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Momentum-transfer-resolved electron spectroscopy is a technique for examining the electronic structure of
materials and requires the use of detectors accepting a small range of momentum transfers. For crystalline
specimens, it is necessary to consider the channeling behavior of the fast electrons both before and after
inelastic scattering to adequately describe the signals produced. Using oxygen K-shell core loss in NiO as a
case study, we examine channeling in high-angular-resolution electron-channeling electron spectroscopy. The
roles of nonlocality and sample thickness as they relate to the channeling effect are explored. Particular
attention is given to the behavior arising from the channeling of the scattered electrons, as compared with
models in which only the incident electrons channel. Calculations allowing for the channeling of both the
incident and the scattered electrons are computationally demanding and we explore approximations that can be
made for detectors with small acceptance angles.
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I. INTRODUCTION

Momentum-transfer-resolved electron energy loss
spectroscopy,1,2 sometimes called q-resolved electron energy
loss spectroscopy �EELS�, is a useful method for investigat-
ing the electronic structure of materials. Attaining high an-
gular resolution with this technique requires the use of a
detector accepting a very limited range of momentum trans-
fers. Given that the acceptance angles of detectors used in
such experiments are often smaller than a Bragg angle,1–12 it
must be anticipated that the channeling, by which we mean
the dynamical scattering, of the fast electron both before and
after the energy loss event of interest will have a significant
effect on the detected signal.

Simulations routinely incorporate the channeling of the
incident electron. Many methods for the theoretical descrip-
tion of the channeling of the fast electrons both before and
after inelastic scattering, sometimes called double-
channeling methods, exist in the literature.13–20 However, for
inner-shell ionization, simulations incorporating the channel-
ing of the scattered electrons are rare,19,20 though for detec-
tors with sufficiently small scattering angle the channeling of
the scattered electrons is just as important as that of the in-
cident electrons as we shall show. The approach here follows
that of Josefsson and Allen,20 using mixed dynamic form
factors �MDFFs� for the treatment of inelastic scattering.18–23

Because of the computational complexity involved in
double-channeling calculations we shall describe the core-
loss process using a hydrogenic model,14,24–26 though more
general models are possible.16,27–30

We shall take as a case study oxygen K-shell core-loss
excitations in NiO as examined by high-angular-resolution
electron-channeling electron spectroscopy �HARECES�.5,11

Since we are primarily interested in the channeling, we shall
integrate over the fine structure in the experimental spectrum
and compare with simulations which treat the ionization as if
from an isolated atom. We shall summarize single-
channeling theory by way of introduction to our explorations
of the dynamics arising from double channeling and to high-

light the importance of double channeling when detectors
with small acceptance angles are used �previous demonstra-
tions of double channeling were based on detector accep-
tance angles two orders of magnitude larger�.19 Our results
confirm that such simulations, a useful adjunct to both ex-
perimental design and interpretation, must include double
channeling for such small detector apertures and account cor-
rectly for the nonlocal nature of the effective interaction
potential.22,27,31 Double-channeling simulations require con-
siderable computational effort and we explore some simpli-
fying approximations.

II. THE EXPERIMENT

The experimental measurements in this work were re-
corded from a single-crystal specimen of NiO in a FEI Tec-
nai F20 ST field emission gun transmission and scanning
transmission electron microscope �TEM-STEM� at Argonne
National Laboratory �ANL�. The NiO �001� specimen was
cut from a large crystal grown at ANL and was prepared for
TEM by careful mechanical dimpling, followed by conven-
tional high- and low-energy argon ion milling to perforation.
Prior to TEM measurements both the specimen and stage
were plasma cleaned in an argon plasma for 15 min in a
South Bay Technology plasma cleaner to mitigate the delete-
rious effects of specimen contamination,32 the latter process
being done to minimize the effects of any hydrocarbon con-
tamination during the temporally extended measurement of
approximately 12 h used to achieve statistically significant
data. Conventional EELS and x-ray energy-dispersive spec-
troscopy measurements were also performed prior to
HARECES measurements to confirm the nominal composi-
tion of the specimen and the absence of any major contami-
nants from the specimen preparation procedure.

