic values of param-
eters U, JH, and Ez for NiO2 planes. First of all, x-ray ab-
sorption �XAS� measurements,43 as well as the values du-
duced from XPS and bremsstrahlung-isochromat
spectroscopy studies,44 of the electronic structure of LSNO
suggest that LSNO is a CT insulator with nearly the same CT
energy � as that of NiO. Therefore, the same parameters
could be accepted as those used before in the calculations
performed within the self-consistent Born approximation,45

which reproduced quite well photoemission spectra of NiO.
Second, since our approximation has a tendency to overesti-
mate the effect of the Coulomb repulsion in LSNO, we used
a somewhat smaller value of the Coulomb repulsion U than
that adequate for NiO, i.e., we set U=�=5 eV. Next, as the
in-plane NiuOuNi bond length in La2NiO4 of 1.95 Å �see
Ref. 38� is very much the same as the shorter bond of 1.89 Å
in La2CuO4,39 we set the hopping amplitude tpd between the
p� orbitals and �x���x2−y2� orbitals to be as in LSCO, i.e.,
tpd=1.47 eV.46 This in turn yields an effective in-plane Ni-Ni
hopping txx= �tpd

2 /��=0.43 eV. However, it is more conve-
nient to take the effective �dd�� hopping element connecting
two �z���3z2−r2� orbitals along the c axis as the energy unit
t, related to txx via the Slater-Koster relation t=4txx /3
�0.6 eV, so that U�8t.

The value of Hund’s exchange between t2g electrons in
NiO was estimated as JH� =0.8 eV.47 It is related to JH for eg
electrons through the simple relation48

JH = JH� + B , �18�

where B stands for a Racah parameter.49 Taking into account
that B�0.13 eV for NiO2,50 one finds JH=0.93 eV, i.e., JH
�1.5t. Indeed, it has been shown that JH=1 eV reproduces

FIG. 2. �Color online� Static spin-spin correlation functions

S�Q� for eg electrons for increasing doping, as obtained for: �a�
Ez=0 and �b� Ez= t. Different lines correspond to Q= �0,0� �solid
line�, �0,�� �dotted line�, and �� ,�� �dashed line�. van Hove sin-
gularity for Q= �0,0� is obtained at doping higher than that realized
experimentally in nickelate LSNO oxides: �a� x�1.49 and �b� x
�1.68.
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the experimental band gap and the magnetic moment of
La2NiO4.51 Finally, we set Ez= t=0.6 eV as a realistic value
of the crystal-field splitting in the nickelates. On the one
hand, band structure calculations in the local density ap-
proximation predict the crystal field splitting between eg or-
bitals to be 0.5 eV.52 On the other hand, XAS spectra reveal
a somewhat larger splitting of 0.7 eV,53 a value also deduced
from the optical spectroscopy.18

The performed calculations demonstrate a robust ten-
dency towards stripe formation expressed by negative free-
energy gains of the vertical bond-centered �VBC� and diag-
onal bond-centered �DBC� stripe phases with respect to the
AF phase,

�F � FS − FAF, �19�

for the eg model �1�. This energy gain ��F� increases with
doping x, as shown in Fig. 3. The �F curves cross each other
for decreasing distances between DWs d which demonstrates
the tendency to the gradual formation of stripe phases with
smaller unit cells upon increasing doping. Thereby, diagonal
structures are significantly lower in energy than vertical ones
for a given fixed doping, but especially in the large doping
regime x�0.4. The robust stability of the DBC stripe phases
with respect to the VBC ones is illustrated more transpar-
ently in Table I, where we compare the ground-state free
energy F for both structures. Note that a similar variation of
the optimal distance d between DWs suggests the same op-
timal stripe filling.

