
Direct calculation of the spin stiffness of the spin-1
2 Heisenberg antiferromagnet on square,

triangular, and cubic lattices using the coupled-cluster method

S. E. Krüger
IESK Kognitive Systeme, Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany

R. Darradi and J. Richter
Institut für Theoretische Physik, Universität Magdeburg, P.O.B. 4120, 39016 Magdeburg, Germany

D. J. J. Farnell
Unit of Ophthalmology, Department of Medicine, University Clinical Departments, University of Liverpool, Daulby Street,

Liverpool L69 3GA, United Kingdom
�Received 29 September 2005; revised manuscript received 13 January 2006; published 7 March 2006�

We present a method for the direct calculation of the spin stiffness by means of the coupled-cluster method.
For the spin-1

2 Heisenberg antiferromagnet on square, triangular, and cubic lattices, we calculate the stiffness in
high orders of approximation. For square and cubic lattices, our results are in very good agreement with the
best results available in the literature. For the triangular lattice, our result is more precise than any other result
obtained thus far by other approximate method.
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I. INTRODUCTION

The study of quantum magnetism has attracted much ex-
perimental and theoretical attention over many years �for an
overview, see Ref. 1�. The spin stiffness �s constitutes, to-
gether with the spin-wave velocity, a fundamental parameter
that determines the low-energy dynamics of magnetic
systems.2–4 In particular, in two-dimensional quantum anti-
ferromagnets, where magnetically ordered as well as quan-
tum disordered ground-state phases are observed, the
ground-state stiffness measures the distance of the ground
state from criticality4 and can be used, in addition to the
sublattice magnetization M, to test the existence or absence
of magnetic long-range order �LRO�.

Over the last 15 years in a series of papers, several meth-
ods, such as series expansion,5,6 spin-wave theory,6–11 quan-
tum Monte Carlo,12 exact diagonalization,8,13,14 Schwinger-
boson approach,15–17 and renormalization group theory,18

have been used to calculate the spin stiffness of the spin-1
2

Heisenberg antiferromagnet �HAFM� on square, triangular,
and cubic lattices. However, results for the triangular lattice
seem to be less precise than those for the square lattice due to
strong frustration. Published values therefore show signifi-
cant variability.

The spin stiffness �s measures the increase in the amount
of energy when we rotate the order parameter of a magneti-
cally long-range-order system along a given direction by a
small angle � per unit length, i.e.,

E���
N

=
E�� = 0�

N
+

1

2
�s�

2 + O��4� �1�

where E��� is the ground-state energy as a function of the
imposed twist and N is the number of sites. In the thermo-
dynamic limit, a positive value of �s means that there is LRO
in the system, while a value of zero reveals that there is no
LRO.19

In this paper we present a method to calculate the spin
stiffness for the quantum-spin HAFM using the coupled-
cluster approach.20–22 The coupled-cluster approach is a
powerful and universal tool in quantum many-body physics,
which has been applied in various fields, such as nuclear
physics, quantum chemistry, strongly correlated electrons,
etc.20–22 More recently the coupled-cluster method �CCM�
has been applied to quantum spin systems with much suc-
cess, see, e.g., Refs. 23–34. In the field of magnetism an
important advantage of this approach is its applicability to
strongly frustrated quantum spin systems in any dimension,
where some other methods �such as, e.g., the quantum Monte
Carlo method� fail. Therefore, the method to calculate the
spin stiffness described in this paper is quite generally appli-
cable to spin systems also with noncollinear ground states.

To demonstrate the potential of the presented method we
calculate the spin stiffness for the spin-1 � 2 HAFM with
nearest-neighbor interaction on the cubic, square, and trian-
gular lattices and compare our results to available data in the
literature. Although for the square and cubic lattices accurate
high-order spin-wave results are available that can be used to
estimate the accuracy of the CCM results, the known results
for the frustrated HAFM on the triangular lattice with a non-
collinear ground state seem to be less reliable, since the used
methods are less accurate. We argue that our result for the
stiffness of the HAFM on the triangular lattice obtained by
CCM in high order of approximation is better than the avail-
able results to date. We mention that some preliminary re-
sults for the spin stiffness of the so-called J−J� model using
the CCM can be found in Ref. 32.