During data acquisition, the microscope was operated at
200 keV with the incident probe adjusted to achieve nearly
parallel illumination conditions. This was accomplished us-
ing the condenser-objective lens of the instrument, together
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with a nominal 50 �m second condenser aperture. Under
these conditions a probe size on the sample of approximately
100 nm in diameter was defined. The region of interest
�ROI� defined by this probe was chosen to be free of bend
contours. However, due to the modest probe diameter and the
sample preparation procedure employed, the analyzed region
was not uniformly thick but had a wedged thickness profile.
Using �200� extinction contours, the variation of thickness
over the ROI was determined to range between 39 and
78 nm. Although more precise measurements of the thick-
ness at any single point within the ROI using convergent-
beam electron diffraction techniques was possible this was
not deemed necessary since, as will be demonstrated later,
the data analysis procedure results in an explicit determina-
tion of the thickness variation over the analyzed region.

The incident beam convergence semiangle was adjusted
to �0.05 mrad, and was set by controlling the illumination
conditions of the condenser lens in the nanoprobe operating
mode. The EELS detector, whose semiangle was
0.195 mrad, was centered on the forward direction in the
symmetric orientation. The value of its collection semiangle
was adjusted through the use of diffraction lens camera
length and adjustable fixed apertures in front of the spec-
trometer. All measurements were performed with the instru-
ment operating in the diffraction mode, with the EELS de-
tector fixed relative to the crystal.

Excitation of the �200� systematic row was obtained by
tilting the specimen away from the �001� zone axis around
the �200� direction by an angle of about 50 mrad using the
goniometer stage of the microscope. To facilitate the precise
control of the incident beam orientation, the probe was tilted,
during measurements, by means of the microscope deflection
coils using a custom computer program which is able to
control both the instrument pre- and postspecimen deflection
coils as well as the data acquisition system. Prior to any
measurements, the beam tilt pivot points of the instrument
were manually adjusted, to minimize any lens aberration in-
duced probe motion. After these adjustments, it was possible
to accurately tilt the incident probe in a two-dimensional
raster pattern over the fixed region of interest on the speci-
men and simultaneously record electron energy loss spectra
with minimal intervention. For the data reported herein, one-
dimensional raster scans were performed along G= �200�
over the angular range of ±1.5G. One hundred and fifty-one
sequential spectra were recorded, giving an angular resolu-
tion of 0.25 mrad.

Figure 1�a� shows a typical electron energy loss spectrum
with the beam in the symmetric position, while Fig. 1�b�
shows, as a function of beam orientation, the variation in the
background-corrected integrated intensity for a 100 eV en-
ergy window above the oxygen K-shell ionization threshold.
This integration averages out the near-edge structure above
threshold, enabling comparisons with simulations which do
not include this fine structure. The background subtraction
was performed using the standard power-law model using a
50 eV window before the oxygen K-shell edge.33 Figure 1�c�
presents a two-dimensional plot of the complete data set
illustrating the complex variation of the near-edge fine
structure of the oxygen K-shell spectra as a function of
orientation.

III. THE POTENTIAL, NONLOCALITY AND THE BRAGG
PEAKS

Assuming an incident plane wave, the cross section for
inelastic scattering from an isolated atom, or from a crystal
when elastic scattering prior to inelastic scattering is ignored,
is determined by the dynamic form factor.18,21,34 For a fixed
detector geometry the dynamic form factor may be regarded
as a function of the incident beam direction K �magnitude K�
and energy loss �: S�K ,��. For a detector with small entrance
aperture we expect the cross section for an isolated atom to
drop off as the incident beam is tilted away from the detector.

