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The availability of neutron spallation-source instruments that provide total scattering powder diffraction has
led to an increased application of real-space structure analysis using the pair distribution function. Currently,
the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that
end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that
of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and
the associated envelope function is used to predict the particle size distribution of an experimental sample of
gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing
diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convo-
lution derived from the envelope functions, is calculated exactly for all particle size distributions considered,
and peak maxima, offsets, and asymmetries are discussed.
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I. INTRODUCTION

There currently exists much scientific interest of the
physical and chemical properties of nanoparticles and nan-
odomains. Generally investigations of particles with diam-
eters of the order of one micron are limited to powders, and
from the diffraction data one performs Rietveld refinement to
extrapolate their structure and size, by using the Debye-
Scherrer formula,1 extensions such as Debye function anal-
ysis,2 and small-angle scattering.3 Alternatively one derives
the pair distribution function �PDF� from the diffraction
data,4 thus facilitating the study of size, correlated atomic
motion,5 short- to medium-range order,6 and other phenom-
ena more apparent with a real-space treatment.

A number of techniques have been developed to infer the
size and structure of particles from the PDF alone. For ex-
ample, the local structure has been determined by an inter-
pretation of the first peaks of the PDF,7 and the size has been
estimated from a Fourier transform of the wide-angle Debye-
Scherrer diffraction pattern.8 In this manuscript, a rigorous
approach to the determination of particle size is taken by
rederiving the pair distribution function of a single spherical
particle, expressed as an envelope function that multiplies
the PDF of an infinite crystal with the same crystal struc-
ture.9 A general class of distributions of particle sizes is then
considered, and an associated distributed envelope function
is obtained. Using experimental PDFs of both bulk gold and
gold nanoparticles, calculated from high-Q neutron-powder-
diffraction data, a distributed envelope function is used to
transform the PDF of bulk gold to give a best fit replication
of the PDF of gold nanoparticles. Based on the param-

eters of this envelope function, the particle size distribution
of the gold nanoparticles is predicted and compared to that
obtained experimentally. Finally, a relationship between the
real-space envelope function and a Q-space convolution
function is established, the latter of which is to be applied to
the structure factor of an infinite crystal to obtain that of a
distribution of spherical particle sizes. The analytical form of
the convolution function allows for a quantitative analysis of
Bragg peak maxima, widths, and asymmetries as a function
of peak position and particle size distribution. A thorough
account of the relationship between the PDF and structure
factor can be found in the literature.3,10

The formalism used is identical to Peterson et al.,11 with
comparisons to other definitions and nomenclature found in
Keen.12 With little effort, the conclusions made here regard-
ing the PDF and structure factor of spherical particles can
also be carried over to embedded spherical domains, with the
stipulation that the individual domains be uncorrelated with
each other �i.e., they have random orientations�, and uncor-
related with the host matrix. Indeed, diffraction analysis us-
ing spherical geometries has already been successful in stud-
ies of water in mesopores and micropores,13 as well as
distributions of particle and void sizes in NMR cryopo-
rometry.14,15 The structure factor analysis of spherical do-
mains with well-defined atomic structures fits within the
more general context of disorder within crystals, thus con-
tributing to the analytical treatment of the associated diffuse
scattering.16–18 It also provides a means of quantifying the
diffraction limit with respect to localized lattice distortions,
with spherical domains being a special case to be considered
within the large class of nanoscale heterogeneities already
studied.19
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II. THE PAIR DISTRIBUTION FUNCTION OF A SINGLE
SPHERICAL PARTICLE

The microscopic pair density gives a distribution of
atomic pair distances r in a sample, weighted by the pair’s
scattering lengths

��r� =
1

4�r2N
�
i�j

bibj

�b�2��r − rij� . �1�

The following method of constructing ��r� will be useful in
determining its form with respect to spherical particles. For
each r, define a spherical shell with this radius. Let the center
of this sphere coincide with the position of an atom i, and
record as weighted � functions every atom j that intersects
the spherical shell. Finally, divide the result by its surface
area and the total number of atoms N. The calculation of ��r�
for a spherical particle limits the position of the center of the
sphere to the atoms within the particle itself, whereas the
sphere’s surface can extend beyond. Note that ��r� for a
single particle may only be a part of the total microscopic
pair density of a solid or solution.