The main effect of the crystal field splitting is to reduce
the stability of both stripe phases with respect to the uniform
AF phase. This appears to be rather puzzling at first sight.
One finds, however, that realistic positive Ez promotes the �z�
orbitals with a narrow band. On the one hand, the electron

distribution induced by finite Ez suppresses substantially the
AF superexchange energy gain which is driven by Jzz
=4tzz

2 /U rather than by Jxx=4txx
2 /U. On the other hand, one

would expect that such charge redistribution strongly in-
creases the kinetic energy gain due to a wider band acces-
sible for holes, propagating especially easily along DWs

TABLE I. Comparison of the ground-state free energy F for the VBC �left� and DBC �right� stripe phases
as found in the eg model for increasing doping x. Stripes are separated by d=3, . . . ,11 lattice constants in
clusters of size L�L. Parameters: U=8t, JH=1.5t, and Ez=0.

x

VBC DBC

d L�L F / t d L�L F / t

0.05 11 88�88 2.8811 11 88�88 2.8794

0.06 11 88�88 2.8376 11 88�88 2.8326

0.07 11 88�88 2.7946 11 88�88 2.7870

0.08 11 88�88 2.7519 11 88�88 2.7430

0.09 10 80�80 2.7099 10 80�80 2.7001

0.10 10 80�80 2.6677 9 72�72 2.6570

0.11 9 72�72 2.6258 8 64�64 2.6140

0.12 8 64�64 2.5839 7 84�84 2.5712

0.14 7 84�84 2.5001 6 72�72 2.4853

0.16 6 72�72 2.4162 6 72�72 2.3997

0.18 5 80�80 2.3329 5 80�80 2.3130

0.20 5 80�80 2.2485 4 80�80 2.2291

0.25 4 80�80 2.0394 4 80�80 2.0155

0.30 3 72�72 1.8325 3 72�72 1.8029

0.40 3 72�72 1.4619 3 72�72 1.4081

FIG. 3. �Color online� Free-energy gains �F �19� of the VBC
�top� and DBC �bottom� stripe phases with respect to the AF phase
�19� as functions of doping x, obtained at temperature �t=100 for
the eg model. Cluster sizes, distances between DWs d, and param-
eters are the same as in Table I.

RACZKOWSKI, FRÉSARD, AND OLEŚ PHYSICAL REVIEW B 73, 094429 �2006�

094429-6



where the AF order is partly suppressed. Nevertheless, this
energy gain is easily overcompensated by the kinetic energy
loss due to hopping perpendicular to the stripes. In addition,
our studies of the BC stripe phases within the single-band
Hubbard model have shown that the largest kinetic energy
gain is released on the bonds connecting pairs of ferromag-
netically coupled atoms located in the DWs.11 Note that the
FM order of the DW spins is substantially stabilized by the
off-diagonal txz hopping in the eg model, yielding low-energy
charge excitations that lead to the FM superexchange Jxz

=4txz
2 / �U−3JH�. Altogether, when one orbital is sufficiently

favored by finite crystal field over the other one, these low-
energy processes are effectively blocked, explaining the en-
hanced stability of the AF order with respect to the BC so-
lutions �cf. Figs. 3 and 4�.

A further qualitative point concerns the influence of a fi-
nite crystal field splitting Ez between the �x� and �z� orbitals
on the stability of DW structures. As depicted in Fig. 4, a
more realistic value Ez= t seems not to promote noticeably
any stripe phase over another one and one still recovers DBC
stripe phases as the ground state. We therefore conclude that
it is not the crystal field Ez that is responsible for a different
orientation of DWs in the nickelates from that observed in
the cuprates. Later on we shall see that finite Ez has also only
a little visible effect on optimal stripe filling.