FIG. 1. �a� Oxygen K-shell energy loss spectrum from NiO in
the symmetric orientation of the �200� systematic row. �b� Inte-
grated intensity over a 100 eV energy window above ionization
threshold. Background subtraction was carried out based on ex-
trapolation from a 50 eV window prior to the edge. A unit of 1.0 on
the orientation axis puts the �100� beam in the exact Bragg orien-
tation, a tilt of 3.0 mrad. �c� Surface plot of the orientation depen-
dence of the background-corrected oxygen K-shell EELS structure
as a function of energy loss.
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If the presence of the crystal did not significantly alter the
wave function of the incident electrons then the cross section
from the crystal would also drop off smoothly. The presence
of the Bragg peaks in the experimental signal in Fig. 1�b� is
therefore direct evidence that scattering of the wave function
within the crystal is significant, that channeling is important.

Channeling or scattering within the crystal prior to the
energy loss event of interest means that the wave causing the
ionization is not a single plane wave but a superposition of
many. The necessary and sufficient information to com-
pletely specify the inelastic scattering in such a case is given
by the so-called mixed dynamic form factor.18 It may be
expressed as S�K ,K̃ ,��, and describes the contribution to the
cross section from the interference between incident plane
waves with wave vectors K and K̃.21,23 Before considering
the theory for describing the channeling, it is worth review-
ing some features of the MDFFs, or rather the inelastic scat-
tering coefficients that depend on them.

A plane wave with wave vector K incident upon a crys-
talline specimen will, through Bragg diffraction, excite a set
of plane waves with wave vectors of the form K+G. �The
capital notation for the reciprocal lattice vectors G and H is
used when the mesh is related to the reciprocal lattice of the

crystal. Lower-case g and h will be used when a finer mesh
is required.� The interference terms produced can thus be
defined simply by the components G and H involved. The
inelastic scattering coefficients are obtained from the MDFFs
by extracting just that portion corresponding to a particular
type of energy loss event, inner-shell ionization say, folding
in details of the detector through an integration over accep-
tance angle and an energy loss window �which implicity as-
sumes a single-channeling approximation�, and summing
over the detected final states.22 For inner-shell ionization,
these inelastic scattering coefficients may be written as27,28,35

�H,G�K� =
1

2�KVc
�

n

exp�− Mn�G − H��

�exp�2�i�G − H� · �n�fH,G�K� . �1�

The sum over n includes only those atoms of the species
being ionized, with site �n and Debye-Waller factor Mn�G�
=2�2�un

2�G2, where �un
2� is the projected mean square ther-

mal displacement, in the unit cell of volume Vc. The atomic
scattering factors are given by

fH,G�K� =
1

2�3a0
2 � K��2	� 
�

ml

nml

� Fl,ml

* �q + H,��Fl,ml
�q + G,��d��

�q + H�2�q + G�2 �d�K�
d� , �2�

where a0 is the relativistic Bohr radius and K� is the magni-
tude of the wave vector K� of the scattered electron. The
wave vector of the ejected electron is denoted by � �magni-
tude ��. The scattering vector q=K−K�. The range of the
angular integration, d�K�, is determined by the geometry of
the detector. The energy window of the detector defines the
range of the � integration. The atomic transition matrix ele-
ment is given by

Fl,ml
�q + H,�� =� u*��,r�exp�2�i�q + H� · r�ul,ml

�r�dr ,

�3�

where ul,ml
�r� and u�� ,r� are the wave functions of the �ap-

propriately normalized� bound and continuum states, respec-
tively. The matrix elements are for a specific suborbital in an
atom, defined by the orbital angular momentum l and the
azimuthal quantum number ml. Equation �2� sums over the
possible values of the azimuthal quantum number ml, and the
factor nml

accounts for the number of electrons in each sub-
orbital. The MDFF is essentially the numerator in Eq. �2�.