II. THE METHOD

The model we consider is the spin-1
2 HAFM
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H = J�
�i,j�

si · s j . �2�

In �2�, the sum runs over all pairs of nearest neighbors �i , j�.
We now set J=1 henceforth.

We start with a brief illustration of the main features of
the CCM. For a general overview on the CCM, the interested
reader is referred, e.g., to Ref. 22 and, for details of the CCM
computational algorithm for quantum spin systems �with
spin quantum number s=1/2�, to Refs. 26, 28, and 29. The
starting point for a CCM calculation is the choice of a nor-
malized model or reference state ���, together with a set of
mutually commuting multispin creation operators CI

+, which
are defined over a complete set of many-body configurations
I. The operators CI are the multispin destruction operators
and are defined to be the Hermitian adjoints of the CI

+. We
choose ���� ;CI

+� in such a way that we have �� �CI
+=0

=CI ���, "I�0. Note that the CCM formalism corresponds
to the thermodynamic limit N→�.

For spin systems, an appropriate choice for the CCM
model state ��� is often a classical spin state, in which the
most general situation is one in which each spin can point in
an arbitrary direction.

We then perform a local coordinate transformation such
that all spins are aligned in negative z direction in the new
coordinate frame.28,34 As a result, we have

��� = � ¯ ↓↓↓ ¯ �; CI
+ = si

+, si
+sj

+, si
+sj

+sk
+, . . . , �3�

�where the indices i , j ,k , . . ., denote arbitrary lattice sites� for
the model state and the multispin creation operators, which
now consist of spin-raising operators only. In the new coor-
dinate system, the Hamiltonian reads28

H = J�
�i,j�

� 1
2sin �	si

+sj
z − si

zsj
+ + si

−sj
z − si

zsj
−
 + cos �si

zsj
z

+ 1
4 �cos � + 1�	si

+sj
− + si

−sj
+
 + 1

4 �cos � − 1�	si
+sj

+ + si
−sj

−
� ,

�4�

with � being the angle between the two spins, and s±

�sx±isy are the spin-raising and spin-lowering operators.
According to Fig. 1, we have, e.g., for the twisted Néel state
on the square lattice �=� for nearest-neighbors along the y

direction, but �=�+� along the x direction; and, for the
twisted 120° Néel state on the triangular lattice, we have �
=2� /3+� /2 for nearest neighbors along the 1

2e�x+e�y direc-
tion, but �=4� /3+� along the x direction.

The CCM parametrizations of the ket and bra ground
states are given by

H��� = E���; ��̃�H = E��̃�,

��� = eS���; S = �
I�0

SICI
+,

��̃� = ���S̃e−S; S̃ = 1 + �
I�0

S̃ICI
−. �5�

The correlation operators S and S̃ contain the correlation co-

efficients SI and S̃I that we must determine. Using the
Schrödinger equation, H ���=E ���, we can now write the
ground-state energy as E= �� �e−SHeS ��� and the sublattice

magnetization is given by M =−1/N�i
N��̃ �si

z ���, where si
z is

expressed in the transformed coordinate system. To find the
ket- and bra-state correlation coefficients, we require that the

expectation value H̄= ��̃ �H ��� is a minimum with respect
to the bra- and ket-state correlation coefficients, such that the
CCM ket- and bra-state equations are given by

���CI
−e−SHeS��� = 0 " I � 0 �6�

���S̃e−S	H,CI
+
eS��� = 0 " I � 0. �7�

The problem of determining the CCM equations now be-
comes a pattern-matching exercise of the �CI

−� to the terms in
e−SHeS in Eq. �6�.

