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The dynamics of the magnetization in a thin ferromagnetic film traversed by a spin-polarized direct current
is studied. In such a system, spin waves �magnons� may be critically driven out of equilibrium by an effective
spin-injection field that is proportional to the current density. A direct comparison between the predicted critical
current and previous experimental results sheds light on the nature of the excited mode. Beyond the threshold,
it is assumed that the spin waves are coupled through nonlinear interactions arising from dipolar and surface
anisotropy energies. It is shown that the magnon-magnon interactions play two major roles in the dynamics: �i�
They govern and put a limit to the growth in the population of the unstable mode from the thermal level, and
�ii� directly contribute to the renormalization of the magnon energy, which manifests itself through a shift in the
precession frequency of the magnetic moments with varying current intensity. Numerical results are presented
in remarkable quantitative agreement with recent experiments in nanometric magnetic multilayers, where
microwave oscillations generated by direct currents have been observed in the postthreshold regime.
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I. INTRODUCTION

The concept of spin waves as elementary excitations in
magnetically ordered materials was presented by Bloch1 in
the early 1930s. Bloch proposed that the low-lying excita-
tions of the magnetization consisted of propagating quan-
tized spin deviations instead of localized spin deviations in
the molecular field created by the neighboring spins, as was
believed until then. With this model he predicted that at low
temperatures T �compared to the critical temperature Tc� the
magnetization would decrease with temperature with a de-
pendence of the form T3/2. It would take more than two de-
cades for this prediction to be firmly confirmed by
experiments,2 but in the following years there was consider-
able theoretical interest on spin waves, or magnons, as their
quanta were to be called later. In 1934, Heller and Kramers3

developed the semiclassical picture of a spin wave consisting
of spins precessing around the equilibrium direction with a
phase angle varying along the propagation direction. Soon
after, Landau and Lifshitz published their famous paper in-
troducing the torque equation of motion for the magnetiza-
tion and predicting the magnetic resonance phenomenon.4 In
1940, Holstein and Primakoff5 presented a boson formula-
tion that became a widely used quantum-mechanical formal-
ism for studying spin waves mainly because it allows a
simple treatment of the interactions between them. By the
1950s, spin waves were thought to be interesting objects but
not quite exciting because they seemed to be only a math-
ematical entity with a small role in the thermodynamic prop-
erties of magnetic systems.

With the development of microwave spectroscopy and
ferromagnetic resonance �FMR� techniques in the early
1950s, ferrite materials started to attract much attention due
to their different properties and potential for technological
application in microwave devices.6,7 Two remarkable phe-
nomena experimentally discovered by Bloembergen and
Damon8 and Bloembergen and Wang,9 namely, the premature
saturation of the FMR and the appearance of a subsidiary
resonance at high microwave power levels, were extensively

investigated during that decade; but for years, their explana-
tion proved elusive. In the late 1950s, Suhl10 showed that
these instabilities were due to the nonlinear dynamical exci-
tation of spin waves by the uniform mode driven at certain
critical values of the microwave field. The evidence of spin
waves as real physical entities stimulated a variety of micro-
wave experiments in the early 1960s and different schemes
for the nonlinear driving of spin waves were devised, such as
the parallel pumping technique.11–13 In low-loss ferromag-
netic materials, such as yttrium iron garnet �YIG�, it was
found that spin-wave packets could be generated by pulsed
microwave fields and propagate along a sample to carry and
process information.13–16 In the 1960s and 1970s, several
techniques were then employed to probe and characterize the
energy-momentum dispersion of spin waves in a wide range
of magnetically ordered materials, such as inelastic neutron
scattering,2,17–19 Raman and Brillouin light scattering,20–22

and magneto-optical spectroscopy.19 On the theoretical side,
the semiclassical picture of spin waves was thoroughly
explored2,7,13,23–26 and the quantum picture was studied by
means of several approaches, such as Green’s functions and
various many-body techniques.26–28 The nonlinear spin inter-
actions were extensively studied and used to calculate from
first principles properties of magnons, such as relaxation
rates and energy renormalization with increasing
temperature,13,19,26,29,30and to explain the behavior of spin
waves above the microwave power threshold in the Suhl
�perpendicular� and parallel pumping processes.31 Contrary
to widespread belief, interacting spin-wave theory actually
accounts for the properties of magnetic systems at quite high
levels of excitation. For instance, it can be used to explain
thermodynamic properties at temperatures approaching the
critical temperature.32

In the 1980s and early 1990s, there was a spur in spin
wave research along two different lines. On one hand, the
occurrence of universal dynamical scenarios in high-power
FMR in YIG turned spin waves into one of the most inter-
esting physical systems with which to study chaotic
phenomena.33–39 On the other hand, the scattering of light by
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spin waves in thin metallic magnetic films and multilayers
turned out to be an important tool with which to investigate
these structures.40–46

An important achievement has revived the interest in
spin-wave excitations in recent years, namely, the proposal
made both by Berger47 and Slonczewski48 that a spin-
polarized direct current would drive the magnetization in a
ferromagnetic thin metallic film. As shown by
Slonczewski,48 electrons in such a current traversing a mag-
netic multilayer with alternating ferromagnetic �FM� and
paramagnetic metallic layers, become spin polarized by the
passage through a FM layer and produce a spin transfer to a
subsequent FM layer. This spin transfer results in a change of
the magnetization, which can be seen as originating from an
effective torque �which is proportional to the current den-
sity�. Thus, as the magnetic structures shrink to nanoscale
dimensions, this spin-transfer-induced �STI� torque is ex-
pected to dominate over the torque produced by the classical
Oersted-Ampère field created by charges in motion. Slonc-
zewski then predicted that the STI torque created by a high-
density direct current could excite spin waves and switch the
magnetization. This proposal stimulated many investigations
in recent years, not only because of the novel physical
mechanisms and phenomena involved, but also due to the
drive for new technological applications in the field of spin-
tronics. On the theoretical side the investigations might fall
in two broad categories. In one line of research, aimed at
understanding the physical mechanisms of the spin transfer
torque, there has been some controversy regarding the de-
tailed origin of and the correct mathematical expression for
the driving torque,47–52 an issue that has not yet been settled.
Another set of investigations focuses on studying the dynam-
ics of the magnetization excited by spin-polarized direct cur-
rents. The most widely used approach is to solve the Landau-
Lifshitz-Gilbert �LLG� equation, generalized to include the
STI torque.53–58 The theoretical work and the possibility of
observing different phenomena and properties have stimu-
lated a wealth of experiments to verify the predictions, to test
the proposed models, and to develop applications.59–72

Early evidence of the excitation of spin waves by a direct
current was reported by Tsoi et al.59 in magnetotransport
measurements made with point contacts onto magnetic mul-
tilayers. By varying the current intensity at a fixed value of
the external magnetic field, they observed sudden changes in
the resistance that were attributed to the onset of spin-wave
growth at certain critical values of the current. The fact that
the critical current showed a strong dependence on the direc-
tion and intensity of the applied dc field was clear evidence
of the spin-wave excitation. However, this evidence was very
indirect and no information on the spatial nature of the ex-
cited modes was provided in the magnetoresistance
experiments.59–63,65

Clear-cut signatures of the presence of high-frequency
spin waves have been reported by Tsoi,64 Kiselev et al.,66,69

Rippard et al.67,68 and Krivorotov et al.70 In Ref. 64, the
magnetic multilayer is placed in a microwave cavity and
subjected, simultaneously, to a direct current from a point
contact and a microwave radiation field. The observed mix-
ing of the two frequencies demonstrates that high-frequency
spin waves are indeed driven by the current. The most recent

papers66–70 report the direct observation of voltage oscilla-
tions with frequencies in the microwave range and represent
a definitive demonstration that a precession of the magneti-
zation is induced by direct currents traversing a multilayer
structure. These experiments allow precise measurements of
the precession frequency, amplitude, and relaxation rate, re-
vealing a rich dynamics and intriguing features not predicted
by the simple models proposed thus far.