Let us now shortly return to the experimental character-
ization of the stripe phases in LSNO. Their periodicity at a
given doping x is described by both charge Qc= ±��2� ,2��
and spin Qs=��1±� ,1±�� wave vectors along the direction
diagonal with respect to the Ni–O bond. The incommensura-
bility � corresponds to the inverse of the distance d between
DWs,1–4 i.e.,

� =
1

d
. �20�

Further, � first increases continuously with doping x and fol-
lows the linear relation �=x in the wide doping range x
�1/3, while next it gradually saturates to the value �
�0.44.4 Such a behavior of � indicates a fixed hole density
of one hole per Ni ion in a DW, and is consistent with the HF
predictions in both the single and multiband models.9,10,33–35

Finally, a fixed hole density along the DWs results in the
pinning of the chemical potential � for x�1/3, whereas a
large ��1 eV/hole� downward shift appears in the higher-
doping regime.24

It is interesting to establish whether the above results con-
cerning the stripe phases in the ground state and their varia-
tion under increasing doping appear solely in the realistic eg
model, or they are generic and remain also a common feature
of the DDH model with only diagonal hopping elements
given by Eq. �6�. To allow a meaningful comparison, we set
the same values of microscopic parameters in both models,
i.e., U=8t, JH=1.5t, and we consider only the Ez=0 case
imposed by symmetry between the equivalent orbitals. It re-
stricts the solutions of the DDH model to �o�= �p�=0 �see
below�.

One finds that the free energy gains �F of the VBC and
DBC stripe phases with respect to the AF phase for the DDH
model �Fig. 5� are qualitatively similar to those of the eg
band model. First of all, for a fixed doping x diagonal stripe
structures are again significantly lower in energy than verti-
cal ones �cf. also Table II�. Second, also in this case we
recover a gradual crossover toward stripe phases with
smaller unit cells upon increasing doping. Note, however,

FIG. 4. �Color online� Free-energy gains �F �19� as in Fig. 3,
but with finite crystal-field splitting Ez= t. Cluster sizes, distances
between DWs d, and parameters are the same as in Table I.

FIG. 5. �Color online� Free-energy gains �F �19� of the VBC
�top� and DBC �bottom� stripe phases with unit cells of length d, as
a function of doping x, obtained for the DDH model. Parameters:
U=8t, JH=1.5t, Ez=0, and �t=100.
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that in contrast to the predictions made within the eg model,
structures with vertical �diagonal� DWs separated by a dis-
tance d�5 are the lowest-energy solutions only in a narrow
doping regime x�0.12 �x�0.15�, respectively.

For a complete characterization of stripe phases we define

� =
Nh

LNDW
, �21�

where Nh is the number of doped holes and NDW is the num-
ber of domain walls. Our findings concerning the properties
of BC stripe phases are summarized in Fig. 6 showing the
doping dependence of the incommensurability �, the stripe
filling �, and the chemical potential � for both the VBC �left�
and DBC �right� stripe phases. These quantities for the re-
spective ground states are deduced from Figs. 3–5. In each
case the data points correspond to the middle of the stability
region of the stripe phase of a given type. The only excep-
tions are the d=3 phases—for them �, �, and � are plotted
for the actual minimum of the free energy F.

In agreement with the experimental data for LSNO, indi-
cated here by a solid line in panels �a� and �b� of Fig. 6, one
observes that � follows the law ��x up to x�0.2 and then it
tends to saturate to the highest possible value for the BC
stripe phase, i.e., �=1/3, as there are no BC stripe phases in
which DWs are separated by d=2 lattice spacings. Further,
in the regime where � follows linearly the doping level x,
decreasing stripe periodicity allows the system to maintain
nearly fixed filling � �cf. Figs. 6�c� and 6�d�, pinning simul-
taneously the chemical potential �, as shown in Figs. 6�e�
and 6�f�. Remarkably, the ground state of both the VBC and
DBC stripe phases is characterized by the optimal filling 0.9

hole/Ni, very close indeed to the experimental value one
hole/Ni ion, and the optimal filling remains almost unaltered
in the model with a finite crystal field Ez= t.

Regarding the chemical potential shift �� in the doping
regime x�0.2, one finds that it exceeds the experimental
value �−1.0 eV/hole nearly by a factor of 2. Indeed, assum-
ing the effective hopping t=0.6 eV, one obtains ���−2.2
�−2.1� eV/hole for Ez=0 �Ez= t�, respectively. Therefore, we
conclude that the present effective model can only explain
qualitative trends and one needs to carry out calculations
within more realistic multiband models with oxygen orbitals
included explicitly in order to obtain quantitatively the ex-
perimental data.

