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The Kovacs protocol, based on the temperature shift experiment originally conceived by A. J. Kovacs for
glassy polymers, is implemented in an exactly solvable dynamical model. This model is characterized by
interacting fast and slow modes represented, respectively, by spherical spins and harmonic oscillator variables.
Due to this fundamental property, the model reproduces the characteristic nonmonotonic evolution known as
the “Kovacs effect,” observed in polymers, spin glasses, granular materials, and molecular liquid models, when
similar experimental protocols are implemented.
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I. INTRODUCTION

Systems with glassy dynamics typically exhibit nontrivial
behavior when they undergo temperature shifts within the
glassy phase. These systems, being in an out-of-equilibrium
condition, have properties which are expected to depend on
their history. This is the “memory” of glassy systems. One
memory effect that shows up in a one-time observable is the
so-called “Kovacs effect,”1 which manifests itself under a
specific experimental protocol. This effect has been the sub-
ject of a variety of recent investigations.2–7 The characteristic
nonmonotonic evolution of the observable under examina-
tion �the volume in the original Kovacs experiment�, with the
other thermodynamic variables held constant, shows clearly
that a nonequilibrium state of the system cannot be fully
characterized only by the �time-dependent� values of thermo-
dynamic variables, but that further inner variables are needed
to give a full description of the nonequilibrium state of the
system. The memory in this case consists in these internal
variables keeping track of the history of the system.

The purpose of this paper is to use a specific model for
fragile glass to implement the protocol in order to get some
insight into the Kovacs effect. We show that in spite of its
simplicity, this model captures the phenomenology of the
Kovacs effect, it makes possible to implement the Kovacs
protocol not only with temperature shifts but with magnetic
field shifts as well, and allows one in specific regimes to
obtain analytical expressions for the evolution of the variable
of interest. Furthermore, the possibility of affording a
thermodynamical-like picture through the introduction of ef-
fective parameters can be investigated.

This paper is organized as follows: in Sec. II we review
the experimental protocol generating the effect, in Secs. III
and IV we introduce our model and use it to implement the
protocol, in Sec. V we draw out of this model some analyti-
cal results, and in Sec. VI an interpretation of the effect in
terms of effective parameters is illustrated with final conclu-
sions. An appendix collects all terms and coefficients em-
ployed in the main text.

II. KOVACS PROTOCOL

The experimental protocol, as originally designed by
Kovacs1 in the 1960s, consists of three main steps.

�1� The system is equilibrated at a given high temperature
Ti �see also Fig. 1�.

�2� At time t=0 the system is quenched to a lower tem-
perature Tl, close to or below the glass transition tempera-
ture, and it is allowed to evolve a period ta. One then follows
the evolution of the proper thermodynamic variable �in the
original Kovacs experiment this was the volume V�t� of a
sample of polyvinyl acetate; in our model it will be the
“magnetization” m1�t��.

�3� After the time ta, the volume, or other corresponding
observable, has reached a value equal, by definition of ta, to
the equilibrium value corresponding to an intermediate tem-
perature Tf �Tl�Tf �Ti�—i.e., such that VTl

�ta��VTf

eq. At this
time, the bath temperature is switched to Tf.

The pressure �or corresponding variable� is kept constant
throughout the whole experiment.

Naively one would expect the observable under consider-
ation, after the third step, to remain constant, since it already
has �at time t= ta

+� its equilibrium value. But the system has
not equilibrated yet and so the observable goes through a

FIG. 1. Kovacs protocol. Starting from an equilibrium condition
at T=Ti �step �1�� at time t=0, the system is quenched to T=Tl and
allowed to evolve �step �2��. In step �3� the temperature is switched
to Tf. This is done at the time ta for which VTl

�ta��VTf

eq. In the
frame, the typical evolution of the volume V�t� at T=Tf, after the
final temperature switch, is illustrated.
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nonmonotonic evolution before relaxing back to its equilib-
rium value, showing a characteristic hump whose maximum
increases with the magnitude of the final jump of tempera-
ture Tf −Tl and occurs at a time which decreases with in-
creasing Tf −Tl.