The purpose of this paper is to present a model that ex-
plains recent experimental observations of the dynamics of
the magnetization in a FM film traversed by a spin-polarized
direct current in the framework of spin-wave theory incorpo-
rating nonlinear interactions. Actually, the LLG equation for
the magnetization has been explored by several authors in
this regard.53–58 However, although the LLG equation con-
tains all the ingredients to explain the experimental results,
its full micromagnetic problem can only be solved, numeri-
cally, in a way that tends to hide the underlying physics. In
the model presented here, the excitations of the magnetiza-
tion are considered to be standing spin-wave modes interact-
ing through four-magnon processes. The driving STI torque
has the form proposed by Slonczewski.48 The spin-wave ap-
proach thus renders a clear picture of the roles of the nonlin-
ear interactions. Moreover, in some configurations it pro-
vides analytical expressions that can be used to calculate
quantities measured experimentally. As demonstrated in
Secs. II–V, the model accounts for most of the recent experi-
mental observations in thin magnetic films. In particular, it
explains the downward frequency shifts �redshifts� with in-
creasing current observed when the external field is applied
on the film plane, and upward frequency shifts �blueshifts�
with the field perpendicular to the film. A brief account of
this work has been published elsewhere.71

The paper is organized as follows: In Sec. II, we discuss
the nature of the spin-wave modes in very thin films, using
the results of earlier work by several authors in order to
establish the background for the remainder of the paper. Sec-
tion III is devoted to analyzing the spin-wave excitations
driven by a spin-polarized direct current. The critical current
is calculated in the framework of noninteracting spin waves.
In Sec. IV, we derive the equations of motion for the spin-
wave amplitude, incorporating the effect of nonlinear inter-
actions, which are essential to explain the experimental ob-
servations. It is shown that in the configuration of field
applied perpendicularly to the film, the equations of motion
can be solved analytically. In Sec. V, we present numerical
solutions of the equations of motion and compare the results
to recent experiments. Section VI summarizes the main re-
sults.

II. SPIN-WAVE MODES IN THIN FILMS

In this section, we review the theory of spin waves in a
thin ferromagnetic film. This is done for completeness, aim-
ing at the derivation of the results in Sec. IV. Many authors
have studied spin waves in thin films over the
years.16,40–46,72–74,84 The effect of the external driving and
relaxation will be considered in Sec. III. The Hamiltonian for
the magnetic system in the film is written as
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H = HZ + Han + Hexc + HE + HS + Hdip, �1�

where the terms on the right-hand side represent, respec-
tively, the Zeeman, volume anisotropy of crystalline or shape
origin, volume exchange, interlayer exchange, surface aniso-
tropy, and dipolar contributions. They can be written in terms
of the spin Si at the lattice site i as38,44,46

HZ = − �
i

g�BH0 · Si, �2�

Hexc = − �
ij

JijSi · S j , �3�

HS =
KSA

N
�

i
� n̂ · Si

S
�2

, �4�

Hdip =
1

2
�g�B�2�

ij
�Si · S j

rij
3 −

3�Si · rij��S j · rij�
rij

5 � , �5�

where H0 is the external static magnetic field applied to the
film, g is the Landé g-factor, �B is the Bohr magneton, Jij is
the exchange interaction constant between the spins at sites i
and j, Ks is the surface anisotropy constant �energy per unit
area�, A is the film area, N is the number of spins in the
volume of the film, n̂ is the unit vector perpendicular to the
film plane, and rij is the vector connecting sites i and j. For
simplicity, we consider the field applied along a symmetry
direction of the film so that the contribution of the anisotropy
is represented by an effective field Han to be added to the
external field. The interlayer exchange is also considered to
contribute with an additive term to the external field. We
treat the excitations of the magnetic system with the ap-
proach of Holstein and Primakoff,5 which consists of three
transformations that allow the spin operators to be expressed
in terms of boson operators that create or destroy magnons.
In the first transformation, the components of the local spin
operator are related to the creation and annihilation operators
of spin deviation at site i, respectively ai

+ and ai, which sat-
isfy the boson commutation rules �ai ,aj

+	=�ij and �ai ,aj	
=0. Using a coordinate system with ẑ along the equilibrium
direction of the spins, defining Si

+=Si
x+ iSi

y and Si
−=Si

x− iSi
y,

where i is the imaginary unit, it can be shown that the rela-
tions that satisfy the commutation rules for the spin compo-
nents and the boson operators are5

Si
+ = �2S�1/2�1 −

ai
+ai

2S
�1/2

ai, �6a�

Si
− = �2S�1/2ai

+�1 −
ai

+ai

2S
�1/2

, �6b�

Si
z = S − ai

+ai, �6c�

where S is the spin and ni=ai
+ai is the operator for the num-

ber of spin deviations at site i. One of the main advantages of
this approach is that the nonlinear interactions are treated
analytically by expanding the square root in �6a� and �6b� in

Taylor series. We use only the first two terms of the expan-
sion, so that

Si
+ 
 �2S�1/2�ai −

ai
+aiai

4S
� �7a�

and

Si
− 
 �2S�1/2�ai

+ −
ai

+ai
+ai

4S
� . �7b�

In order to find the normal modes of the system, we use the
linear approximation whereby only the first terms in �6c� and
�7� are kept, i.e., Si

+
�2S�1/2ai, Si
−
�2S�1/2ai

+, and Si
z
S.

With these transformations, one can express the Hamiltonian
�1� in a quadratic form, containing only lattice sums of prod-
ucts of two boson operators. The second step is to introduce
a transformation from the localized field operators to collec-
tive boson operators ak

+ ak. In general, this transformation is

ai = �
k

�k
i ak, �8a�

ai
+ = �

k
�k

i*ak
+. �8b�

The condition that the new collective operators satisfy the
boson commutation rules, �ak ,aq

+	=�kq and �ak ,aq	=0, re-
quires that the transformation coefficients satisfy the ortho-
normality relations

�
k

�k
i �k

j* = �ij , �9a�

�
i

�k
i �q

i* = �kq, �9b�

where k and q denote spatial wave vectors and the right-hand
sides are Kroenecker �’s. In a laterally unbounded film hav-
ing a completely uniform internal field, the collective modes
are traveling waves; thus, the appropriate transformation co-
efficients are expressed in terms of plane-wave functions

�k
i =

1

N1/2eik·ri, �10�

where k is a vector spanning the whole wave-vector space.
Since driving with spin-polarized electrons should equally
excite modes with wave vectors k and −k and, moreover, the
films used in experiments are bounded, we consider that a
direct current excites standing wave modes. Hence, the trans-
formation coefficients used here are

�k
j =

1

�2N�1/2 �eik·rj + e−ik·rj� = � 2

N
�1/2

cos k · r j , �11�

where k denotes a set of discrete wave vectors that satisfy the
boundary conditions. With transformations �8� and �11� and
using the orthonormality relations, one can show that the
quadratic Hamiltonian becomes
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H�2� = � �
k

�Akak
+ak + 1

2Bkakak + 1
2Bk

*ak
+ak

+� , �12�

where Ak and Bk are coefficients related to the parameters of
the Hamiltonian �1�–�5�. In order to diagonalize the quadratic
Hamiltonian, it is necessary to introduce new collective bo-
son operators ck