The contribution to ��r� of all atomic pairs �ij� within a
spherical particle is limited to the range 0�rij �2R, where R
is its radius. If the particle is in solution, or we consider an
ensemble of identical particles with random orientations em-
bedded within a host lattice, then ��r�=�0 for r�2R, where
�0 is the constant atomic number density outside the particle.
To simplify the following, let �0 be equal to the number
density of the particle itself, or take �0=0 for empty space.
The essence of the problem addressed hereafter is to quantify
the relative population of atomic pair distances between any
two atoms within the particle and pair distances where one
atom resides outside of the particle. That is, ��r� will have
r-dependent contributions from both the microscopic pair
density �c�r� of an infinite crystal and the uncorrelated out-
side structure �0,

��r� = fe�r,R��c�r� + �1 − fe�r,R�	�0, �2�

where 0� fe�r ,R��1. When R→�, fe�r ,R�=1 for all r and
��r� is that of an infinite crystal. When R→0, fe�r ,R�=0 for
all r and ��r�=�0. fe�r ,R� is the envelope function that we
now derive when R is between these limits.

Consider a point within the particle whose position is
given by the vector r�, with the center of the particle defining
the origin. Orient the point and the particle so that r� aligns
with the z axis, as shown in Fig. 1. A spherical shell of radius
r around this point will either be enclosed by the particle if
r�R−r�, intersect the surface of the particle if R−r��r
�R+r�, or enclose the particle if r�R+r�.

When R−r��r�R+r�, a line from any point on the
circle of intersection and the position r� will meet the z axis
at an angle 	. The fraction of the surface of radius r around
this point that is enclosed within the particle is

f�r�,r,R� =
1

4�r2

0

2�

rd


	

�

r sin �d� =
1

2
�1 + cos 	� .

�3�

Using the two right triangles from Fig. 1, the angle 	 can be
expressed as

cos 	 =
R2 − r�2 − r2

2r�r
. �4�

The contribution of all such spheres enclosed within the par-
ticle is obtained by integrating f�r� ,r ,R� over the remaining
positions r� in the region occupied by the particle, taking
care to consider when the shell of radius r extends outside
the region. Using Eq. �4�, for r�2R,

f�r,R� =
4�

3
�R − r�3 + 4�


R−r

R

f�r�,r,R�r�2dr�

=
4�

3
R3�1 −

3

4

r

R
+

1

16
� r

R

3� . �5�

Finally, dividing by the total particle volume gives the enve-
lope function

fe�r,d� = �1 −
3

2

r

d
+

1

2
� r

d

3���d − r� , �6�

where d=2R is the particle diameter and ��x�=0�1� for
negative �positive� x is the Heaviside step function. fe�r ,d�
and its derivative are continuous for all positive r.

The PDF of the particle is related to the microscopic pair
density

G�r,d� = 4�r���r� − �0	 = fe�r,d�Gc�r� , �7�

where Gc�r�=4�r��c�r�−�0	 is the PDF of an infinite crystal
with the same crystal structure as the particle.

The fraction of atom pairs residing within a spherical re-
gion is obviously not a continuous function of the region’s
size, considering the discrete nature of a crystal. Therefore,
one expects the derivation above to become less accurate for
smaller particle sizes. To test this, the exact calculation of
G�r� �using Eq. �1�	 for spherical particles with an ideal fcc

FIG. 1. A spherical particle with radius R. An atom a distance r�
from the center of the particle can have a shell of radius r that is
only partially embedded within the particle.
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structure with lattice constant a was compared to G�r� ob-
tained by applying Eq. �7� to the PDF of an infinite ideal fcc
structure. A particle was constructed with n shells of atoms
around a central atom, giving it a diameter of d=�2na �some
shells contain no atoms�. While the difference in the nearest-
neighbor peak heights between the two was 7% for d=2a,
the difference between all peaks rapidly diminished to less
than 1% for d=4�2a, and became negligible thereafter.

III. DISTRIBUTIONS OF SPHERICAL PARTICLE
SIZES

The envelope function fe�r ,d� depends on a single-
particle diameter d. From a distribution P�d�� that defines an
ensemble of particle diameters d�, a distributed envelope
function fDE�r� can be constructed by weighting individual
single particle envelope functions with this distribution

fDE�r� = 

0

�

fe�r,d��P�d��dd�. �8�

Consider the following normalized distribution:

P�d�,D,n� =
1

n ! D
�d�

D

n

e−d�/D, �9�

where n is a positive integer and D is a positive real number.
The average particle diameter d for this distribution is related
to the parameters n and D,

d = �d�� = 

0

�

d�P�d��dd� = �n + 1�D , �10�

and the characteristic width of the distribution is


 = ��d�2� − d2 =
d

�n + 1
. �11�

Hereafter the average diameter d will be used to identify the
associated distributed envelope functions and their behav-
iors, thus facilitating comparisons between those obtained
from various distributions and the single particle size enve-
lope function. The parameter D is still used within function
expressions, however, to maintain their simplicity. The two
are always related by Eq. �10�.