We want to implement this protocol on a model for both
strong and fragile glass first introduced in Ref. 8: the
harmonic-oscillator–spherical-spin �HOSS� model. This
model is based on interacting fast and slow modes; this prop-
erty turns out to be necessary for the memory effect, the
object of this paper, to occur.

III. HARMONIC-OSCILLATOR–SPHERICAL-SPIN
MODEL

The HOSS model contains a set of N spins Si locally
coupled to a set of N harmonic oscillator xi according to the
following Hamiltonian:

H = �
i=1

N �K

2
xi

2 − Hxi − JxiSi − LSi� . �1�

The spins have no fixed length but satisfy the spherical con-
straint �i=1

N Si
2=N. The spin variables are assumed to relax on

a much shorter time scale than the harmonic oscillator vari-
ables, so the oscillator variables are the slow modes and on
their dynamical evolution the fast spin modes act just as
noise. This model is an extreme simplification of a system of
particles which interact spatially via a potential and have an
internal degree of freedom �rotational� with a dynamics
faster than the motion of the particle itself. The potential is
harmonic, and each particle interacts independently with the
medium, encoded in the constant K. The inner degree of
freedom �Si� interacts only with the position of the particle
�xi�, and the only global interaction is given by the spherical
constraint. Due to the time scale separation, one can integrate
out the spin variables to obtain the following effective
Hamiltonian for the oscillators �for details see Ref. 8, explicit
expressions of undefined terms appearing in all equations
hereafter are reported in the Appendix�,

Hef f�	xi
�
N

=
K

2
m2 − Hm1 − wT�m1,m2�

+
T

2
ln�wT�m1,m2� + T/2

T/2
� , �2�

which depends on the temperature and on the first and sec-
ond moments of the oscillator variables: namely,

m1 =
1

N
�
i=1

N

xi, m2 =
1

N
�
i=1

N

xi
2. �3�

These variables encode the dynamics of the system which is
analytically implemented through a Monte Carlo parallel up-
date of the oscillator variables:

xi → xi + ri/�N . �4�

The variables ri are normally distributed with zero mean
value and variance �2. The update is accepted according to

the Metropolis acceptance rule applied to the variation �� of
the energy of the oscillator variables, which is determined by
Hef f and, in the limit of large N, is given by

��

N
=

KT�m1,m2�
2

�m2 − HT�m1,m2��m1. �5�

This simple model turns out to have a slow dynamics and
can be solved analytically. Following Ref. 8 one can derive
the dynamical equations for m1 and m2:

ṁ1 = �HT�m1,m2�
KT�m1,m2�

− m1 fT�m1,m2� ,

ṁ2 =
2

KT�m1,m2�
�IT�m1,m2� + HT�m1,m2�ṁ1� . �6�

The stationary solutions of these equations coincide with the
saddle point of the partition function of the whole system at
equilibrium at temperature T and are given by

m̄1 =
HT�m̄1,m̄2�
KT�m̄1,m̄2�

=
H̄T

K̄T

,

m̄2 − m̄1
2 =

T

KT�m̄1,m̄2�
=

T

K̄T

, �7�

with barred variables from now on indicating their equilib-
rium values.

Strong and fragile glasses with the HOSS model

In spite of its simplicity, the HOSS model allows us to
describe both strong and fragile glasses, characterized, re-
spectively, by an Arrhenius or a Vogel-Fulcher law in the
relaxation time. The following constraint on the configura-
tions space is applied:

m2 − m1
2 − m0 � 0. �8�

When m0=0 there exists a single global minimum in the
configurations space of the oscillators which is reached at
T=0 and is given by

xi =
H + J

L
" i; �9�

therefore, the role of the constraint with m0�0 is to avoid
the existence of a “crystalline state” and to introduce a finite
transition temperature. In other words, while in the case m0
=0 there is only one ordered configuration of the oscillators
fulfilling the constraint �with the equality�, when m0�0
there are many different configurations with this property.
This resembles the situation where there are many metastable
states which tend to trap the system. The closer the tempera-
ture gets to the transition value Tk, the longer the system is
trapped in a metastable minimum. The transition temperature
is directly determined by the value of the constraint param-
eter m0. This constraint applied to the harmonic oscillator
variables is therefore a way to reproduce the behavior of
good glass formers, for which there are noncrystalline pack-
ing modes with intrinsically low energy.
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The stationary solutions for the dynamics with this con-
straint are given by