The above formulation is general, but we shall utilize
the hydrogenic model for the bound and continuum states,
restricting our consideration to K-shell core loss. Much of

Eq. �2� may then be evaluated analytically,14,24–26 which
helps make the computationally demanding double-
channeling calculations more tractable.

Following Oxley et al.,31 a �projected� real space form for
the effective scattering potential may be defined via

W�r�,r�� � =
h2K

2�mV
�
h,g

�h,ge2�ih·r�e−2�ig·r�� , �4�

where V denotes the crystal volume. The consequence of the
interference terms is to produce an effective potential which
is a function of two two-dimensional vectors: a nonlocal po-
tential. As the cross section will be formulated, for a given
incident orientation K one need only consider the inelastic
scattering coefficients �H,G�K� for which G and H are
physical reciprocal lattice vectors. However, to plot the po-
tential it is more convenient to use a supercell �hence the
finer mesh of reciprocal lattice vectors g and h in Eq. �4��, as
it gives a better feel for the nonlocality of the potential.
Equation �4� is effectively four dimensional and is difficult to
visualize. But in the systematic row case Eq. �4� reduces to a
two-dimensional form W�x ,x�� which can be plotted.

Figure 2�a� shows the effective scattering potential for
oxygen K-shell ionization with K�=0 assuming the detector
geometry described in Sec. II. A 5�5 supercell was used for
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sampling purposes, but only a 2�2 portion is shown. The
projected locations of the oxygen atoms are denoted by white
rings. Should the scattering be such that �h,g��h−g,0, imply-
ing W�x ,x���V�x�	�x−x��, which is to say W�x ,x�� would
fall off strongly away from the x=x� diagonal, the potential
would be local. It is evident in Fig. 2�a� that the potential
spreads significantly off the diagonal: the effective interac-
tion is highly nonlocal.

Figure 2�b� shows the magnitude of the inelastic scatter-
ing coefficient �G,G�K� as a function of K� for the cases
G= �000� and G= �200�. In both cases the inelastic scattering

coefficients are a maximum for K�=−G. The former corre-
sponds to the orientation of the central peak in Fig. 1�b�, the
latter to the orientation of a Bragg peak. Note the angular
width of these peaks. With a full width at half maximum of
around 3.4 mrad, they are broader than the detector, smaller
than a Bragg angle, and in good agreement with the charac-
teristic scattering angle for this energy loss �532 eV�.36

More importantly though, these plots suggest what in-
spection of all the matrix elements shows to be true: for
K��−G for the two G values under consideration, the mag-
nitude of the matrix element �G,G�K� is much larger than all
others �H,H��K�. Therefore we expect most of the contribu-
tion to the signal to come from the self-interference of the
beam with orientation K+G. The physical interpretation fol-
lows readily. For the case K�=G= �000�, �G,G�K� describes
the probability of inelastic scattering from the forward direc-
tion, and the contribution from each depth depends simply
on the density of electrons in the G= �000� beam at that
depth. This is shown schematically as process I in Fig. 2�c�.
For the case K�=−G= �2̄00�, �G,G�K� describes the prob-
ability of inelastic scattering from the direction G relative to
the beam, which, given K�=−G, corresponds again to the
forward direction within the crystal. The contribution from
each depth then depends simply on the density of electrons
in the �200� component at that depth, i.e., the portion which
has through elastic scattering found itself traveling along the
crystal normal direction. This is shown schematically as pro-
cess II in Fig. 2�c�.

The finite width of the peaks in Fig. 2�b� means that the
“Bragg peak” need not have its maximum at precisely K�

=−G. If the proportion of the electron density in beam G
increases faster than �G,G�K� decreases for tilts away from
K�=−G then the peak may be somewhat displaced.

IV. SINGLE CHANNELING

In examining the inelastic scattering coefficient for the
chosen detector geometry we found that, for inclined illumi-
nation, obtaining a significant inelastic signal required a
component to be scattered into the forward direction; process
II in Fig. 2�c� requires an elastic scattering event prior to the
ionization event. This section will focus on techniques for
the inclusion of channeling prior to the ionization event.