When deriving a distributed envelope function from Eqs.
�8� and �9� alone, one recognizes that a weighted sum of
these distributions �each with unique n and D� yields a
weighted sum of individual distributed envelope functions,
so that the results hereafter can be easily adapted to a variety
of distributions. For n�3, a closed form expression of the
resulting envelope function is given by

fDE�r,d,n� = e−r/D�
k=0

n−2
1

k!
�1 −

3

2

k

n
+

1

2

k�k − 1��k − 2�
n�n − 1��n − 2�
� r

D

k

.

�12�

As with the single particle distribution G�r ,d ,n�= fDE�r ,
d ,n�Gc�r�.

Figure 2 shows the single particle size envelope function
fe�r ,d� �Eq. �6�	 and the distributed envelope functions

fDE�r ,d ,n� for n=3 and n=9 �expressed using the average
diameters d=4D and d=10D, respectively�. The associated
distributions are shown in the inset, and the case of n=100 is
included to illustrate the trend of these distributions �the
single particle size is a � function distribution, and is not
shown�. The width of the distributions clearly dictates the
shape of fDE�r ,d ,n�. A broader distribution gives the result-
ing envelope function a longer tail at large r at the expense
of a steeper decline for small r. Note that a universal condi-
tion for all spherical particle size distributions with average
diameter d is

f�r = 0,d� = 1 and 

0

�

f�r,d�dr =
3

8
d . �13�

IV. COMPARISON WITH EXPERIMENT

By comparing an experimentally obtained PDF of a col-
lection of spherical-like particles with the theoretical expres-
sions just derived, it should be possible to predict the particle
size distribution used in the experiment. Neutron data of a
2 g batch of capped gold nanoparticles and a bulk gold fcc
powder reference were collected at T=15 K on the neutron
powder diffractometer �NPDF� at the Lujan Center at Los
Alamos National Laboratory.20 The PDF of both were ob-
tained, and the bulk gold underwent full profile structural
refinements, using PDFFIT,21 to account for a host of influ-
ences such as correlated and uncorrelated atomic motions
and instrument resolution. Multiplying the refined PDF of
the bulk data Gb�r� with an envelope function derived from
either a single particle size fe�r ,d� or a distribution of par-
ticle sizes fDE�r ,d ,n� should give a good representation of
the ideal PDF for spherical nanoparticles of fcc gold. A sim-
plification is made by assuming that the crystal structure
within the bulk gold and gold nanoparticles is identical. This
simplification will be addressed when the results of the PDF
comparisons are discussed.

Using the PDF data of gold nanoparticles Gnp�r� the best
fit diameter �and exponent for the distribution� is obtained by
minimizing the root mean square deviation �G between this

FIG. 2. The single particle size envelope function and two ex-
amples of distributed envelope functions, with n=3 and n=9. The
associated distributions P�d� /d� are shown in the inset along with
n=100 �dotted�.
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PDF and the transformed bulk PDF. The deviation is given
by

�G
2 = L−1


2.5

100.0

�Gnp�r� − f�r,d�Gb�r�	2dr , �14�

where the lower bound is chosen to ignore spurious oscilla-
tions in the experimental PDF, the upper bound is determined
from the scattering resolution, and L is the difference be-
tween these two. The integrations are performed numerically
with a lattice spacing of 0.01 Å.

Table I compares the parameters from the best fit particle
size distribution and the single particle distribution. The pre-
dicted distribution of particle sizes, with n=13 and dn
=29.80 Å, gives the smallest absolute deviation from the ex-
perimental PDF, with �G=1.238 Å−2.

Figure 3 shows an offset comparison between the experi-
mental PDF of the gold nanoparticles, the best fit PDFs from
the single particle size and the distribution of particle sizes,
and the refined PDF of the bulk gold used to obtain the fits.
The envelope function for the distribution of particle sizes
allows for correlations over longer atomic separations with-
out changing the behavior of short-range correlations, as is
evident in the figure, and is thus a better fit to the experimen-
tal PDF than that of the single particle size distribution. The

PDF derived from a single envelope function always trun-
cates to zero for r�d.