Let us verify now whether the established results concern-
ing the doping dependences of � and � are also obtained
within the DDH model. As the structures with vertical �diag-
onal� DWs separated by a distance d�5 appear in the DDH
model only in a narrow doping regime x�0.12 �x�0.15�,
respectively, one observes here a fast variation of the optimal
distance d which should result in a small optimal stripe fill-
ing. Indeed, as depicted in Figs. 6�a� and 6�b�, the low-
doping part of �, being linear in x, has a larger slope, which
exceeds the experimental value in LSNO roughly by a factor
of 2 �1.5� in the case of the VBC �DBC� stripe phase, respec-
tively. Consequently, the optimal stripe filling in the former
case is substantially reduced down to ��0.55 and in the
latter case—down to ��0.65 �see Figs. 6�c� and 6�d�. Fi-
nally, one finds that the chemical potential starts to decrease
rapidly at x�0.14 in the VBC stripe phase �Fig. 6�e� and at
slightly larger doping x�0.16 in the DBC phase �Fig. 6�f�.

TABLE II. Comparison of the ground-state free energy F per site for the VBC �left� and DBC �right�
stripe phases as found in the DDH model for increasing doping x. Stripes are separated by d lattice constants
in clusters of size L�L. Parameters: U=8t, JH=1.5t, and Ez=0.

x

VBC DBC

d L�L F / t d L�L F / t

0.050 11 88�88 3.1095 11 88�88 3.1000

0.055 10 80�80 3.0912 11 88�88 3.0804

0.060 9 72�72 3.0729 11 88�88 3.0610

0.065 8 64�64 3.0547 10 80�80 3.0417

0.070 8 64�64 3.0364 9 72�72 3.0225

0.080 8 64�64 3.0001 8 64�64 2.9839

0.090 7 84�84 2.9636 7 84�84 2.9454

0.100 6 72�72 2.9269 7 84�84 2.9070

0.110 5 80�80 2.8902 6 72�72 2.8683

0.120 4 80�80 2.8538 5 80�80 2.8301

0.140 4 80�80 2.7807 5 80�80 2.7530

0.160 3 72�72 2.7077 4 80�80 2.6760

0.180 3 72�72 2.6347 4 80�80 2.5996

0.200 3 72�72 2.5626 3 72�72 2.5227

0.300 3 72�72 2.2129 3 72�72 2.1531

0.400 3 72�72 1.8809 3 72�72 1.8116
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IV. MECHANISM OF STRIPE FORMATION

A. Charge and magnetization distributions in the stripe
phases

In order to find out the reason of such a vast discrepancy
between the predictions made in the eg and in the DDH
model, let us now investigate closer the properties of ideal-
ized filled and half-filled DWs: half-filled vertical bond-
centered �HVBC� and half-filled diagonal bond-centered
�HDBC�. A complete characterization of the charge and mag-
netization distributions for a system with orbital degeneracy
is given by: the local hole density x�lx�, local modulated
magnetization density m��lx�, local hole orbital polarization
oh�lx�, and local modulated magnetic orbital polarization
p��lx�, defined using the operators given in Eqs. �14�–�17� as
follows:

nh�lx� = �
�

nh��lx� , �22�

m��lx� = �− 1�lx�
��

��n���lx� , �23�

oh�lx� = �
�

��nh��lx� , �24�

p��lx� = �− 1�lx�
��

����n���lx� . �25�

Here n���lx� is the local orbital charge density for spin �,
whereas nh��lx� denotes the local orbital hole density

nh��lx� = 1 − �
�

n���lx� . �26�

To better appreciate the differences between the DDH and
the eg model, we compare in Fig. 7 the local hole nh�lx� �22�

FIG. 6. �Color online� Doping dependence of stripe phases for
the VBC �left� and DBC �right� ground states: �a� and �b� magnetic
incommensurability �; �c� and �d� stripe filling �; �e� and �f� chemi-
cal potential � �in units of t�, as deduced from the data of Figs. 3–5.
Filled �open� symbols for eg �DDH� model; circles and squares for
Ez=0 and t. Solid lines in �a� and �b� show the experimental behav-
ior of � in LSNO for x�1/8, as given in Ref. 4.