m̄1 =
HT�m̄1,m̄2�
KT�m̄1,m̄2�

=
H̄T

K̄T

,

m̄2 − m̄1
2 = � T

KT�m̄1,m̄2�
=

T

K̄T

, T � Tk,

m0, T � Tk,
� �10�

where Tk is determined by the further condition

Tk = m0KTk
�m̄1

Tk,m̄2
Tk� = m0K̄Tk

. �11�

This is the temperature above which Eq. �8� is always satis-
fied and the dynamics is not affected by the constraint. At
T=Tk the equality in �8� holds at equilibrium. Below Tk there
will be 	xi
 configurations violating the constraint and there-
fore forbidden to the dynamic evolution. For T�Tk the sys-
tem can eventually reach only configurations fulfilling the
equality in �8�; when this happens it gets trapped forever in
such a configuration. This is equivalent to having a
“Kauzmann-like” transition, occurring at T=Tk with vanish-
ing configuration entropy, meaning the system gets stuck for-
ever in one single configuration fulfilling the constraint �see
also Ref. 9�. When there is no constraint—i.e., when
m0=0—then Tk=0. If the Monte Carlo updates are done with
Gaussian variables with constant variance �2, this model is
characterized by an Arrhenius relaxation law

�eq � eAs/T �12�

in so resembling the relaxation properties of strong glasses.
The HOSS model with constraint strictly positive �m0

�0� can easily be extended to describe fragile glasses by
further introducing in the variance of the Monte Carlo update
the following dependence on the dynamics:

�2 = 8�m2 − m1
2��m2 − m1

2 − m0�−	. �13�

In this case the relaxation time turns out to follow the gen-
eralized Vogel-Fulcher law

�eq � eAk
	/�T − Tk�	

. �14�

The parameter 	 is introduced to make the best Vogel-
Fulcher-type fit for the relaxation time in experiments, mak-
ing this model valid for a wide range of fragile glasses.
When the temperature approaches the value Tk defined by
Eq. �11�, from above, the system relaxes towards configura-
tions close to the ones fulfilling the lowest bound of the
constraint. The variance �2 then tends to diverge, the updates
become large and so unfavorable, meaning that almost every
update of the oscillator variables is refused. This imposes
dynamically the fulfillment of the constraint and determines
the diverging relaxation time following the generalized
Vogel-Fulcher law of Eq. �14�.

IV. KOVACS EFFECT IN THE HOSS MODEL

We implement the Kovacs protocol in the model above
introduced for a fragile glass. The system is prepared at a

temperature Ti and quenched to a region of temperature close
to the Tk—i.e., Tl
Tk. Solving numerically Eqs. �6� we de-
termine the evolution of the system in both steps �2� and �3�
of the protocol. In step �2� the time ta at which m1

Tl�ta�= m̄1
Tf is

calculated so that

m1
Tf�ta

+� = m̄1
Tf , m2

Tf�ta
+� = m2

Tl�ta� . �15�

The evolution of the fractional “magnetization”

�m1�t� =
m1�t� − m̄1

Tf

m̄1
Tf

�16�

after step �3� �t� ta� for different values of Tl is reported in
Figs. 2 and 3, respectively, for 	=1 and 	=2.

FIG. 2. Kovacs effect in a fragile glass with 	=1. The Kovacs
protocol is implemented with a quench from temperature Ti=10 to
Tl and final jump �at t= ta

+� to the intermediate temperature Tf =4.3.
The curves, starting from the lowest, refer to Tl=4.005,4.05,4.15;
the dashed line refers to condition Tl=Tf �simple aging with no final
temperature shift�.

FIG. 3. Kovacs effect in a fragile glass with 	=2. The Kovacs
protocol implemented with a quench from temperature Ti=10 to Tl

and final jump �at t= ta
+� to the intermediate temperature Tf =4.3.