As a further test of the theory of spherical particles devel-
oped so far, a comparison of the particle size distribution
given by minimizing Eq. �14� with the distribution obtained
experimentally is now possible. Using a JEOL 2010 TEM
with point-to-point resolution of 1.9 Å, the diameters of 148
gold nanoparticles within the experimental sample were
measured, giving the distribution of particle sizes shown in
Fig. 4 �histogram�. The average particle diameter from this
distribution is d=35.48 Å, and the width of the distribution
is 
=13.12 Å. These values are given in Table I. Also shown
in the figure is the predicted theoretical particle size distri-
bution �d=29.80 Å, 
=7.96 Å�. Obviously the best fit PDF
predicts a distribution of particle sizes with a smaller average
diameter and width. This can be attributed to the presence of
pentagonal twinning seen within the gold nanoparticles �see
Fig. 2 of Page et al.20�. The characteristic length scale of the
twinned regions defines the scale of long-range order �an fcc
structure in this case�, which affects the resulting PDF. Each
object might be better described as a collection of single
domain crystallites instead of a spherical particle with a uni-
form structure. Equation �14� compares their PDF with the
bulk gold PDF, in which twinning did not occur and the
structure was uniform, and thus delivers a best fit envelope
function that represents the size of the coherent fcc structure.
The counting method used to construct the histogram in Fig.
4, however, considered only total particle size, which con-
tributes to the discrepancy between the two distributions.

V. THE STRUCTURE FACTOR OF SPHERICAL
PARTICLES

The total-scattering structure factor of spherical particles
S�Q ,d� can be obtained directly from their PDF by a Sine
transform

Q�S�Q,d� − 1	 = 

0

�

G�r,d�sin�Qr�dr

= 

0

�

f�r,d�Gc�r�sin�Qr�dr . �15�

TABLE I. A comparison of the parameters from the best fit
particle size distributions and the experimentally determined
distribution.

Distribution n d �Å� 
 �Å� �G �Å−2�

Single 28.75 1.243

P�d� ,d ,n� 13 29.80 7.96 1.238

Experiment 35.48 13.12

FIG. 3. An offset comparison of the refined experimental PDF
from the bulk gold, the predicted PDF from the single particle size
and the distribution of particle sizes, and the experimental PDF
from the gold nanoparticles.

FIG. 4. A comparison of the experimentally determined particle
size distribution �histogram� and the predicted particle size distribu-
tion from the best fit PDF.
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Let Sc�Q� be the structure factor of the associated infinite
crystal. f�r ,d� is an envelope function from any distribution
of particle sizes, and can be expressed as the inverse cosine

transform of a function f̄�Q ,d�,

f�r,d� =
2

�



0

�

f̄�Q,d�cos�Qr�dQ . �16�

Since Gc�r� is the inverse Sine transform of Q�Sc�Q�−1	, Eq.
�15� can be written not only as a Sine transform of a product
of two functions, but also as a convolution of their respective
transforms22

Q�S�Q,d� − 1	 =
1

�



0

�

� f̄��Q − Q��,d� − f̄�Q + Q�,d�	

�Q��Sc�Q�� − 1	dQ�

or

S�Q,d� =
1

�Q



0

�

� f̄�Q − Q�,d� − f̄�Q + Q�,d�	Q�Sc�Q��dQ�.

�17�

The absolute value of the argument Q−Q� can be disre-

garded if one recognizes the convolution function f̄�Q ,d� as
an even function of Q.

For a single particle size distribution, the convolution
function is

f̄ e�Q,d� = 

0

�

fe�r,d�cos�Qr�dr

=
3d

�Qd�2�n1�Qd� +
1

�Qd�2 +
1

2

 , �18�

where n1�x�=−cos�x� /x2−sin�x� /x is a spherical Bessel

function of the second kind. f̄ e�Q ,d� has a half-width at half-
maximum of approximately Q=3.48/d. This convolution
function is very similar to the expression used for the inten-
sity of scattering from randomly oriented identical spherical
particles, and is often used in small-angle scattering
analysis,3 but differs from the sinc function derived from a
Fresnel construction of a spherical crystal that is often used
to characterize powder diffraction lines.

The convolution function for the distribution of particle
sizes defined by Eq. �9� can be obtained by noting that each
term in Eq. �12� has a cosine transform proportional to



0

� 1

k!
� r

D

k

e−r/Dcos�Qr�dr

=
D

�1 + �QD�2	k+1 �
j=0

j even

k+1

�− 1� j/2�k + 1

j

�QD� j . �19�

Figure 5 shows the convolution functions for the single
particle size and the two distributions of sizes n=3 and
n=9, considered before �expressed using the average diam-
eters d=4D and d=10D, respectively�. For the single particle

size, shoulders appear after the primary peak, a feature at-
tributed to the similarity between a periodic envelope func-
tion and a triangular wave. When distributions of particle
sizes are considered, the shape is always Lorentzian-like, due
to the exponential behavior of the associated distributed en-
velope function.

