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Using Lyapunov theory and numerical simulations, we analyze the local stability of an array of mechanically
coupled particles whose frictional dynamics is described by the Frenkel-Kontorova model, and design feedback
controls to precisely control the friction. We first establish the asymptotic stability of the system around the
equilibrium positions of the particles. We then show how to construct efficient feedback control laws to achieve
any predestined average velocity of the particle array, with no fluctuation, and irrespective of the detailed
nature of the interparticle coupling. These rigorous results are supported in extensive numerical simulations,
and are expected to be applicable to other related physical systems as well.
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I. INTRODUCTION

Fundamental understanding of friction is vitally important
in many areas of science and technology, ranging from nan-
otribology to crack propagation to earthquake dynamics.1

Recent advances have substantially improved our under-
standing of frictional phenomena, particularly on the inher-
ently nonlinear nature of friction.2 Progress has also been
made on how to tune the intrinsic frictional forces between a
sliding object and the underlying substrate, through interface
modification down to the molecular or atomic scale.3–5 Such
improved understanding at the microscopic level, in turn, is
expected to serve as important guidance in the design of
smart materials with desirable lubricant properties for indus-
trial and biomedical applications.6

Besides controlling the intrinsic frictional forces in the
contact regions of sliding objects and the substrate materials,
an intriguing idea has been proposed to control the overall
motion of an array of mechanically coupled objects sliding
on a dissipative substrate via feedback control and tracking.7

The original idea was illustrated by applying it to a particle
array, with the frictional dynamics described by the Frenkel-
Kontorova �FK� model. It was shown that, with the modula-
tion of a non-Lipschitzian control function, the average ve-
locity of the particle array can be tracked to predestined
target values, subject to some fluctuations. The persistent
fluctuations in the tracking has been shown to be an intrinsic
property of the tracking scheme proposed.8

In this paper, we use Lyapunov theory and numerical
simulations to analyze the local stability of an array of par-
ticles whose frictional dynamics is described by the FK
model, and design feedback controls to precisely control the
friction. We first establish the asymptotic stability of the sys-
tem around the equilibrium positions of the particles, as rig-
orously proven when the interparticle coupling is linearized,
and demonstrated numerically for the nonlinear case. Fur-
thermore, we apply the Lyapunov stability criterion to con-
struct efficient Lipschitzian feedback control laws, and

achieve any predestined average velocity of the particle ar-
ray, with minimal fluctuation. The ability to achieve precise
control is a global property of the system, irrespective of the
detailed nature of the interparticle coupling. These rigorous
findings are further supported in extensive numerical simu-
lations, and are expected to be applicable to other related
physical systems as well.

II. SYSTEM MODEL

The basic equations for the driven dynamics of a one-
dimensional particle array of N identical particles moving on
a surface are given by a set of coupled nonlinear equations7,9

mẍi + �ẋi = −
�U�xi�

�xi
−

�W�xi − xj�
�xi

+ f + ��t� , �1�

where i=1, . . . ,N, xi is the coordinate of the ith particle, m is
its mass, � is the friction coefficient representing the single-
particle energy exchange with the substrate, f is the applied
external force, ��t� is the Gaussian noise, U�xi� is the peri-
odic potential applied by the substrate, and W�xi−xj� is the
interparticle interaction potential.

Under the simplifications that the substrate potential is in
the form of �1/2���1−cos 2�xi�, and the same force is ap-
plied to each particle, the equation of motion reduces to the
simplified FK model

�̈i + ��̇i + sin��i� = f + Fi + � , �2�

where �i is the dimensionless phase variable, �i=2�xi, and
Fi is the nearest-neighbor interaction force. A specific ex-
ample often considered7,9 for Fi is the Morse interaction

Fi =
�

�
�e−���i+1−�i� − e−2���i+1−�i��

−
�

�
�e−���i−�i−1� − e−2���i−�i−1�� �3�

where � and � are positive constants. As �→0, we have
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Fi = ���i+1 − 2�i + �i−1� , �4�

with free-end boundary conditions

F1 = ���2 − �1�, FN = ���N−1 − �N� .

The FK model10 describes a chain of atoms subjected to
an external periodic potential. Besides describing the friction
dynamics,1 the FK model has been widely invoked
in descriptions of many other physical problems, such as
charge-density waves, magnetic spirals, and absorbed
monolayers.11,12 The static and dynamic properties of the FK
model for finite chains have been studied previously.13–15

III. LYAPUNOV STABILITY

To study Lyapunov stability of the frictional dynamics, we
first introduce necessary notations. Throughout the paper, we
use bold letters to denote a vector or a matrix. �x� denotes the
Euclidean norm of vector x. xT denotes the transpose of vec-
tor x. IN denotes the identity matrix of dimension N, namely,
the diagonal elements are 1 and all other elements are 0. �

denotes the Kronecker product

A � B = �a11B a12B ¯ a1pB

] ] ] ]

an1B an2B ¯ anpB
�

where A is an n� p matrix and B is an m�q matrix.
The Lyapunov theory has been widely used in the control

engineering community. Consider an autonomous system

ẋ = f�x� �5�

where f :Rn→Rn is locally Lipschitzian. Suppose x*=0 is
an equilibrium point, i.e., f�x*�=0. The equilibrium x*=0 is
stable if, for any 	
0, there exists �=��	�
0, such that

�x�0�� � � implies that �x�t�� � 	 for any t 
 0.