+ and ck, satisfying the commutation rules
�ck ,cq

+	=�kq and �ck ,cq	=0. One can show5 that the new op-
erators are related to ak

+ and ak through the Bogoliubov trans-
formation

ak = ukck + vkck
+, �13a�

ak
+ = ukck

+ + vk
*ck, �13b�

where uk
2− �vk�2=1, as appropriate for a unitary transforma-

tion. The coefficients of this transformation must be such that
the quadratic Hamiltonian acquires the diagonal form

H�2� = � �
k

�kck
+ck, �14�

because this leads to the Heisenberg equation of motion

�dck

dt
�

kinetic
=

1

i �
�ck,H�2�	 = − i�kck. �15�

This equation has stationary solution of the form ei�kt,
which assures that ck is the operator for the normal-mode
excitations of the magnetic system. Hence, ck

+ and ck are the
creation and annihilation operators for magnons. It can be
shown2,5,16,19,26,27,29,38 that the frequency �k of the eigen-
modes and the coefficients of the transformations �13� are
given by

�k = �Ak
2 − �Bk�2�1/2, �16�

uk = �Ak + �k

2�k
�1/2

, �17�

and

vk = ± �uk
2 − 1�1/2 = ± �Ak − �k

2�k
�1/2

, �18�

where the sign of vk in �18� is the opposite one of the pa-
rameter Bk.

In order to complete the characterization of the normal-
mode excitations of the magnetic system in the film, it is
necessary to relate the coefficients Ak and Bk to the param-
eters of the Hamiltonian �1�–�5�. It is straightforward to
show2,5,19,26,27,29 that the Zeeman �2� and exchange �3� ener-
gies contribute only to Ak with terms that do not depend on
the direction of the field. They are given by ��H0+Dk2�,
where �=g�B /� is the gyromagnetic ratio and D
=2J�Sa2 /g�B is the exchange stiffness, J� being the nearest-
neighbor exchange constant, and a the lattice parameter of
the film. The general expressions for Ak and Bk for an arbi-
trary direction of the external field are quite lengthy due to
the role of the dipolar energy.16,38,73 For the sake of compari-
son to recent experiments, we focus hereafter on three dis-
tinct configurations, namely, �i� the applied field and the

wave vector are both perpendicular to the plane of the film,
�ii� the field is perpendicular to the film plane and the wave
vector is in the plane, and �iii� the field is in the film plane
and wave vector is in the plane, at an arbitrary angle with the
field. Case �i� enjoys a simplifying vanishing contribution of
the volume dipolar energy. In this case, it can be shown19,29

that Bk=0. Thus, from �16�–�18�, we see that �k=Ak, uk=1,
vk=0, and the frequency of the spin-wave mode is

�k = ��H0 + Han + HE + Dk2 − 4	Meff� , �19�

where Han is the anisotropy field, HE is the interlayer ex-
change field, and Meff is the effective magnetization defined
by 4	Meff=4	Ms+Hs, where Ms=g�BNS /V is the satura-
tion magnetization, V=Ad being the volume of the sample, d
is the film thickness, and Hs=2Ks /Msd is the surface aniso-
tropy field. Because the translational invariance is broken in
the vicinity of the film surfaces, the wave number is quan-
tized as k= p	 /d, where p=1,2 ,3 , . . .. This is valid for
boundary conditions of unpinned spins on the film surfaces,
which is well justified for materials with small anisotropies,
such as permalloy.16,74

Cases �ii� and �iii�, in which the wave vector is on the film
plane, are somewhat more complicated due to the role of the
dipolar energy. The standard procedure is to separate its con-
tributions into two parts, one arising from the surfaces and
one from the volume. Here we follow the approach of Arias
and Mills 44 to calculate both contributions for a very thin
film �kd
1�. Considering a coordinate system with the z
direction perpendicular to the plane, choosing the x axis
along the wave vector, and assuming that the dynamic com-
ponents of the magnetization do not vary across the thickness
of the film, the contributions of the volume and surface di-
polar energies as well as the surface anisotropy energy can
be calculated as in Ref. 44 and expressed in terms of the
operators ak

+ and ak. One can then show that the quadratic
part of the Hamiltonian �1�–�5� can be written in the form
�12� with

Ak = ��H0 + Han + HE + Dk2 − 4	Meff + 	Mskd�
�20a�

and

Bk = �	Mskd , �20b�

where the terms with the factor 	Mskd arise from the vol-
ume dipolar interaction, whereas the term 4	Meff arises from
the surface dipolar and surface anisotropy energies. Using
�16�, one can write the frequency for the case in which the
field is perpendicular to the plane and the wave vector is on
the film as

�k = ��H0 + Han + HE + Dk2 − 4	Meff + 2	MSkd�1/2�H0

+ Han + HE + Dk2 − 4	Meff�1/2. �21�

Note that for the uniform �k=0� mode, Eqs. �19� and �21�
coincide, as they should, and become

�k = ��H0 + Han + HE − 4	Meff� . �22�

Finally, consider that the field and the wave vector lie in
the film plane. This is the configuration most frequently used
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in experiments and, thus, of particular interest. We take the
field and magnetization in the plane of the film along the z
direction of a Cartesian coordinate system. The x axis is on
the plane, and the y axis is normal to the plane. The wave
vector of the standing-wave mode is assumed to be in the
plane, at an angle �k with the field. Again the quadratic part
of the full Hamiltonian �1�–�5� can be written in the form
�12�, with

Ak = ��H0 + Han + HE + Dk2 + 2	Meff − 	MSkd cos2�k�
�23a�

and

Bk = − ��2	Meff − 	MSkd�1 + sin2�k�	 . �23b�

Using �16�, one can write the frequency for the case in which
the field and the wave vector lie in the plane as

�k = ��H0 + Han + HE + Dk2 + 2	MSkd sin2�k�1/2

� �H0 + Han + HE + Dk2 + 4	Meff − 2	MSkd�1/2.

�24�

Note that for k=0 this equation yields the well-known
expression for the frequency of the ferromagnetic resonance
�FMR� mode for the field in the plane,

�0 = ��H0 + Han�1/2�H0 + Han + 4	Meff�1/2. �25�

In laterally confined films the wave number in Eqs. �21�
and �24� is quantized.16 We assume that the dynamic compo-
nents of the magnetization are pinned at the border of the
film, due to the abrupt change in the surface anisotropy. In
this case, the wave number is k= p	 /L, where L is the rel-
evant lateral dimension of the film and p is an odd integer.
Figure 1 depicts the lateral variation of the amplitude of the
magnetization along the direction of the wave vector in the
film for standing wave modes with p=1, 3, 5, and 7.

As pointed out in Ref. 44, a unique feature of the spin-
wave mode in very thin films with a wave vector in the plane
is that in some range of angle �k the initial slope of the
frequency vs wave-number curve is negative, due to the role
of the dipolar energy. As the wave number increases, the
exchange energy that varies with k2 eventually dominates so
that the �k vs k curve exhibits a minimum at some value of
k. This is clearly seen in Fig. 2, showing a plot of Eq. �24�

for �k=0, 10°, and 20°, with the following parameters appro-
priate for the permalloy film used in the experiments re-
ported in Ref. 67: 4	Ms=10.0 kG, 4	Meff=8.0 kG, g
=1.78, H0=1.0 kOe, HE+Han=0.104 kOe, D=3
�10−9 Oe cm2. An important consequence of the shape of
the dispersion relation in Fig. 2 is that there is a manifold of
modes with wave-vector direction in a certain range �k�c
that are degenerate with the k=0 magnon, so that they can
scatter energy in a two-magnon process. This has been
shown to result in an extrinsic relaxation mechanism that
tends to dominate the damping of the FMR mode in ultrathin
films since it varies with 1/d2.44 The implications of the
shape of the curves in Fig. 2 to the interpretation of the
experimental observations of Refs. 66–70 will be discussed
later.