The curves, starting from the lowest, refer to Tl=4.005,
4.05,4.15,4.25; the dashed line refers to condition Tl=Tf �simple
aging with no final temperature shift�.
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The magnetic field H is kept constant at the value H
=0.1. In all the implementations of the protocol we use the
values J=K=1, L=0.1, and m0=5 for the other parameters of
the model. This choice for the parameters and the value H
=0.1 for the magnetic field fixes �through Eqs. �10� and �11��
the Kauzmann temperature at the value Tk=4.002 48. Since
the equilibrium value of m1 decreases with increasing tem-
perature �as opposed to what happens, for instance, with the
volume�, we observe a reversed “Kovacs hump.” The curves
keep the same properties typical of the Kovacs effect; the
minima occur at a time which decreases and have a depth
that increases with increasing magnitude of the final switch
of temperature. As expected, since increasing 	 corresponds
to further slowing the dynamics, the effect shows upon a
longer time scale in the case of 	=2 as compared to 	=1.

Actually, since in the last step of the protocol m1�t= ta�
= m̄1

Tf and fTf
�m1 ,m2� is always positive, from the first of

Eqs. �6�, one soon realizes that the hump for this model can
be either positive or negative, depending on the sign of the
term:

HTf
�m̄1

Tf,m2�

KTf
�m̄1

Tf,m2�
− m̄1

Tf �17�

at t= ta
+. This term is zero when m1= m̄1

Tf, m2= m̄2
Tf, so one

would expect m2�t= ta
+�= m̄2

Tf to be the border value determin-
ing the positivity or negativity of the hump. Since
HTf

�m̄1
Tf ,m2� decreases with increasing m2 while KTf

�m̄1
Tf ,m2�

increases, it follows that the condition for a positive hump is

m2�t = ta
+� � m̄2

Tf . �18�

For shifts of temperature in a wide range close to the transi-
tion temperature Tk, where the dynamics is slower and the
effect is expected to show up significantly on a long time
scale, the condition m2�t= ta�� m̄2

Tf is always fulfilled and
therefore a negative hump is expected.

Kovacs protocol at constant temperature with magnetic
field shifts

Interchanging the roles of T and H, the Kovacs protocol
can be implemented at constant temperature by changing the
magnetic field H instead. From Eqs. �10� and �11� one can
see that the value of the transition temperature Tk depends on
H as well. Different values of H determine different values
of Tk. Therefore the protocol must be implemented in the
following way. The temperature is kept fixed at Ti. At this
temperature there is a “Kauzmann” transition for a specific
value of the field H=Hk. The temperature Tk decreases with
decreasing H. So if we work at T=Ti with magnetic fields
H�Hk, we are sure to implement every step of the protocol
keeping the system always above the “Kauzmann” transition
corresponding to the value of H applied. We start with the
system equilibrated at T=Ti and H=Hi�Hk, and at time t
=0 we shift instantaneously the field to a larger value Hl,
such that Hi�HlHk. Then we let the system age for a time
ta such that m1

Hl�ta�= m̄1
Hf. At this time the field is shifted to

Hf �with Hf �Hl�Hk�. The subsequent evolution of the frac-
tion magnetization �m1�t� is shown in Fig. 4. Again the

curves show all the typical properties of the Kovacs hump,
with a very slow relaxation back to equilibrium due to the
choice of a value of Hf very close to Hk.

V. ANALYTICAL SOLUTION IN THE LONG-TIME
REGIME

In the previous section we have shown, through a numeri-
cal solution of the dynamics, that the HOSS model repro-
duces the phenomenology of the Kovacs effect, showing the
same qualitative properties of the Kovacs hump as obtained
in experiments �see, for example, Refs. 1 and 11�, in other
models with facilitated or kinetically constrained
dynamics,3,7 in models for molecular liquids,6 and other dif-
ferent models.2,4,5

In this section we show that, by carefully choosing the
working conditions in which the protocol is implemented,
our model provides with an analytical solution for the evo-
lution of the variable of interest.