FIG. 7. �Color online� Charge and magnetization distribution in
the filled VBC �left� and DBC �right� stripe phase found in either
the eg model �filled circles�, or the DDH model �open circles� on a
64�64 cluster at doping x=1/8: local hole densities nh�lx� �top
row�; modulated magnetization densities m��lx� �second row�; local
hole oh�lx� �third row�; and local modulated magnetic p��lx� orbital
polarization �bottom row�. For more clarity, the data points for the
DDH model are shifted by one lattice constant from the origin of
the coordinate system. Parameters: U=8t, JH=1.5t, Ez=0, and �t
=100.

MICROSCOPIC ORIGIN OF DIAGONAL STRIPE¼ PHYSICAL REVIEW B 73, 094429 �2006�

094429-9



and the modulated magnetization m��lx� �23� densities of the
filled VBC and DBC stripe phases found at temperature �t
=100 in either model on a 64�64 cluster at doping x=1/8
for the standard parameters, i.e., U=8t, JH=1.5t, and Ez=0.
For completeness we also show the local hole oh�lx� �24� and
the local modulated magnetic p��lx� �25� orbital polarization.
These quantities are finite only in the eg model, while
oh�lx�= p��lx�=0 by symmetry in the DDH model. Since oh is
positive the holes are located in �x� orbitals, and the polar-
ization of the two sites on the DWs is FM �alternation of
signs in p� at the DWs�.

The observed differences, especially pronounced at DW
atoms, directly follow from the fact that a different effect
helping to reduce double occupancy at those sites is effective
in each model; namely, in the eg hopping model �3� one finds
large positive oh�lx� at DWs, which means that it is energeti-
cally advantageous to optimize the kinetic energy of holes by
putting them into the �x� orbitals where the hopping element
txx is larger and gives a wide band. On the one hand, in the
HF the only way to optimize the on-site energy is to develop
a strong spin polarization which, in turn, would noticeably
reduce the kinetic energy gain. On the other hand, such dis-
advantageous suppression can be avoided by a strong reduc-
tion of the electron density. This explains why the hole den-
sity nh�lx� along DWs in the eg model is larger, as compared
to the corresponding value found in the DDH case. Indeed,
in the latter case both bands are equivalent, resulting in
oh�lx�= p��lx�=0. Hence this model yields a more localized
stripe phase with a larger magnetization �m��lx�� at DWs than
the one obtained in the eg model �cf. Fig. 7�.

For completeness, in Fig. 8 we compare the hole density
nh�lx� and the spin density m��lx� profiles of the half-filled
stripe phases. The unit cells are smaller by a factor of 2 and
the amplitude of the charge density wave is correspondingly
reduced. Even though the overall shape of the DWs looks
very much the same in both models, a larger magnetization
�m��lx�� at DWs is found again within the DDH Hamiltonian
�6�.

B. Double occupancy distribution

Furthermore, important information about the nature of
stripe phases is provided by the averaged intraorbital double
occupancy at site lx,

D�lx� = �
�

n�↑�lx�n�↓�lx� , �27�

as well as by two local interorbital double occupancies

Dxz
��̄�lx� = �

�

nx��lx�nz�̄�lx� , �28�

Dxz
���lx� = �

�

nx��lx�nz��lx� , �29�

where �̄=−�. In a system with isotropic charge distribution
the double occupancies are site independent, while in stripe
phases they vary with a characteristic periodicity following
from the size of the stripe unit cell. Due to the structure of

the Coulomb interaction Eq. �4� one expects D�Dxz
��̄�Dxz

��

for a fixed hole density. In a stripe phase these double occu-
pancies are locally suppressed by the magnetic and orbital
polarizations in a way that depends both on the shape of the
stripe, and on the form of the one-electron Hamiltonian. Let
us first discuss the average double occupancies �27�–�29� of
the stripe phases depicted in Fig. 7. Remarkably, in the DDH
model �open circles in Fig. 9� the on-site energy is predomi-
nantly optimized by the reduction of the high-energy con-
figurations with opposite spins which lead to intraorbital
D�lx� and interorbital Dxz