To conclude this section, we express the components of a
local magnetization vector Mi=g�B�N /V�Si in terms of the
magnon operators. Using transformations �6� and �13�, writ-
ing the Cartesian components as Si

x= �Si
++Si

−� /2, Si
y = �Si

+

−Si
−� /2i and replacing the expectation values of the operators

ck
+ and ck by classical variables ck

* and ck, one obtains

Mx�ri� =
MS

�NS�1/2�1 − nj

2S
�1/2

�
k

cos k · ri�uk + vk��ck + ck
*� ,

�26a�

My�ri� =
MS

i�NS�1/2�1 − nj

2S
�1/2

�
k

cos k · ri�uk − vk��ck − ck
*� ,

�26b�

and

Mz�ri� = MS�1 − ni

S
� , �26c�

where

FIG. 1. Schematic representation of the lateral variation of the
amplitude of the dynamic components of the magnetization for low-
order standing-wave modes in a thin bounded film.

FIG. 2. Dispersion relation for spin waves in a very thin film
with the field and wave vector in the plane of the film. The curves
are plots of Eq. �24� with the parameters appropriate for the sample
used in Ref. 67 for three values of the angle between the wave
vector and the field.
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ni =
2

N
�
k,q

cos k · ricos q · ri�ukck
* + vkck��uqcq + vqcq

*� .

�26d�

Note that if neither interactions nor driving are present, the
equations of motion for ck and ck

+ are given by �15� and its
complex conjugate, which have simple time-harmonic solu-
tions. Thus, for one standing-wave mode, the components of
the magnetization described by �26� correspond to the clas-
sical picture of the spin wave, in which the magnetization
precesses about the equilibrium direction, with an amplitude
of precession that varies along the direction of the wave vec-
tor. In the case of a traveling wave, characterized by the
transformation coefficient �10�, it is the phase of the preces-
sion that varies along the direction of propagation. One ad-
vantage of the spin-wave approach is that any well-behaved
spatially varying magnetization can be described by the Fou-
rier expansion in Eqs. �26�.

III. EXCITATION OF SPIN-WAVE MODES WITH A
DIRECT CURRENT

In this section, we consider the driving of the noninteract-
ing spin-wave system in a thin FM film by the passage of a
spin-polarized direct current. The effects of the magnon in-
teractions will be taken into account in Sec. IV. The mecha-
nism of driving is that proposed by Berger47 and
Slonczewski48 for a direct current flowing perpendicularly to
the plane of a magnetic multilayer with intercalated FM and
nonmagnetic metallic thin films. Their initial proposal was
followed by other interpretations for the driving
mechanisms.49–52 Here we follow the approach of
Slonczewski,48,54 which considers that the current creates a
mutual transference of spin angular momentum between the
magnetic layers. The basic physical mechanism is illustrated
in Fig. 3, showing a three-layer structure consisting of two
FM layers intercalated by a nonmagnetic metallic layer NM,
with a field applied along the z direction. The macroscopic
vectors S1 and S2 represent the respective total spins of the
layers, S2 is assumed to be fixed along z while S1 is instan-
taneously at an angle � with the z direction. As electrons
flow through layer FM1, they become partially polarized
with spins along S1, traverse the NM layer, and impinge on
the interface with layer FM2. The probabilities for reflection
or transmission at the interface depend on the electron spin;

down spins �−z direction� have a higher probability of being
reflected. The overall effect is a mutual transfer of spin an-
gular momentum between the two FM layers, resulting in
changes �S1 and �S2 that are perpendicular to S1 and S2
with time rate proportional to sin � /2 and to the electron
flow, which is determined by the electric current.The time
derivative of the spin angular momentum can be seen as
caused by an effective torque, so that the STI driving is
associated to an effective magnetic field HSTI acting on the
magnetization M of the layer FM1, given by48,54

HSTI =
�J

�S
ẑ � S , �27a�

with

� = � � �/2dMSe , �27b�

where J is the electric current density traversing the
multilayer in the perpendicular direction and � is a spin
transfer efficiency parameter, which depends on the materials
of the multilayer.48,51,54 Note that we assume J to be uniform
in the region of interest. This is a good approximation for an
experiment done with nanopillars60,66,69,70 but not as good for
experiments using extended films with point
contacts.59,62,64,65,67,68 The essential feature of the STI field is
that it exerts a torque on the magnetization that tends to
deviate it away from equilibrium, producing an effect oppo-
site to that of the relaxation and effectively driving its mo-
tion. As a result, when the current exceeds a critical value Jc,
the damping is overcome leading to a rapid growth of spin-
wave modes supported by the film. As shown in Sec. IV, the
saturation process and other phenomena at higher currents
are governed by nonlinear effects. The contribution to the
equation of motion from driving of the spin-wave modes by
the STI field produced by the direct current can be calculated
with the torque equation

dSi

dt
= − �Si � H . �28�

Equations �27� and �28� yield

dSi
±

dt
=

�J

S
Si

zSi
±. �29�

Using �7�, �8�, and �13� to transform the spin operators
into the magnon operators, one obtains, in the linear approxi-
mation,

�dck

dt
�

drive
= �Jck. �30�

Adding �30� to �15� and introducing the relaxation rate �k
in a phenomenological manner, it follows that

dck

dt
= �dck

dt
�

kinetic
+ �dck

dt
�

relax
+ �dck

dt
�

drive

= − i�kck − ��k − �J�ck. �31�

Note that the relaxation could have been introduced rig-
orously, considering the interaction between the magnon sys-
tem with a heat bath, and this would lead to a result identical

FIG. 3. Illustration of the basic process of spin transfer due to a
spin-polarized current traversing a three-layer magnetic structure.
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to �31�.75 The solution of the linearized equation of motion
�31� is straightforward, namely,

ck�t� = ck�0�e−i�kte−��k−�J�t. �32�

This result means that when the current density exceeds
the critical value Jc=�k /�, the spin-wave mode with lowest
relaxation rate grows exponentially. This is what produces a
change in the magnetic state and a corresponding step on the
magnetoresistance vs current characteristics observed in ex-
periments. Writing the relaxation rate as �k=�0+�G�k
where �G�k is the Gilbert contribution and �0 is a residual
value independent of the frequency, one obtains for the criti-
cal current

Ic =
2AcedMs

���
��0 + �G�k� . �33�

where Ac is the area of the current cross section, assumed to
be uniform in a certain region of the film and determined by
the characteristics of metal contact. Note that the second
term in �33� varies with magnetic field and is responsible for
the field dependence of the critical current observed in ex-
periments. For films magnetized perpendicularly to the
plane, the frequency is given by �19� so that the critical cur-
rent can be written as

Ic = Ic0 + bH0 �34a�

where

Ic0 =
2AcedMs

��
��0/� + �G�Han + HE + Dk2 − 4	Meff�	

�34b�

and

b =
2AcedMs�G

��
. �34c�

In the magnetoresistance experiments with point contacts,
the critical current is indicative of the onset of the spin-wave
growth, but no direct evidence is obtained about the nature of
the modes that are excited by the STI field. In the model
proposed by Slonczewski,54 these modes are cylindrical
waves propagating radially away from the current beam es-
tablished by the point contact. The model yields an expres-
sion for the critical current identical to �34a�, with the same
slope b as given by �34c�, but with a constant term that is
determined by the radiation loss of the radially propagating
mode.