A. Auxiliary variables

In order to ease calculations, as done in Refs. 8 and 9 it is
convenient to introduce the following variables:

�1 =
HT�m1,m2�
KT�m1,m2�

− m1, �2 = m2 − m1
2 − m0, �19�

for which the dynamical equations read

�̇1 = − QT�m1,m2�IT�m1,m2�

− �1 + DQT�m1,m2���1fT�m1,m2� ,

�̇2 =
2IT�m1,m2�
KT�m1,m2�

+ 2�1
2fT�m1,m2� . �20�

FIG. 4. Kovacs protocol with magnetic field shifts �	=1�. The
Kovacs protocol is implemented at constant temperature Ti=4.2
with a sequence of magnetic field shifts. Hk=2.24787 is the value of
the field such that Tk=Ti=4.2. Starting from Hi=0.1 �step �1��, the
field is switched to Hl and the system is let to evolve a time ta �step
�2��. At t= ta—i.e., when m1

Hl�ta�= m̄1
Hf—the field is switched to Hf

=2.17 �step �3��. The curves, starting from the lowest, refer to Hl

=2.22,2.20,2.18; the dashed line refers to the condition Hl=Hf.
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We will choose to implement steps �2� and �3� of the
protocol in a range of temperature very close to the Kauz-
mann temperature Tk. As exhaustively shown in Refs. 8 and
10 in the long time regime the variable �2�t� decays loga-
rithmically to its equilibrium value which is small for T
�Tk. So, if ta is very large, the value of the variable �2�t�,
which is continuous at the jump, will be small enough to
fulfill the condition for which the following equation is
shown to be valid:8

d�1

d���2�
= AT�m1,m2�

��̄2 + ��2�−	

��2
�1 −

JQT�m1,m2�T
2�m0 + �̄2�

,

�21�

where now the variable ��2�t�=�2�t�− �̄2 is used and barred
variables always refer to equilibrium condition. Of course
choosing Tl close to Tk and waiting a long time ta so that the
system approaches equilibrium allows only small tempera-
ture shifts for the final step of the protocol, meaning that also
Tf will be close to Tk. All the coefficients which appear in
Eq. �21� �see the Appendix for the complete expressions� in
the regime chosen can be assumed constant and equal to
their equilibrium values with a very good approximation.
The equation can then be easily integrated to give

�1���2� = exp�− ĀT
2F1�	,	,	 + 1,− �̄2/��2�

	���2�	 ��1
+B̄T

	

− C̄T�
��2

+

��2

dz exp�ĀT
2F1�	,	,	 + 1,− �̄2/z�

	z	 � ,

�22�

where the superscript � indicates t= ta
+ and 2F1 the hypergeo-

metric function. This expression simplifies in cases 	
=1,3 /2 ,2. All these solutions and relative coefficients are
reported in the Appendix; here, we limit ourselves to the case
	=1 which corresponds to the ordinary Vogel-Fulcher relax-
ation law. In this case the solution is

�1�t� = � ��2�t�
��2�t� + �̄2

�ĀT/�̄2��1
+���2

+ + �̄2

��2
+ �ĀT/�̄2

− C̄T�
��2

+

��2�t�

dz� z

z + �̄2
�−ĀT/�̄2 , �23�

where

�
a

b

dz� z

z + �
��

= � 2F1�1 + �,�,2 + �,
− x

�
�x�+1

���1 + �� �
x=a

x=b

.

One can then expand the variable of interest m1�t� in terms of
�1 and ��2 and obtain the following expression for the Ko-
vacs curves:

�m1�t� = ATf

1 �m̄1
Tf,m̄2

Tf���1�t� − �1
+�

+ ATf

2 �m̄1
Tf,m̄2

Tf����2�t� − ��2
+� , �24�

where the coefficients are approximately constant in the re-
gime chosen and can be evaluated at equilibrium.

B. Short and intermediate t− ta

For small t− ta, a linear approximation for the variable
��2, with slope given by the second equation of the set �20�
evaluated at t= ta

+, turns out to be very good. Inserting this
expression into Eq. �23� to get �1�t� and then into Eq. �24� a
good approximation of the first part of the hump for small
and intermediate t− ta is obtained, as shown in Figs. 5 and 6,
respectively, in the case of temperature shifts and magnetic
field shifts.