The equilibrium x*=0 is asymptotically stable if it is stable
and � can be chosen such that

�x�0�� � � implies that lim
t→�

x�t� = 0.

Equivalently, if a system’s Lyapunov exponent is negative,
then the system is asymptotically stable.16

The Lyapunov theory provides a sufficient condition for
stability based on an “energylike” function, the so-called
Lyapunov function. If we can find a continuously differen-
tiable function V�x� such that

V�x� 
 0 for x � 0 and V�0� = 0, �6�

V̇�x� � 0, �7�

then x=0 is stable. More stringently, if

V̇�x� � 0 for x � 0 and V̇�0� = 0 �8�

then x=0 is asymptotically stable.17

Next, we conduct rigorous analysis of the Lyapunov sta-
bility for the FK model. For simplicity, we use the linear

interaction �4� instead of �3� in our theoretical study. �Note
that even though the interparticle interaction is linearized, the
coupling with the substrate is still nonlinear.� Computer
simulations using the nonlinear interaction �3� will be shown
later. We also assume the noise term � in �2� to be zero in
our deterministic analysis.

From Eq. �2�, the fixed points of the uncoupled particle
without external force �i.e., f =0� are at

�i = l�, �̇i = 0, l = 0, ± 1, ± 2, . . . . �9�

We use a control theory method to reveal that the set of fixed
points when l=0, ±2, ±4, . . . is actually asymptotically
stable locally.

To this end, we express the dynamics �2� in the following
state space form:

ẋi1 = xi2,

ẋi2 = − sin xi1 − �xi2 + Fi, �10�

where xi1=�i, xi2= �̇i, and Fi is the linear interaction given in
Eq. �4�. Around the fixed points �xi1 ,xi2�= �l� ,0� with l an
even number, the nonlinear term sin�xi1� can be approxi-
mated by xi1. Stacking the state space equations for i
=1,2 , . . . ,N, we obtain

ẋ = Ax + BFx �11�

where x= �x11 x12 x21 x22 ¯ xN1 xN2�T,

A = IN � Ai, B = IN � Bi, F = Q � �� 0� ,

and

Ai = � 0 1

− 1 − �
	, Bi = �0

1
	 ,

Q = �
− 1 1 0 ¯ 0

1 − 2 1 0 ¯

]

0 ¯ 1 − 2 1

0 ¯ 0 1 − 1
� .

Since

BF = �IN � Bi��Q � �� 0�� = �INQ� � �Bi�� 0��

= Q � �0 0

� 0
	 ,

the eigenvalues of BF are all zero. Since the eigenvalues of
A are all negative as long as � is not zero, we conclude that
a set of fixed points, �9� with l an even number, is locally
asymptotically stable.

Around the fixed points �9� with l an odd number, we
have that �11� holds where
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Ai = �0 1

1 − �
	 ,

and Bi, Q are the same as before. Since Ai has positive and
negative eigenvalues, we conclude that this set of fixed
points are saddle points.

We have used linear approximations around local fixed
points to study the Lyapunov stability of a one-dimensional
nanoarray in the linear regime. Next, we show that through
external forces added on the nanoarray, we can control and
manipulate the average sliding velocity to any constant target
from any initial value, showing the global nature of the con-
trol. In the following, the interparticle action takes the non-
linear form of �3�.

IV. FEEDBACK CONTROL DESIGN

To control the frictional dynamics of a small array of
particles toward predestined values of the average sliding
velocity, a feedback control is added to system �2� as
follows:7

�̈i + ��̇i + sin��i� = f + Fi + C�t� �12�

where C�t� is a function of three measurable quantities vtarget,
vc.m., and �c.m., where vtarget is the targeted velocity for the
center of mass, vc.m. is the average �center of mass� velocity,
i.e.,

vc.m. =
1

N


i=1

N

�̇i,

and �c.m. is the average �center of mass� position, i.e.,

�c.m. =
1

N


i=1

N

�i.

Our control objective is to reach any targeted value of the
average sliding velocity precisely, with remaining fluctua-
tions as small as desired. To show this analytically, we first
represent the dynamics with the introduction of tracking er-
ror states:

ei1 = �i − vtargett, ei2 = �̇i − vtarget.

The corresponding error dynamics for single particles are
given as

ėi1 = ei2,

ėi2 = − sin�ei1 + vtargett� − ��ei2 + vtarget� + Fi + f + C�t� .

�13�

If we introduce the average error states as

e1av = �c.m. − vtargett, e2av = vc.m. − vtarget,

then it is obvious that the convergence of ��c.m. ,vvm� to
�vtargett ,vtarget� is equivalent to the convergence of �e1av ,e2av�
to �0,0�. Therefore, the asymptotic stability of the system in

the error state space is equivalent to asymptotic tracking of
the targeted positions and velocity. The dynamics of
�e1av ,e2av� can be derived from Eq. �13�:

ė1av = e2av,

ė2av = −
1

N


i=1

N

sin�ei1 + vtargett� − ��e2av + vtarget� + f + C�t� .