The field dependence of the critical current has been ex-
perimentally studied in detail by Rippard et al.62 in a series
of Co/Cu multilayers, and the data were compared to the
predictions of Ref. 54. The measured critical currents exhibit
a linear dependence on the field with slope b typically on the
order of 0.5 mA/T and initial values Ic0 consistently in the
range 2–4 mA. Using mean values for the parameters given
in Ref. 62, 4	Ms=16.5 kG, film thickness d=1.2 nm, D
=5 meV nm2, �G=0.02, �=0.2, and contact diameter 35 nm,
the value of b calculated with Eq. �34c� �which is identical to
the prediction of Ref. 54�, is 0.4 mA/T, which is in quite
good agreement with the measured value. However, the mea-

sured initial values of Ic are systematically smaller than the
value predicted in Ref. 54 by almost one order of magnitude.
We attribute this discrepancy to the fact that the radiation
loss of the radially propagating mode, assumed in Ref. 54,
overwhelms the intrinsic damping of the mode. This is strong
evidence that the spin-wave mode excited by the direct cur-
rent is not the cylindrical wave with wavelength on the order
of the contact diameter, k�106 cm−1, assumed in Ref. 54.
Further evidence of this has been recently provided by the
experimental results of Refs. 66–70, which indicate that the
mode excited by the spin injection current has a frequency
close to the ferromagnetic resonance �FMR� value, i.e., it has
k�0.

The existing experiments on direct-current excitation do
not allow a clear-cut determination of the wave number k of
the driven spin-wave mode. Some estimates of the value of k
are based on a fit of the dispersion relation to the measured
frequencies,67 but the dispersion assumed for the spin wave
with wave vector in the plane is not the correct one, as given
by Eq. �24�. Certainly the mode with lowest critical current
is the one with the smallest losses, and it is the one excited
first as the current is increased. Regarding losses, it is known
that in ultrathin films there are several mechanisms for relax-
ation, such as the intrinsic or Gilbert damping, spin pumping
involving adjacent layers,72,75–79 and two-magnon
scattering.44,80–84 The latter process relies on the existence of
degenerate modes into which the driven mode can scatter
energy. Thus, in the experiments of Rippard et al.,67 one
might expect that the mode with k�4�104 cm−1 is excited
first because, as shown in Fig. 1, it lies at the bottom of the
dispersion relation and consequently has no two-magnon re-
laxation. However, most likely this mode is not the one that
produces the observed microwave oscillation because in or-
der to radiate electromagnetic waves, the spin wave should
have a k value comparable to that of the microwave, which is
k�1 cm−1. In other words, in a wave with a high k value the
radiated signal averages out to zero. At least for macroscopic
samples, it has been demonstrated that the radiation from a
precessing magnetization decays rapidly as the wavelength
of the spin-wave mode decreases.85,86 In a magnetic nano-
structure, the whole radiation problem has not been tackled
and remains a challenging issue. We speculate that as the
direct current is increased, the mode at the bottom of the
dispersion relation is excited first, causing a step in the mag-
netoresistance curve. However, the mode that generates the
observed oscillation is one with k�0, which, having a larger
relaxation rate, is excited at a slightly higher critical current.
Finally, there is another fact that complicates the question of
the mode excited by a direct current, namely, the jumps in
the oscillation frequency observed as the current is scanned
in experiments with the magnetic field at an angle with the
film plane68 or perpendicular to the plane.69 The jumps are
indicative that the system switches from one mode to another
as the current is increased, as will be discussed further in
Sec. V.

IV. EFFECTS OF THE MAGNON INTERACTIONS

In order to study the phenomena occurring at currents
above the onset of the spin-wave excitation, one needs to
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take into account the effect of nonlinear processes in the
dynamics of the spin evolution. Such processes can be incor-
porated naturally into the equations of motion by using the
full Holstein-Primakoff transformation of the spin operators
into boson operators as in Eq. �6�. This is done by expanding
the square-root terms in �6a� and �6b� and writing the Hamil-
tonian �1�–�5� as sums of products of more than two magnon
operators, which represent the interactions between mag-
nons. In principle, all terms in �1� contribute to the magnon
interactions. However, considering that the films used in the
experiments of interest are very thin, the contribution of the
volume dipolar interaction is small. The terms representing
the magnon interactions arising from volume anisotropy, in-
terlayer exchange, and volume exchange are also negligible
in the conditions of the experiments in Refs. 66–70. The
important contributions arise from the surface dipolar energy
�demagnetizing effect� and the surface anisotropy energy.
The evaluation of the sums in Eq. �5� can be shown to lead to
two terms in the dipolar energy, one arising from the volume
and the other from the surfaces. For a film, the latter can be
written approximately as19,26

Hdip
s =

2	�g�B�2N

V
�

i

�n̂ · Si�2, �35�

which turns out to have the same form as the surface aniso-
tropy energy �4�. Hence, the sum of �4� and �35� is

Hdip
s + Hs = � �

2	Meff

S �
i

�n̂ · Si�2, �36�

where the factor 2	Meff accounts for the surface dipolar and
anisotropy energy contributions. As in Sec. II, we consider
three cases: �i� The applied field and wave vector are perpen-
dicular to the plane of the film, �ii� the field is perpendicular
to the film and the wave vector is in the film plane, and �iii�
the field and wave vector are in the film plane. Consider,
initially, case �i� for which the full equation of motion for the
magnon operator can be solved analytically. The z axis is
taken normal to the film, so that with transformation �6c�,
Eq. �36� leads to the following Hamiltonian containing four
boson operators

H�4� = � �
2	Meff

S �
i

ai
+aiai

+ai. �37�

In order to express this equation in terms of the magnon
operators, we use transformations �8� and �13�, consider
standing-wave modes as in �11�, and assume that only one
mode k is present. The four-magnon interaction Hamiltonian
then becomes

H�4� = � �
3	Meff

NS
ck

+ck
+ckck. �38�

Note that in the derivation of this equation we made use
of the following facts: a sum like �9b� with a product of four
coefficients of the form �11� leads to a factor 3 /2N instead of
1/N that would hold for propagating waves characterized by
the coefficient �10�; in the case of field and wave vector
perpendicular to the plane, the coefficients in �13� are uk=1

and vk=0; the commutation of ck
+ with ck performed to write

�38� in the normal ordering, with all creation operators to the
left of the annihilation operators, results in a term with two
operators like �14� that is negligible because it contains a
factor 1 /N compared to the energy given by �16�. The four-
magnon interaction �38� contributes to the equation of mo-
tion of the operator ck with a pure imaginary term represent-
ing an energy renormalization, which manifests itself as a
frequency shift in the microwave oscillation observed in the
experiments reported in Refs. 66–70. However, contrary to
the role it plays in the Suhl and parallel pumping instability
processes,32 the four-magnon interaction given by �38� does
not limit the growth of the spin-wave amplitude. The reason
for this is that in those processes the origin of driving with an
ac magnetic field is fundamentally different from one with a
STI field due to a direct current. In the former, the instability
results from the generation of magnon pairs due to the con-
version of photons into magnons, whereas, in the process
studied here, the spin wave system becomes unstable be-
cause the STI torque pulls the magnetization away from the
equilibrium direction and balances the effect of the relax-
ation. It turns out that as the spin-wave amplitude grows,
there is a reduction in the z component of the spin, causing a
downward deviation of the STI torque from linearity. This is
the nonlinear effect that limits the growth of the spin waves
generated by the spin-polarized direct current. Including in
Eq. �29� the term with two boson operators in Si

z given by
�6c� and adding the contribution of �38�, the full equation of
motion for ck becomes

dck

dt
= − i�kck − ��k − �J�ck −

3�J

2NS
ck

*ckck − iSkck
*ckck,

�39�

where

Sk = � 6	
Meff

NS
�40�

is the coefficient arising from the four-magnon interaction.
Note that in �39� we have transformed the magnon operators
into the classical variables ck and ck