C. Intermediate and long t− ta

When t− ta is very large, we can use Eq. �23� and the
preasymptotic approximation for �2�t� �see Ref. 8�:

FIG. 5. Numerical solution �solid lines� of the Kovacs curves
compared to the approximate analytical solution of Eq. �23� at
short-intermediate �dot-dashed line� and intermediate-long t− ta

�dashed line�. The protocol is applied between Ti=10 and Tf

=4.018. The curves starting from the lowest refer to Tl

=4.005,4.008 �H=0.1, Tk=4.00248�.

FIG. 6. Numerical solution �solid lines� of the Kovacs curves
compared to the approximate analytical solution of Eq. �23� at
short-intermediate �dot-dashed line� and intermediate-long t− ta

�dashed line�. The protocol is applied at constant temperature Ti

=4.2 with magnetic field shifts between Hi=0.1 and Hf =2.2435.
The curves starting from the lowest refer to Hl=2.2440,2.2438
�Hk=2.24787�.
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�2�t� = �ln�t/t0� +
1

2
ln�ln�t/t0���−1/	

. �25�

Inserting this expression into Eq. �23� to get �1�t� and then
into Eq. �24�, a good approximation for the hump and tail of
the Kovacs curves is obtained. In Figs. 5 and 6 we show the
agreement between the analytical expression so obtained and
the numerical solution.

D. Temperature dependence of the Kovacs peak times

The analytical results obtained above in the long-time re-
gime can be exploited to get more insight into the Kovacs
effect. In Ref. 7 a direct link between the occurence time of
the Kovacs peak and the relaxation properties of the glass
was found numerically in a facilitated spin model; in the
HOSS model, we are in a position to assess such a link also
by direct analytical calculation. We can calculate the occur-
rence time tp of the peak �a dip in our case� by noticing that
ṁ1�t� is zero when �1�t�=0 �see Eq. �6�� and so, for the case
	=1, by finding the zeros of Eq. �23�. In this case it is natu-
ral to implement the protocol with a fixed Tl and changing Tf
instead. Carrying out the calculation one finds

�2
peak = �2

+ − O��̄2
2� . �26�

Using Eq. �25� and considering that in the regime chosen
�2

+��̄2�Tf −Tk one finally finds

tp � t0 exp� Ap

Tf − Tk
�, Ap =

�̄2

�2
+ . �27�

We check numerically this prediction and, as shown in Fig.
7, very good agreement is displayed. The parameters of the
fit coincide within the error with the theoretical value of t0
�see the Appendix� and with Ap. The peak time, therefore,
scales in the same way as the relaxation time at that tempera-
ture. This confirms, as remarked in Ref. 7, that the Kovacs
protocol is sensitive to the �fragile, in this case� nature of the
glass and may be used as an independent way to determine
the equilibration time of the system.

VI. EFFECTIVE TEMPERATURE AND EFFECTIVE FIELD

The out-of-equlibrium state of the system can be ex-
pressed by a number of effective parameters which is in gen-
eral equal to the number of independent observables consid-
ered. In the HOSS model, given the solution of the
dynamics, a quasistatic approach can be followed to gener-
alize the equilibrium thermodynamics �see Refs. 8 and 10�
by computing the partition function of all the macroscopic
equivalent states at a given time t. The measure on which
this out-of-equilibrium partition function is evaluated is not
the Gibbs measure. One can assume an effective temperature
Te and an effective field He, and substitute the equilibrium
measure by exp�−Heff�	xi
 ,T ,He� /Te� and, in this way, de-
termine the partition function and then the free energy. The
values of the effective parameters at a given time t are those
that minimize the free energy so calculated. In this way one
then obtains

Te�t� = KT„m1�t�,m2�t�…�m2�t� − m1
2�t�� ,

He�t� = H − KT„m1�t�,m2�t�…�1�t� . �28�

We plot He as a function of Te in a Kovacs setup in Fig. 8.
We see that in step �2� of the protocol �lower solid line�,
equivalent to a simple aging experiment, the effective mag-
netic field relaxes monotonically to the value H. In step �3�
�upper solid line CD�, after the final jump of the bath tem-
perature, represented in the figure by the jump from point B
to point C, the effective magnetic field goes through a non-
monotonic evolution before relaxing to the equilibrium value
H. This is when the “Kovacs” effect occurs. A conclusion
that can be drawn is that a thermodynamiclike picture in
terms of only the effective temperature is not possible in the
Kovacs setup if not at cost of neglecting effects of the order

FIG. 7. Numerical calculation �diamonds� of the Kovacs peak
times; the solid line is a fit with expression �27� keeping free pa-
rameters. The protocol is applied between Ti=10 and Tl=4.005. Tf

is varied between 4.011 and 4.019. The parameters which give op-
timal fit are t0=0.175 and Ap=0.26.