�14�

Note that the Fi term disappeared in Eq. �14� because the
sum of Fi is zero for i=1, . . . ,N.

Before proceeding, we note that the following non-
Lipschitzian control function was proposed previously:7

C�t� = ��vtarget − vc.m.�1/7. �15�

However, from Eq. �14�, we see that �15� is not sufficient to
make the equilibrium of e2av equal to zero. Therefore, natural
fluctuations will always remain.8 To overcome this funda-
mental limitation, here we propose a tracking control law
within the framework of the Lyapunov theory, and prove
analytically that the error system under control is asymptoti-
cally stable.

We construct the following Lyapunov function candidate:

V =
1

2
e1av

2 +
1

2
�c1e1av + e2av�2 �16�

where c1 is a positive design constant.
Taking the time derivative of V along the dynamics of

�14�, and denoting �=c1e1av+e2av, we have

V̇ = − c1e1av
2 + ��e1av + c1e2av − �e2av

−
1

N


i=1

N

sin�ei1 + vtargett� − �vtarget + f + C�t�� .

Choose

C�t� = − f + �vtarget − e1av − �c1 − ��e2av − �c1 + c2��

+ sin�vtargett� = − f + �vtarget − k1��c.m. − vtargett�

− k2�vc.m. − vtarget� + sin�vtargett� =
def

C1�t� �17�

where c2 is also a positive design constant and k1=c1
2+c1c2

+1, k2=2c1+c2−�. We have

V̇ = − c1�e1av
2 + �2� − c2�2

+ �
1

N

i=1

N

�− sin�ei1 + vtargett� + sin�vtargett��

� − c1�e1av
2 + �2� − c2�2 + 2��� . �18�

Since the maximum of the last two terms is 1 /c2, we have
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V̇ � − c1�e1av
2 + �2� +

1

c2
. �19�

From this, we can conclude that there exists a finite time t1
such that the solution of the system is bounded by

��e1av,��� �
1


c1c2

. �20�

By choosing c1, c2 to be large enough, we can have the error
states arbitrarily close to zero. Furthermore, the control law
�17� works for any initial conditions and any targeted veloc-
ity.

Theoretically, to achieve precise tracking, that is, to make
the error state �e1av ,e2av� tend to zero exactly, we can use the
following switching control law:

C�t� = C1�t� − 2 sgn��� =
def

C2�t� , �21�

where sgn��� denotes the signum function, defined as
sgn���=1 for �
0, sgn���=−1 for ��0, and sgn���=0 for

�=0. Substituting Eq. �21� into Eq. �18�, we get V̇�
−c1�e1av

2 +�2�, which indicates asymptotic stability of the sys-
tem.

We note that so far the choice of the interparticle force has
been commensurate with the confining potential of the sub-
strate. If Fi is incommensurate with the substrate potential,
the dynamics of an individual particle can be chaotic, mak-
ing it unlikely to choose a global control function to com-
pletely suppress such local chaotic dynamics. Nevertheless,

here our focus is the average velocity of the center of mass of
the particle array. Therefore, the interparticle forces cancel
out with each other upon summation, enabling us to still
achieve precise control of the average velocity of the center
of mass even in the incommensurate case.

V. SIMULATION RESULTS

We have performed extensive numerical simulations on
arrays of different sizes �3�N�256�. The following set of
parameters are used as given before:7

� = 0.1, � = 0.26, f = 0. �22�

First, we verified that the set of fixed points of unforced
frictional dynamics, ��i , �̇i�= �l� ,0� with l even numbers,
are locally stable. This can be seen from Fig. 1�a� with linear
interparticle interactions and Fig. 1�b� with nonlinear inter-
particle interactions.

FIG. 1. �Color online� Local stability of the fixed point �0,0�,
with �a� linear, and �b� nonlinear interparticle interactions.

FIG. 2. �Color online� Tracking control performance shown for
two different average target velocities. In both cases, control is ini-
tiated at t=0, with randomly chosen initial conditions.
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Figure 2 demonstrates the fast convergence of our control
functions in achieving targeted velocities, with barely ob-
servable fluctuations. Note that these results are obtained
even without the use of the sign switching term in Eq. �21�.
The control histories of both controllers are shown by the
dashed lines, which are physically feasible.

VI. CONCLUSION

In conclusion, we have used Lyapunov theory and nu-
merical simulations to analyze the local stability of an array
of particles whose frictional dynamics is described by the
Frenkel-Kontorova model, and designed feedback controls to
precisely control the friction. We first established the
asymptotic stability of the system around the equilibrium
positions of the particles. We then applied the Lyapunov sta-
bility criterion to construct efficient Lipschitzian feedback

control laws, and demonstrated the ability to achieve any
predestined average velocity of the particle array, with mini-
mal or no fluctuation. These rigorous findings have been fur-
ther supported in extensive numerical simulations, and are
expected to be applicable to other related physical systems as
well.
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