*. Note also that �39� and
�40� contain a factor 3 /2, which is not present in Eq. �11� of
our previous paper.71 The reason for this is that, in Ref. 71,
we assumed that the mode driven by the direct current was
the k=0 uniform mode, whereas here we consider standing-
wave modes with k�0. In order to interpret the roles of the
nonlinear interactions, we rewrite �39� using nk=ck

*ck for the
number of magnons,

dck

dt
= − i��k + Sknk�ck − ��k − �J�1 − 3nk

2NS
��ck. �41�

This equation shows that when a current above the critical
value traverses the film, the spin-wave amplitude initially
grows exponentially while the number of magnons nk is neg-
ligible. However, as nk increases and approaches NS the STI
driving decreases and its effect is balanced by the relaxation,
so that the spin-wave amplitude saturates. On the other hand,
the effect of the nonlinear term arising from the surface di-
polar and anisotropy interactions is to shift the spin-wave
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frequency upward as the number of magnons increases. Fur-
ther understanding of this process can be gained by solving
�41�, which affords a full analytical solution. With �41� and
its complex conjugate, one can obtain a simple equation for
the magnon number. Using the normalized variables nk�
=nk /NS, t�=2�kt, r=�J /�k= I / Ic, where r is the driving pa-
rameter, the equation takes the form

dnk�

dt�
= �r − 1�nk� −

3

2
rn�k

2. �42�

This is the Bernoulli equation, which has an analytical solu-
tion for an excitation r applied at t=0 in the form of a step
function

nk��t�� =
r − 1

3r/2 − v0e−�r−1�t�
, �43�

where v0=3r /2− �r−1� /n0�, n0� is the �normalized� initial
number of magnons, assumed to be the thermal value. Equa-
tion �43� shows that with driving r�1, or I� Ic, the number
of magnons increases rapidly and saturates at times t� ��r
−1��k	−1 with a value

ns =
2NS

3

�r − 1�
r

=
2NS

3

�I − Ic�
I

. �44�

Equation �42� can be used to calculate the evolution of the
components of the magnetization given by �26�. Since uk
=1 and vk=0, the amplitudes of the real and imaginary parts
of ck are equal and given by nk

1/2. Figure 4 shows a three-
dimensional �3D� plot of the trajectory of the magnetization
tip for I=2Ic obtained from the solution �43� and considering
the magnetization averaged over the lateral coordinate of the
film. The magnetization precesses in a circular manner with
increasing cone angle and reaches a stable trajectory after a
transient time t� ��r−1��k	−1. Equation �44� can be used in
Eq. �6c� to calculate the z component and, hence, the cone
angle of the magnetization precession. For strong driving, I
� Ic, or r�1, the number of magnons saturates at ns
=2NS /3, corresponding to a cone angle of 70.5°. It is likely
that the spin-wave approach does provide an accurate de-
scription of the phenomenon at such a level of excitation.

However, as we shall show, it holds quite well for currents at
least as large as I=2Ic. For such current, the saturation num-
ber is ns=NS /3, corresponding to a cone angle of 48.2°.

Note that the nonlinear terms in Eq. �41� have negligible
effect if I Ic because, in this case, the magnon number has
a thermal value that is much smaller than the number of
spins N. On the other hand, if I� Ic the magnon number is
comparable to NS and both nonlinear terms have important
effects on the spin dynamics. Although the term in �Jnk
limits the growth of the spin-wave amplitude, the term in Sk
arising from the surface dipolar and anisotropy energies pro-
duces a shift in frequency with increasing driving current
given by ��k=Sknk. Thus, with �40� and �44� we obtain the
frequency shift for the case of field and wave vector perpen-
dicular to the film plane,

��k = �4	Meff
I − Ic

I
. �45�

Clearly, the frequency shifts upward with increasing cur-
rent �blueshift� as observed experimentally.69 Note that Eq.
�45� coincides with the result obtained in Ref. 71 because the
extra factor of 3 /2 appearing in Sk is canceled by the factor
2 /3 in the saturation number given by Eq. �44�.

Consider now the configuration of case �ii�, i.e., the field
is normal to the plane of the film and the wave vector is in
the plane. Here, the equation of motion for the magnon op-
erator is more complicated because of the transformations
�13�. Using �13� in �37� one obtains a four-magnon interac-
tion Hamiltonian containing all possible combinations of the
operators ck

+ and ck, each term with a coefficient involving
the parameters uk and vk. A similar treatment is carried out
for the nonlinear term arising from the STI torque, leading to
an equation of motion for ck in the form

dck

dt
= − i�kck − ��k − �J�ck −

3�J

2SN
��uk

2 + vk
2�ck

*ckck

+ ukvk�ck
*ck

*ck + ckckck�	 − iSk��1ck
*ckck + �2ck

*ck
*ck

+ �3ck
*ck

*ck
* + �4ckckck� �46�

where the coefficients beta are given by

�1 = uk
4 + 4uk

2vk
2 + vk

4, �47a�

�2 = 3uk
3vk + 3ukvk

3, �47b�

�3 = 2uk
2vk

2, �47c�

�4 = 2uk
3vk + ukvk

3, �47d�

where the coefficients uk and vk are given by �17�, �18�, and
�20�. Note that for k=0, uk=1 and vk=0, so that �46� is the
same as �39�, as it should.

Consider, finally, case �iii� for which the applied field and
the wave vector are in the plane of the film. In order to
obtain the equation of motion, we first calculate the magnon
interactions arising from the surface dipolar and anisotropy
energies. Considering a coordinate system with the y axis
perpendicular to the plane, the energy �36� contains only the
component Sy

2, which can be written in terms of the magnon

FIG. 4. Trajectory of the magnetization tip in a film with the
field and wave vector perpendicular to the plane driven by a spin-
polarized current for I=2Ic applied at t=0 when the magnetization
was near the equilibrium direction z.
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operators with the expansion in �7b�. Using transformations
�7b� and �8� in Eq. �36�, assuming that only one standing-
wave mode is present, and introducing the effect of the
modulation of the magnetic charges in the surface dipolar
energy, one obtains

H�4� = − � �
3	�Meff − Mskd/2�

4NS
�2ak

+ak
+akak − ak

+akakak

− ak
+ak

+ak
+ak� . �48�

Calculations similar to the previous case lead to an equa-
tion of motion for ck in the form

dck

dt
= − i�kck − ��k − �J�ck −

3�J

2SN
��uk

2 + vk
2�ck

*ckck

+ ukvk�ck
*ck

*ck + ckckck�	 − iTk��1ck
*ckck + �2ck

*ck
*ck

+ �3ck
*ck

*ck
* + �4ckckck� , �49�

where

Tk =
− �3	�Meff − Mskd/2�

4NS
, �50�

and the other factors are

�1 = 4uk
4 − 12uk

3vk + 16uk
2vk

2 − 12ukvk
3 + 4vk

4, �51a�

�2 = − 3uk
4 + 12uk

3vk − 18uk
2vk

2 + 12ukvk
3 − 3vk

4, �51b�

�3 = − 4uk
3vk + 8uk

2vk
2 − 4ukvk

3, �51c�

�4 = − uk
4 + 4uk

3vk − 6uk
2vk

2 + 4ukvk
3 − vk

4, �51d�

where uk and vk are given by �17�, �18�, and �23�. Note here
again that Eqs. �49� and �50� contain factors of 3 /2 relative
to the equations in Ref. 71 for the same reason explained
earlier. Note also that the negative sign of the term appearing
in Eq. �16� of Ref. 71 was a misprint; the correct positive
sign as in �49� was actually used in the numerical calcula-
tions.