A broader distribution gives the resulting convolution
function a longer tail at large Q at the expense of a steeper
decline for small Q. Note that a corollary to Eq. �13� is

f̄�Q = 0,d� =
3

8
d and

2

�



0

�

f̄�Q,d�dQ = 1. �20�

To summarize, the structure factor of a distribution of
particle sizes can obtained by convoluting the structure fac-
tor of the associated infinite crystal with an envelope convo-

lution function f̄�Q ,d�. The result will be a broadening of the
Bragg peaks of the infinite crystal, but note that an asymme-
try arises in this broadening, particularly for low Q, as Eq.
�17� is actually the difference of two convolutions, each
weighted by Q�.

To illustrate this asymmetry, consider the effect that a
convolution resulting from finite particle sizes has on a
single ideal Bragg peak from an infinite crystal Sc�Q�=��Q
−Q0�, with the effects on all other ideal Bragg peaks being
accounted for in a piecewise manner. A distribution of par-
ticle sizes with average diameter d and exponent n=3 gives a
convolution function �shown in Fig. 5�

f̄DE�Q,d� = 2d
48 + �Qd�2

�16 + �Qd�2	2 . �21�

The convolution of the two �Eq. �17�	 produces a broadened
peak for S�Q�, shown in the inset of Fig. 6 for Q0d=10, 20,
and 40. A smaller average particle diameter d �or a lower
value of the peak position Q0� transforms the ideal peak of
Sc�Q� more asymmetrically than a larger average particle di-
ameter �or a higher peak position�. The peak symmetry is
restored for very large values of Q0d, as the subtracted term
in Eq. �17� becomes negligible.

Both the peak maximum Qmax and the average peak posi-
tion �the normalized first moment� Qave are also shown in the

FIG. 5. The convolution functions to be applied to the infinite
crystal structure factor QSc�Q�, for the single particle size and two
distributions of sizes n=3 and n=9.
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figure as a function of Q0d. For most values of Q0d, Qave
�Qmax�Q0, which suggests that not only does the peak
position shift to lower values of Q, but it also diminishes
slower to the left of the peak maximum than to the right. For
the extreme case when Q0d�5.75, Qmax quickly goes to
zero, and as a result Qave actually increases �it continues to
broaden as Q0d decreases, but only for positive Q�. This

occurs when the characteristic width of f̄DE�Q ,d� is approxi-
mately Q0.

VI. CONCLUSION

The predictive power of having an analytical form of the
PDF of spherical particles has been clearly demonstrated. In
this case we were provided with structurally refined experi-
mental PDF data from a neutron source and a distribution of
particle diameters observed from a TEM. Only the two to-
gether provided a means of testing the presented theory. With
care, one could arrive at the same predictions by deconvo-
luting the experimental structure factor data of gold nanopar-
ticles using Eq. �17�, but the refinement analysis that af-
forded us a comparison between theory and experiment
suggested a real-space treatment. Nevertheless, we believe
that the convolution functions derived here can complement
the peak shape analysis already used in modern Rietveld
packages,23 which often use Lorentzian and Gaussian func-
tions alone to describe the peak broadening due to particle
size effects. Ideally, the analytical form of the peak shapes,
as derived from the convolution functions, should allow one

to predict an entire particle size distribution, and not just an
average particle size, by considering together the peak
maxima, peak offsets, and peak asymmetries from an experi-
mental structure factor.

It was mentioned earlier that the analysis of spherical par-
ticles should provide immediate insight into the effects of
nanoscale domains embedded within a host lattice. When
two structures coexist as uncorrelated domains, for example,
a chemically disordered fcc structure and a second chemi-
cally ordered structure with a small tetragonal distortion, the
total PDF of the solid can be taken as the sum of the indi-
vidual PDFs, each calculated with a unique envelope func-
tion suitable to their differing domain sizes. The broadening
of the Bragg peaks resulting from their finite size, combined
with the peak splitting of the second tetragonal phase, may
dictate whether the chemically ordered domains are below
the diffraction limit, thus requiring a real-space probe such as
XAFS to accurately measure their local structure. This analy-
sis may be useful in explaining the presence of magnetism in
NiMn alloys when there is no signature of L10 ordering of
the material apparent in the diffraction data.24

Finally, the real-space treatment of PDF analysis, and the
subsequent conclusions made about the structure factor, is an
encouraging approach to solving problems that are often
only considered in Q space. For example, the idea that a
particle’s surface might have a different structure than its
core �internal strain�, can be realized in real space by consid-
ering both an envelope function �for particle size�, and a
convolution function �for varying strain�. Can the structure
factor be derived from the two taken together, just as it was
for the envelope function alone, or does this problem require
the Q-space treatments already considered?25
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