FIG. 8. Effective field vs effective temperature in the Kovacs
protocol. The solid line AB refers to the last part of step �2� of the
protocol—i.e., aging at Tl=4.005 after a quench from Ti=10 �we
did not present the full line which starts at Te=9.13 and He

=0.0826, outside our picture�.The solid line CD represents the evo-
lution of the system in step �3� of the protocol, after an instanta-
neous switch of the bath temperature from Tl=4.005 to Tf =4.018
�resulting in a jump from point B to C�. The nonmonotonicity of the
curve CD—i.e., of the evolution of He after the jump—is the sig-
nature of the Kovacs effect. The dashed line represents simple aging
at Tf after a quench from Ti. �H=0.1, Tk=4.00248�
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of magnitude of the “Kovacs effect” itself. So, while in an
aging experiment in the long-time regime He�t�−H is very
small compared to Te�t�−T �so that one can consider He

=H and use only Te as effective parameter�, in the Kovacs
protocol, it is in the nonmonotonic evolution of the effective
field that the memory effect manifests itself. An additional
effective field is then needed to recover a complete thermo-
dynamiclike picture of the system inclusive of the Kovacs
effect. The dashed line in the figure represents a simple aging
experiment at T=Tf; in this case a thermodynamiclike pic-
ture with only an effective temperature is possible, assuming
He=H. One can argue from the figure that such a picture
would be possible also in step �3� of the protocol �curve CD�
since the two curves, for Te close enough to Tf, coincide. But
this happens when the system is close to equilibrium and the
signature of the memory effect, the nonmonotonic evolution,
is lost. These conclusions confirm the results obtained in Ref.
6, where the impossibility of a thermodynamiclike picture
with only the effective temperature was based on a potential
energy landscape �PEL� analysis. The molecular liquid stud-
ied in Ref. 6, in the last step of the Kovacs protocol, explores
regions of the PEL never explored in equilibrium, and so a
simple mapping to an equilibrium condition at a different
temperature �the effective temperature by definition� is not
possible.

VII. CONCLUSION

We have shown that a simple mode with constrained dy-
namics like the HOSS model, is rich enough to reproduce the
Kovacs memory effect, even allowing one to obtain an ana-
lytical expression for the Kovacs hump in a long-time re-
gime. The Kovacs effect is observed in many experiments
and models, showing common qualitative properties which
we have found to be shared also by the model analyzed in
this paper. The quantitative properties depend on the particu-
lar system or model analyzed.

As far concerns the HOSS model, it turns out that for the
slow modes—i.e., the oscillator variables—fixing the overall
average value, the magnetization m1, does not prevent the
existence of memory encoded in the variable m2, which
keeps track of the history of the system. The equilibrium
value of m2 increases with temperature while the equilibrium
value of m1 decreases with increasing temperature. There-
fore, after the final switch of temperature, since m2�ta�
� m̄2

Tf, the variable m2 has a value corresponding to an equi-
librium condition at a higher temperature �memory of the
initial state at temperature Ti� so driving the system towards
a condition corresponding to a higher temperature—i.e.,
smaller values of m1—determining the hump.

It is important to stress that a fundamental ingredient in
the HOSS model is the interaction between slow and fast
modes. Due to this interaction, the equilibrium configura-
tions of the oscillator variables at a given temperature are
determined by both m2 and m1, the first and second moments
of their distribution, whose dynamical evolution is interde-
pendent. When such an interaction is turned off �by setting
J=0� essentially only one variable is sufficient to describe
both the equilibrium configurations and the dynamics of the