��̄�lx� double occupancies, so that the
system might create a large number of DWs in the unit cell
even in the low-doping regime, consequently reducing the
optimal stripe filling. Such a strong reduction of the double
occupancies for opposite spins follows from the diagonal
hopping which gives a weaker electronic mixing between the
sites of opposite spin due to a lower kinetic energy.

In contrast, in the eg model �filled circles in Fig. 9�, the
Coulomb energy is mainly optimized by the reduction of the

FIG. 8. �Color online� Charge and magnetization distributions in
the half-filled HVBC �left� and HDBC �right� stripe phases found in
either the eg �filled circles� model, or in the DDH model �open
circles� on a 64�64 cluster at doping x=1/8. The meaning of the
different panels, shift of the DDH data, and parameters as in Fig. 7.
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low-energy interorbital Dxz
���lx� double occupancy resulting

in a smaller magnetization �m��lx�� at DWs as compared to
the one found in the DDH model. However, reduced �m��lx��
at those sites allows the system to better optimize the kinetic
energy gain which then overcompensates a large on-site en-
ergy only when the optimal filling is close to one hole per Ni
site, meaning that for a given doping level, the DWs should
be separated by a larger distance as compared to predictions
made in the DDH model. On the other hand, the robust sta-
bility of the DBC stripe phases with respect to the VBC ones
can be understood as following from a stronger reduction of
all double occupancies �27�–�29� in the former phase. In fact,
the doubly occupied configurations cannot be then excited by
virtual processes between the nearest neighbor DW sites, de-
screasing the total energy.

In case of half-filled stripes �Fig. 10� the double occupan-
cies for opposite spins D�lx� and Dxz

��̄�lx� are only slightly
lower than for filled stripes, but the interorbital double occu-
pancy for equal spins Dxz

���lx� is significantly higher, reflect-
ing the higher electron filling at DW atoms in these phases.
Due to the finite Hund’s exchange considered here, JH
=0.15t, the high-spin states are promoted. Altogether one
finds similar generic features seen above for the filled stripes
�Fig. 9�: �i� both double occupancies for the opposite spins
are stronger reduced in the DDH model, and �ii� the double

occupancy by the same spin Dxz
�� at the DWs is stronger

suppressed in the eg model, resulting from a smaller magne-
tization at these sites than in the DDH model. This second
effect seems to play a role in stabilizing the HDBC stripe
phase in the DDH model rather than the DBC phase, found
for the realistic eg model.

C. Densities of states

Important differences between the two models strongly
influence the density of states �DOS�. Here we first deter-
mine the DOS projected on the � orbital as

N��	� =
1

N
�
k

�
i�

��i���k��2��	 − �k�� , �30�

where �i���k� are the eigenvectors of the MF Hamiltonian
Eq. �10�. It is calculated using a histogram of the correspond-
ing eigenvalues. It is apparent from Figs. 11 and 12 that the
spectra consist of several subbands. Note that two Hubbard
subbands are well visible both for filled and half-filled diag-
onal BC stripes: the lower Hubbard band �LHB� and upper
Hubbard band �UHB�. The Hubbard subbands arise primarily
due to the AF polarization and the gap between them is pro-
portional to the magnetization.

Panels �a� and �b� in Figs. 11 and 12 show the DOS N��	�
�Eq. �30�, projected on the orbital �x� and �z�, respectively.
Here, one finds that the midgap bands have mainly �x� char-

FIG. 9. �Color online� Double occupancy distribution in the
filled VBC �left� and DBC �right� stripe phase shown in Fig. 7:
intraorbital double occupancy D�lx� �top row�, and two local inter-
orbital Dxz

��̄�lx� �middle� and Dxz
���lx� �bottom� double occupancies.