The CCM formalism is exact if we take into account all
possible multispin configurations in the correlation operators

S and S̃. This is, however, generally not possible for most
quantum many-body models, including those studied here.
We must therefore use the most common approximation

scheme to truncate the expansion of S and S̃ in the Eqs. �6�
and �7�, namely, the LSUBn scheme, where we include only
n or fewer correlated spins in all configurations �or lattice
animals in the language of graph theory�, which span a range
of no more than n adjacent �contiguous� lattice sites �for
more details see Refs. 24, 28, and 29�.

The spin stiffness considered in this paper is the stiffness
of the Néel order parameter �sublattice magnetization�.
Hence, the corresponding model state ��� is the Néel state.
This is the ordinary collinear two-sublattice Néel state for the
square and cubic lattices. The model state is a noncollinear
120° three-sublattice Néel state for the triangular lattice.
Note that for the collinear Néel state, only LSUBn approxi-
mations with even n are relevant.28,29 In order to calculate
the spin stiffness directly using Eq. �1�, we must modify the
model �Néel� state by introducing an appropriate twist � �see
Fig. 1�. Thus, the ket-state correlation coefficients SI 	after
solving the CCM equations �6�
 depend on � and, hence, the
ground-state energy E is also dependent on �. Note that our
numerical code for the CCM-LSUBn approximation allows

FIG. 1. Illustration of the twisted Néel state: �a� square lattice
and �b� triangular lattice. The twist is introduced along rows in the
x direction. The angles at the lattice sites indicated the twist of the
spins with respect to the corresponding Néel state.
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us to calculate E��� with very high precision of about 14
digits. First, we have checked numerically that the ground-
state energy calculated in LSUBn approximation does, in-
deed, fulfill the relation �1� with high precision for �	0.01.
The stiffness now can easily be calculated using numerical
differentiation of E���, which was done using a three-point
formula with �=−10−4 ,0 , +10−4.

Since the LSUBn approximation becomes exact for n
→�, it is useful to extrapolate the “raw” LSUBn results to
the limit n→�. Although we do not know the exact scaling
of the LSUBn results, there is some empirical
experience26,28,29 how the ground-state energy and the order
parameter for antiferromagnetic spin models scale with n.
Based on this experience, we have tested several fitting func-
tions for the stiffness and found that the best extrapolation is
obtained by the fitting function

a = a0 + a1
1

n
+ a2

1

n2 . �8�

This law is known28–31,33,34 to provide good extrapolated re-
sults for the order parameter. We show this extrapolation in
Fig. 2.

III. RESULTS

Let us start with the results for the square lattice. Exploit-
ing the lattice symmetries, we are able to perform calcula-
tions up to LSUB8, where for the twisted state 21 124 ket
equations �6� have to be solved. The results for the stiffness
are given in Table I. Using LSUBn with n=2,4 ,6 ,8, the
extrapolated result is �s=0.1831. As known from the sublat-
tice magnetization even better results can be obtained by
excluding the LSUB2 data. Indeed the extrapolation using
the LSUB4, LSUB6, and LSUB8 data yields �s=0.1812.
Note that the corresponding extrapolated value for the sub-
lattice magnetization29 M =0.3114 is in good agreement with
other results.29,35 A certain estimate of the accuracy can be
obtained by an extrapolation using only LSUB2, LSUB4,
and LSUB6, which yields �s=0.1839. We compare our re-
sults for �s to some data obtained by other methods in Table
II. Obviously, there is a significant variance in the data. In
particular, the value obtained by quantum Monte Carlo

seems to be surprisingly large. However, this might be con-
nected with the fact, that in Ref. 12 the stiffness was not
determined directly, but via the temperature dependence of
the correlation length, which may lead to larger uncertainty.
We think that the high-order spin-wave theory6 is the most
systematic approach, since one can see how the stiffness
changes with increasing order of approximation. Assuming
the third-order order spin-wave results as a benchmark, we
find that our CCM result deviates by �3%.