system, and the memory effect is lost. In this respect this
model constitutes an improvement to the so-called oscillator
model12 within which such a memory effect cannot be repro-
duced. The model provides us with an anlytical solution for
the Kovacs curves in a specific regime �T
Tk, long times�,
allowing us to get an expression for the peak times which
turn out to scale in the same way as the equilibrium relax-
ation time of the system at that temperature. This confirms
that, as found also in Ref. 7 on different models, the Kovacs
protocol provides one with an independent way to assess the
nature of the relaxation properties of the system. Another
important conclusion, confirming previous results,6 which
can be drawn from this model is that a complete thermody-
anmiclike picture inclusive of the Kovacs effect, with only
an effective temperature, is not possible and that also an
effective field in this case is needed. In the present model one
can also study temperature cycle experiments of the type
carried out in spin glasses �see Ref. 13�, leaving room for
further research.
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APPENDIX

In this appendix we report all explicit expressions for
terms appearing in the text. In Eqs. �2�, �5�, and �6� we have

wT�m1,m2� = �J2m2 + 2JLm1 + L2 + T2/4,

KT�m1,m2� = K −
J2

wT�m1,m2� + T/2
,

HT�m1,m2� = H +
JL

wT�m1,m2� + T/2
,

fT�m1,m2� =
�2KT�m1,m2�

2T
Erfc��̃T�m1,m2��

�exp��̃T
2�m1,m2� − �T

2�m1,m2�� ,

IT�m1,m2� =
�2KT�m1,m2�

4
Erfc��T�m1,m2��

+ �T

2
− KT�m1,m2�w̃T�m1,m2�� fT�m1,m2� ,

where

w̃T�m1,m2� = m2 − m1
2 + �HT�m1,m2�

KT�m1,m2�
− m1�2

,

�T�m1,m2� =� �2

8w̃T�m1,m2�
,

KOVACS EFFECT IN A MODEL FOR A FRAGILE GLASS PHYSICAL REVIEW B 73, 094205 �2006�

094205-7



�̃T�m1,m2�
�T�m1,m2�

=
2KT�m1,m2�w̃T�m1,m2�

T
− 1.

In Eqs. �12�, �14�, and �21�–�24�,

As =
�2K̄T

8
, D = JH + LK = JHT + LKT,

QT�m1,m2� =
J2D

KT
3wT�wT + T/2�2 ,

PT�m1,m2� =
J4�m2 − m1

2�
2KTwT�wT + T/2�2 ,

Ak =
K̄Tk

�K − K̄Tk
��1 + DQ̄Tk

+ P̄Tk
�

�K − K̄Tk
��1 + DQ̄Tk

� − K̄Tk
P̄Tk

,

2F1�a,b,c,z� =
��c�

��a���b��n=0

�
��a + n���b + n�

��c + n�
zn

n!
,

AT�m1,m2� =
�1 + QT�m1,m2�D�2

1 + PT�m1,m2� + QT�m1,m2�D
,

B̄T
	 = exp�ĀT

2F1�	,	,	 + 1,− �̄2/��2
+�

	���2
+�	  ,

C̄T =
JQTf

�m̄1
Tf,m̄2

Tf�Tf

2�m0 + �̄2�
=

JQ̄Tf
Tf

2�m0 + �̄2�
,

AT
1�m1,m2� =

�wT + T/2�KT

m1�Jm1 + L + �wT + T/2�KT�
,

AT
2�m1,m2� = 2m1AT

1�m1,m2� ,

t0 =
��

8	

1 + DQ̄T

1 + DQ̄T + P̄T

.

Solutions of Eq. �21� for 	= 3
2 :

�1���2� = �1 − �1 + ��2/�̄2

1 + �1 + ��2/�̄2
�ĀT/�̄2

3/2

e2ĀT/��̄2��̄2+��2���1
+B̄T

3/2

− C̄T�
��2

+

��2

dz�1 + �1 + z/�̄2

1 − �1 + z/�̄2
�ĀT/�̄2

3/2

e−2ĀT/��̄2��̄2+z� .

Solutions of Eq. �21� for 	=2:

�1���2� = � ��2

��2 + �̄2
�ĀT/�̄2

2

eĀT/��2
2�1+��2/�̄2����1

+B̄T
2

− C̄T�
��2

+

��2

dz� z

z + �̄2
�−ĀT/�̄2

2

e−ĀT/��̄2
2�1+z/�̄2�� .
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