Filled �open� circles denote the results found in the eg �DDH�
model, respectively. Parameters and filled �empty� circles as in Fig.
7.

FIG. 10. �Color online� Double occupancy distribution in the
half-filled stripe phases shown in Fig. 8: HVBC �left� and HDBC
�right�. Different double occupancies as in Fig. 9. Parameters and
filled �empty� circles as in Fig. 8.
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acter close to the gap between them—the �x� orbitals opti-
mize the kinetic energy of holes doped into them, whereas
the vast majority of the more localized �z� states of DW
atoms belongs to the energy regimes within the LHB and
close to the UHB.

The total DOS for the DBC stripes in the eg model, de-
picted in Fig. 11�c�, reveals midgap states which demonstrate
the one-dimensional character of the transport in the stripe
phases. Note that due to the AF spin modulation along the
BC DWs themselves, one finds as well a distinct gap be-
tween two midgap bands lying within the Mott-Hubbard gap.
This gap for the filled DBC stripes is lower in the eg model
�Fig. 11�c� than in the DDH model �Fig. 11�d�, as the holes
are more delocalized in the former case. This holds as well
for the HDBC stripes, see Figs. 12�c� and 12�d�. We have
shown before that the magnetization at the DW sites is larger
for the HDBC stripes than for the DBC ones, and therefore
the gaps between the midgap states are also larger in Fig. 12
than in Fig. 11.

Remarkably, both for the filled and half-filled diagonal
BC stripe phases of Figs. 11 and 12 the lower midgap states

are to some extent localized above the LHB in the eg model,
whereas they are clearly almost merged with the LHB in the
DDH model. This behavior follows from a smaller on-wall
magnetization m��lx� in the eg model. Therefore, in the DDH
case only a few holes occupy the low-lying midgap bands,
explaining the reason of substantial suppression of the opti-
mal stripe filling in this case. Instead, filled stripes are fa-
vored in the eg model—they have a larger fraction of holes in
the lower midgap states. Note, however, that also in this case
the stripes are metallic, with some spectral weight �mainly in
�x� orbitals� above 	=�.

V. DISCUSSION AND SUMMARY

We summarize our key results concerning the stability of
stripe phases in the nickelates. We investigated this problem
using two Hubbard models—the realistic model for eg elec-
trons, and the DDH model which frequently serves as the
simplest approach to the orbital degeneracy.54 It is quite en-
couraging that the DDH model gives already diagonal stripe
phases as the most stable structures, in contrast to the non-
degenerate Hubbard model where the vertical �horizontal�

FIG. 11. Densities of states for the DBC stripe phase in the eg

model at x=1/8 doping: �a� partial density of states Nx�	� for �x�
orbital, �b� partial density of states Nz�	� for �z� orbital, and �c� total
density of states N�	�. �d� shows for comparison the total density of
states N�	� as found in the DBC stripe phase within the DDH
model. Parameters as in Fig. 7.

FIG. 12. Densities of states for the HDBC stripe phase in the eg

model at x=1/8 doping. �a�–�c� as in Fig. 11. �d� shows for com-
parison the total density of states N�	� as found in the HDBC stripe
phase within the DDH model. Parameters as in Fig. 8.

RACZKOWSKI, FRÉSARD, AND OLEŚ PHYSICAL REVIEW B 73, 094429 �2006�

094429-12



stripes are found in the HF approximation. However, one
finds half-filled BC stripes in the DDH model, and it is only
in the realistic eg model for doped nickelates that one ob-
serves a generic tendency to promoting filled stripes over the
half-filled ones. As an example of this behavior, we give the
free energies of filled and half-filled stripe phases found
within both �eg and DDH � models for x=1/8 doping in
Table III. First of all, one finds that the energies of BC
phases are considerably lower for the realistic model of eg
band due to the higher kinetic energy gains which result from
the off-diagonal hopping.55 Most importantly, for the param-
eters relevant to LSNO used for the data of Table III, one
finds that indeed the DBC phase, with filled diagonal stripes,
has the lowest energy. In contrast, the SC stripe phases with
unpolarized DW sites and large double occupancies have
much higher energies, and the best of them is not diagonal,
but vertical �horizontal� one. We also note that even though
the DDH model with two equivalent orbitals clearly favors
diagonal DWs, it stabilizes instead of filled the half-filled
diagonal phases.