For the triangular lattice, the twist we consider �see Fig.
1� corresponds to the in-plane spin stiffness. Because of the
noncollinear structure of the three-sublattice Néel state,
LSUBn approximations with odd n also appear. Furthermore,
the number of ket equations in a certain level of approxima-
tion becomes larger then for the square lattice and, as a result
the highest level of approximation we are able to consider is
LSUB7. The results for different LSUBn approximations are
given in Table III. The extrapolation of the LSUBn data ac-
cording to Eq. �8� with n=2,4 ,6 leads to �s=0.0604 and
with n=2,3 ,4 ,5 ,6 ,7 to �s=0.0564. Again, the difference in
the two values can be considered as a certain estimate of the
accuracy. As a by-product of our high-order calculation, we
can give here improved values for the sublattice magnetiza-
tion M. Thus far, results for M up to LSUB626,31 are pub-
lished. We can add M =0.3152 �LSUB7� and M =0.3018
�LSUB8�. The corresponding extrapolated value using Eq.
�8� and LSUBn with n=2,3 ,4 ,5 ,6 ,7 ,8 is M =0.2134,
which is close to spin-wave7,36 and Green’s function Monte
Carlo37 results. The small values of the stiffness and the or-
der parameter in comparison to the square lattice are attrib-

FIG. 2. Extrapolation of the CCM-LSUBn results for the stiff-
ness. The points represent the CCM-LUBn results, and the lines
correspond to the function �8� fitted to these data points.

TABLE I. Spin stiffness �s for the spin-half Heisenberg antifer-
romagnet on the square lattice calculated by various CCM
-LSUBn approximations and the result of the n→� extrapolation
using LSUBn with n=4,6 ,8.

LSUBn Number of equations �s

2 3 0.2574

4 40 0.2310

6 828 0.2176

8 21124 0.2097

Extrapolation – 0.1812

TABLE II. Collection of data for the spin stiffness �s for the
spin-1

2 Heisenberg antiferromagnet on the square lattice calculated
by different methods.

First-order spin-wave theory6,9 0.191

Second-order spin-wave theory6,9 0.181

Third-order spin-wave theory6 0.175

Series expansion6 0.182

Exact diagonalization14 0.183

Quantum Monte Carlo12 0.199

Schwinger-boson approach I15 0.176

Schwinger-boson approach II17 0.153

CCM 0.181
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uted to the frustration leading to a noncollinear ground state
and in combination with quantum fluctuations to a drastic
weakening of magnetic order in the spin-1

2 HAFM.
We compare our results for �s to available results from

literature �see Table IV�. Comparing the methods used to
calculate �s for the square lattice �Table II� and for the trian-
gular lattice �Table IV�, we see that the results for the trian-
gular lattice are much less reliable, since here the accuracy of
the methods used in Refs. 7, 8, and 17 is limited. Assuming
the same tendency as for the square lattice, we can expect
that the first-order spin-wave value for �s

7,8 becomes smaller
�and, therefore, closer to our CCM result� going to second-
and third-order spin-wave theories. We believe that our result

is, indeed, of higher accuracy than data for �s thus far avail-
able.

We now present our results for �s for the simple cubic
lattice �see Table V�. Here, the highest level of approxima-
tion we can consider is LSUB6. From Fig. 2, it becomes
obvious, that there is only a weak dependence on the level of
CCM approximation n. Therefore, we expect that the ex-
trapolation according to Eq. �8� yielding �s=0.2312 is par-
ticularly accurate. Indeed, we find that our result is in very
good agreement with the result obtained by second-order
spin-wave theory6 �s=0.2343. Note that the 1/s spin-wave
expansion seems to converge very rapidly,6 and therefore, the
second-order spin-wave theory is expected to yield a very
precise result for �s. For the sublattice magnetization, a cor-
responding extrapolation leads to M =0.4181,29 coinciding to
1% with the high-precision third-order spin-wave result.38

IV. SUMMARY

In summary, we have presented a method for the direct
calculation of spin stiffness within the framework of the
coupled-cluster method. We obtain accurate values for the
stiffness by applying this algorithm to high orders of LSUBn
approximations for the spin-1

2 isotropic Heisenberg antiferro-
magnet on various lattices with and without frustration.
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