Equations �46� and �49� cannot be solved analytically as
was done for the case of field and wave vector perpendicular
to the film. However, the roles of the nonlinear terms are the
same, while the term in �J limits the growth of the spin-
wave amplitude, the terms with Sk in �46� and with Tk in �49�
produce a shift in frequency with increasing the driving cur-
rent. An important point to be noted is that since Sk is posi-
tive and Tk is negative, in the case of field perpendicular to
the film, the frequency increases with increasing current
�blueshift�; whereas when the field is in the plane of the film,
the frequency decreases with increasing current �redshift�, as
observed in experiments.

V. NUMERICAL RESULTS AND COMPARISON TO
EXPERIMENTS

In this section, we present numerical solutions of the
equations derived previously in order to compare theory to
the experimental results recently reported. Consider, initially,

the configuration of the field and wave vector in the plane of
the film as in the experiments of Rippard et al.67 and Krivo-
rotov et al.70 The equations for the real and imaginary parts
of ck obtained from �49� have been solved numerically using
conditions and material parameters to compare to the re-
ported data. First, it is important to make some consider-
ations about the driven mode. As remarked at the end of Sec.
III, the measurements of the oscillations induced by direct
currents in multilayers do not allow a clear-cut identification
of the excited spin-wave mode. However, the fact that in
order to radiate efficiently the mode should have the smallest
possible value of k, strongly suggests that the driven mode is
the lowest-order standing-wave mode allowed by the struc-
ture �i.e., it is a mode with wave function given by �11� with
k=	 /L	, where L is the relevant lateral dimension. In the
case of the experiments of Rippard et al.,67 the lateral dimen-
sion of the spin-valve mesa is on the order of 10 �m, so that
the wave number is k�3�103 cm−1. One can see in Fig. 2
that this value corresponds to a quasi-uniform mode so that
the actual k cannot be determined only from the measure-
ment of the oscillation frequency. In the experiments of
Krivorotov et al.,70 the sample is a nanopillar with an ellip-
tical shape, with dimensions 130�60 nm2; hence, we con-
sider L on the order of 100 nm, so that the wave number of
the lowest-order mode is k�3�105 cm−1. In this case, we
see from Fig. 2 that the contribution of the exchange energy
to the frequency is sizeable so that the value of k could be
determined from the frequency as long as the other param-
eters, saturation and effective magnetizations and anisotropy
field, were accurately measured with another technique, such
as FMR. Since the information on the driven modes in Refs.
67 and 70 is insufficient, we will assume that they are the
lowest-order standing-wave modes with k�3�103 cm−1

and k�3�105 cm−1, respectively.
Krivorotov et al.70 studied nanopillar-shaped samples

made of two 4 nm thick permalloy �Py=Ni80Fe20� layers
separated by an 8 nm thick Cu spacer layer on top of an
antiferromagnetic underlayer for exchange biasing of the
bottom Py layer. The current is applied to the multilayer
through Cu electrodes on both sides so that it is uniformly
distributed over the lateral dimension. The equilibrium direc-
tion of the magnetization in the top layer is determined by
the balance between Zeeman, shape anisotropy and inter-
layer coupling, and the angle between the magnetizations in
the two layers is estimated to be 30°. When a current I is
applied to the multilayer, electrons flow from the top to the
bottom layer and a STI torque drives the magnetization of
the free layer. The dynamics of the magnetization was ob-
served both with time-resolved measurements and with spec-
tral analysis of the voltage induced by the precessing mag-
netization in the free layer. We have solved Eq. �49� with the
conditions and parameters to compare our model theory to
the data presented in Fig. 3 of Ref. 70, namely, H0=0, �k
=2	�4.275 GHz, d=4 nm, Ic=1.25 mA, and 4	Meff
=0.81 kG. Since Ref. 70 does do not provide the value of the
g-factor, we use the same value measured in Ref. 67, namely,
g=1.78. We do not understand the reason why the measured
g �Ref. 67� is well below the value obtained with FMR for
3d transition metals, which is close to 2.1. We speculate that
in the regime of high spin-wave excitation, characteristics of
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the STI driving, the momentum transfer from the magnetic
system to the lattice is significantly modified. Also consider
4	Ms=10.0 kG as appropriate for Py. From these we deter-
mine the effective field HAEK=Han+HE+Hk=0.356 kOe,
where Hk is the contribution of the k-dependent terms in
�24�, to match the observed oscillation frequency. These pa-
rameters are used in �16�–�18� and �23� to obtain uk=1.32
and vk=0.87. The relaxation rate obtained by extrapolating
to I=0 the data of Fig. 3 in Ref. 70 is �k=2 ns−1.

Figure 5 shows the time evolution of the mx component of
the magnetization given by �26a�, obtained from the integra-
tion of �49� for two values of the current I Ic, assuming
arbitrary initial values at instant t=0 for the real and imagi-
nary parts of ck. In both cases, the magnetization decays in
time, as expected. However, since the effective relaxation
rate is �k−�J, as the current increases the relaxation rate
decreases and the decay time increases. For currents above
the critical value Ic=Ac�k /�, instead of decaying, the ampli-
tude of the magnetization grows to saturation and a sustain-
able precession is established. Figure 6 shows a 3D plot of
the trajectory of the magnetization tip for I=1.7 mA. Since
the amplitude of the magnetization in a standing-wave mode
varies across the film, we have calculated the spatially aver-

aged value. Figure 7�a� shows the spectra of mx for several
current values used in experiments to compare to the data of
Fig. 3�a� of Ref. 70. The spectra were obtained with a fast
Fourier transform of the time series of mx for several hun-
dred cycles and passed through a frequency filter with the
shape of a Lorentzian function to the fourth power and width

FIG. 5. Time dependence of the magnetization mx in a film
magnetized in the plane, resulting from the application of a spin-
polarized direct current I Ic, in the conditions of the experiments
reported in Ref. 70: �a� I=0.6 mA and �b� I=1.2 mA.

FIG. 6. Trajectory of the magnetization tip in a film with field
and wave vector in the plane driven by a spin-polarized current for
I=1.7Ic applied at t=0 when the magnetization was near the equi-
librium direction z. The parameters used in the calculation are ap-
propriate for the sample of Ref. 70.

FIG. 7. �a� Spectra of the mx component of the magnetization
obtained by the numerical solution of Eq. �49� for several values of
the driving current to compare to the data of Ref. 70. �b� The solid
line shows the theoretical frequency vs current while the symbols
represent the data of Ref. 70.
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similar to the instrumental width of Ref. 70. The solid line in
Fig. 7�b� shows the calculated frequency vs current while the
symbols represent the data. Note that in order to fit the data,
the effective magnetization used in the nonlinear parameter
�50� is 4	Meff=7.9 kG, which is very close to the value
given in Ref. 70.