As in the cuprates, the coexisting charge and magnetic
order in diagonal stripe phases in the nickelates is a result of
the compromise between the kinetic and magnetic
energies—the magnetic energy is gained in the AF domains,
and the kinetic energy is gained mainly along the DWs. The
BC stripes are favored as then the magnetic energy can be
gained �Table III� not only in the AF domains, but also on the
DW magnetic sites. Finally, when the DWs are filled, more
kinetic energy is gained in the eg model while then the off-
diagonal hopping is allowed. Altogether, this mechanism
shows little sensitivity to the small crystal field splitting. For
moderate values of the latter it tends to eliminate stripe
phases entirely rather than promoting one stripe phase over
another one.

In spite of the remarkable success of the present study
which gave stable diagonal stripe phases, one has to admit
that the predicted electronic properties show some difference
to the experimental ones. In fact, our systematic studies of
stripe phases completed within the relevant model for eg or-
bitals, where several phases separated by different lattice
spacing varying from d=3 to 11 were considered, have re-
vealed that the optimal stripe filling in the true ground state
is slightly less �0.86�nh�0.89 hole/Ni depending on the
crystal-field splitting� than the experimental value of one
hole per Ni ion. This concerns the entire low-doping regime,

x�0.3, where ��x. There may be a few reasons for this
discrepancy. First of all, one has to realize that in a multi-
band model with oxygen orbitals included explicitly the
holes would be doped primarily to oxygen orbitals, screening
the local moments at Ni sites,47 in analogy to Zhang-Rice
singlets in the cuprates.56 An insulating ground state could
then result from oxygen distortions by the Peierls mecha-
nism. Thus, we argue that the present results could be further
improved within a realistic model including not only two eg
orbitals with different hopping elements, but also orbital po-
larization at oxygen sites. Second, it may be expected that
the stripe filling will be somewhat changed due to the elec-
tron correlation effects beyond the HF approximation used
here. We believe that the present work provides a good start-
ing point for future studies of the correlation effects.

In summary we have analyzed the stripe formation in the
doped nickelates in the realistic model with degeneracy of eg
orbitals, using large clusters. The results obtained with this
model were compared with the widely used doubly degener-
ate Hubbard model. Even though in both models the distance
between the DWs is inversely proportional to the doping, the
most stable diagonal stripes are found to differ markedly
from one model to the other one. In the eg model, the stripes
are filled and nearly insulating, as observed experimentally
in a series of layered nickelates. In contrast, in the DDH
model they are half filled and metallic. These latter stripe
phases are reminiscent of the stripes observed experimentally
in largely doped cuprates. These differences have their roots
in the different structure of intersite hopping terms. As the
DDH model is closer to t2g than to eg hopping matrix ele-
ments, one might expect that doped insulators with t2g orbital
degrees of freedom, as in vanadates or in ruthenates, would
promote different stripe phases than those observed in the
nickelates.
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TABLE III. Free energy F �in the units of t� for the BC and SC stripe phases in the eg model, and for BC
stripe phases in the DDH model, obtained on 64�64 clusters at x=1/8 hole doping. The free energy of the
most stable �BC or SC phase� is given in bold characters in each case. Parameters: U=8t, JH=1.5t, Ez=0, and
�t=100.

Model Phase

Diagonal stripes Vertical stripes

Filled Half filled Filled Half filled

eg BC 2.5508 2.5759 2.5629 2.5756

SC 2.7815 3.2615 2.7012 3.0729

DDH BC 2.8172 2.8135 2.8395 2.8354
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