The same in-plane field configuration has been used by
Rippard et al.67 to observe voltage oscillations produced by a
direct current traversing a Py layer in a spin-valve structure
Ta�2.5 nm�/ Cu�50 nm�/ Co90Fe10 �20 nm�/ Cu�5 nm�/
Ni80Fe20 �5 nm�/ Cu�1.5 nm�/ Au�2.5 nm�. The current is
applied to the multilayer through point contacts with a circu-
lar cross section with a nominal diameter of 40 nm. The field
dependence of the oscillation frequency is used to measure
the g-factor, and the FMR technique is used to obtain
4	Meff. Numerical solutions of �49� were used to calculate
the spectra of the mx component of the magnetization for
several values of the driving current, using the parameters of
the experiments: 4	Meff=8 kG, 4	Ms=10.0 kG, d=5 nm,
�k=2	�7.9 GHz, g=1.78, and Ic=3.95 mA, from which
we determine the coefficients uk=1.14 and vk=0.55. In order
to fit the calculated frequency shift to the experimental data,
a smaller value for the effective magnetization has to be
used, namely, 4	Meff=7.5 kG. The spectra shown in Fig. 8
is remarkably similar to the that in Fig. 1 of Ref. 67. Note

that since, in the parallel configuration the precession of the
magnetization is elliptical, the spectra of the Mz component
of the magnetization exhibit peaks at the second harmonic,
as observed experimentally.67

Although the comparison between theory and experiment
is very satisfactory for the case of field in the plane, this is
not true for the case of field perpendicular to the film.
Kiselev et al.69 have reported the observation of voltage os-
cillations in nanopillar samples, with a 130 nm�70 nm el-
liptical cross section, structured with composition
Cu�80 nm�/ Co�40 nm�/ Cu�10 nm�/ Ni80Fe20 �3 nm�/
Cu�2 nm�/ Pt�30 nm�, with the field perpendicular to the
plane. The data of Ref. 69 exhibit several features which are
not explained by the simple theory presented in Sec. IV. The
only observation that confirms the prediction of the model is
the fact that the oscillation frequency increases with increas-
ing current �blueshift�. The data reveal two striking features:
the oscillations are observed in a wide range of current, from
0.8 to 10 mA, while in the experiments with the field in the
plane the range in only up to 2Ic; the frequencies are char-
acterized by jumps at certain current values. As discussed in
Sec. IV, if we assume that the wave vector is perpendicular
to the plane, the spin-wave frequency is given by �k�I=0�
+��k, where ��k is given by �45�. The symbols in Fig. 9
represent the data of Ref. 69 while the solid line is the result
of the model calculated with the parameters of Ref. 69: H0
=7.5 kOe, �k�I=0�=2	�7.5 GHz, g=2.23, 4	Meff

=5.1 kG, and Ic=0.8 mA. Note that the curve in Fig. 9 bears
great resemblance to the theoretical curve in Fig. 2�d� of Ref.
69, obtained by solving the Landau-Lifshitz equation with
the STI torque. Evidently both theoretical predictions grossly
overestimate the measured frequency shift in the range I
5 mA and cannot be correct. In an attempt to remedy this
we assume that the mode initially excited by the current is
the lowest-order standing-wave mode along the lateral di-
mension of the film, for which k�3�105 cm−1. However,
with the parameters of the sample used in Ref. 69, the coef-
ficients in �46� and �47� are uk=1.05 and vk=0.32, and the
frequency shift obtained from the numerical solution of �46�

FIG. 8. �a� Spectra of the mx component of the magnetization
obtained by the numerical solution of Eq. �49� for several values of
the driving current to compare to the data of Ref. 67. �b� The solid
line shows the theoretical frequency vs current while the symbols
represent the data of Ref. 67.

FIG. 9. Frequency vs current for a film magnetized in the per-
pendicular direction. The curve is a plot of Eq. �45� with parameters
appropriate for the sample used in Ref. 69. The symbols represent
the data of Ref. 69.
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turns out to be almost identical to the one calculated with
�45�.

We believe that the failure of the model is an indication
that the mode excited in the film with perpendicular magne-
tization is indeed a standing wave along the lateral dimen-
sion. In such a mode the number of magnons varies from
nearly NS at the lobe of the mode in the center to zero at the
nodes in the edges. Hence, the z component of the magneti-
zation varies along the film by an amount on the same order
of magnitude as 4	Meff, resulting in an internal magnetic
field that is highly nonuniform. In this case, the plane-wave
functions �10� and �11� are not solutions of the equations of
motion so that the model completely breaks down. The
jumps observed in the oscillation frequency may also be an-
other indication that the excited modes are standing waves
along the film. In a nonuniform, symmetrical internal field,
the lowest-order mode wave function has a shape that re-
sembles the curve at the bottom of Fig. 1, though not de-
scribed by a cosine function. The contribution of the ex-
change energy to the frequency of such a mode is on the
order of �D�	 /L�2, which is 0.92 GHz for the sample used
in Ref. 69. As the current increases, the amplitude of the
mode increases, so that the magnetoresistance in the center
of the film becomes larger at the edges. This results in a
redistribution of the current density, which increases near the
edges at the expense of the center area. As a consequence,
the driving torque decreases for the lowest-order mode and
increases for modes with lobes near the edges. With increas-
ing current, one of the higher-order modes is eventually ex-
cited when its relaxation rate is overcome by the torque,
producing a jump in the oscillation frequency. Note that the
excitation of the third-order mode would result in a change
in frequency of about 24�D�	 /L�2, which is 18 GHz for the
sample of Ref. 69, a value close to the variation observed
when the current reaches 5.5 mA, as shown in Fig. 2�c� of
Ref. 69.

VI. CONCLUSION

We have presented a spin-wave theory for the driving of
the magnetization in a thin film by a direct current traversing
a magnetic multilayer. When nonlinear effects due to mag-

non interactions are incorporated in the formalism, the model
accounts for the stabilization of the magnetization precession
and the frequency shift occurring with increasing current,
predicting downward frequency shifts �redshifts� with in-
creasing current if the external field is applied on the film
plane, and upward frequency shifts �blueshifts� with the field
perpendicular to the film. Note that the red- and blueshifts in
the spin-wave frequencies could also be interpreted as a
simple consequence of the decrease in magnetization caused
by the magnon excitation, expressed by Eqs. �19�, �21�, and
�24�. However, the full nonlinear theory is necessary to ex-
plain quantitatively recent experimental observations of mi-
crowave oscillations in nanostructures with a magnetic field
applied in the film plane. The fact that the theory fails to
account for the experimental data when the field is applied
perpendicularly to the plane is attributed to the highly non-
uniform internal field generated when standing-wave modes
are excited.

In closing, we remark that when this paper was in the final
preparation stages we learned of a paper by Slavin and
Kabos,87 which presents a nice analytical calculation of the
frequency shifts in a film excited by a direct current magne-
tized by a field in an arbitrary direction. Their results are in
general agreement with the ones presented here as well as in
our previous paper71 for the particular cases of field parallel
and perpendicular to the film. As such they are also in dis-
agreement with the experimental data69 for the case of field
perpendicular to the film. More recently, Hoefer et al.88 pub-
lished a calculation of the fully nonlinear equation of motion
for the magnetization driven by a current applied to a per-
pendicularly magnetized ferromagnetic film by a nanocon-
tact. They have considered the spatial variation of the inter-
nal static magnetic field thus obtaining a good agreement
with the experiments of Ref. 69 for currents up to 5 mA,
confirming our conjectures for the reason of the failure of the
plane spin-wave theory.
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