The elastic wave function inside the crystal may be writ-
ten in Bloch state form as


K�r�,z� = �
i

�C−1�K��i
0e2�i�i�K�z�

G
CG

i �K�e2�iG·r�, �5�

where �i=�i+ i
i are Bloch state eigenvalues, with �i the
anpassung and 
i the absorption coefficients, and CG

i are
Bloch state eigenvector Fourier coefficients, all of which de-
pend on the incident wave vector K. We choose a real space
coordinate system such that z increases into the crystal while
r� denotes the position parallel to the crystal surface. The

FIG. 2. �a� Effective ionization potential W�x ,x�� for K�=0
shown on a 2�2 supercell. The location of the oxygen atoms on
the diagonal is shown by white rings. �b� Inelastic scattering coef-
ficients �G,G�K� as a function of K� �K�=−orientation
� �100� /2�, for G= �000� and �200�. �c� Schematic of the primary
scattering mechanism contributing to the detected signal for �I�
K�=0 and �II� K�=G. The dotted circles denote elastic scattering,
the dotted stars inelastic scattering.

ALLEN et al. PHYSICAL REVIEW B 73, 094104 �2006�

094104-4



notation for the excitation amplitude �C−1�i
0, denoting an el-

ement from the inverse of the eigenvector matrix, has been
chosen to clearly label the Bloch state and Fourier coefficient
involved. A phase factor e2�iK·r has been omitted to simplify
notation and has no consequences for the theoretical devel-
opment.

Using this elastic wave function in the single-channeling
approximation the cross-section expression, as a function of
sample thickness t and the incident beam orientation defined
by the wave vector K, may be written as22

��K,t� = NVc�
i,j

�C−1�K��i
0�C−1�K�� j

0*Lij�K,t�

��
G,H

CG
i �K�CH

j*�K��H,G�K� , �6�

where

Lij�K,t� =
exp�2�i��i�K� − � j*�K��t� − 1

2�i��i�K� − � j*�K��t
�7�

and NVc is the illuminated volume �N unit cells each of vol-
ume Vc�.

Allen and Josefsson presented a two-term cross-section
expression.22 They called the term given in Eq. �6� the dy-
namical term, the signal from electrons scattered directly out
of the elastic beams by the scattering mechanism to which
the inelastic scattering coefficients correspond. Their other
term, the so-called diffuse term, models the signal from a
diffuse background of electrons which undergo inelastic ther-
mal scattering prior to the inelastic scattering from which the
cross section derives. However, because of the added com-
putational requirements, and because the generalization to
the double-channeling regime is less clear, we shall neglect
any diffuse term in this work, assuming a single elastic-to-
inelastic transition approximation.37 Note though that calcu-
lation of the elastic wave function appearing in Eq. �6� in-
cludes absorption due to thermal scattering: the proportion of
electrons in the elastic wave function attenuates with increas-
ing depth into the crystal.

Figure 3�a� shows the oxygen K-shell cross section as a
function of orientation and thickness. The probe and detector
parameters are those characterizing the experiment, save that
the small convergence semiangle of the incident beam is ne-
glected. The calculation is carried out for the �200� system-
atic row, which is to say that the only reciprocal lattice vec-
tors included are multiples of �200�, and the beam is rocked
along the systematic row direction. In this and all further
calculations seven Bragg beams are used and this number is
sufficient for converged calculations. An orientation value of
unity indicates that �100� is in the exact Bragg orientation.
We shall label the tangential component of the incident wave
vector relative to the symmetric position. Thus at the princi-
pal orientation, that of the central peak in Fig. 1�b�, we write

K�= �000�. The secondary peaks, which we simply call the
Bragg peaks, correspond to K�= ± �200�. Note that the �100�
beam is forbidden in NiO.

Let us further examine the dynamical component at the
symmetric and Bragg peak orientations. Figure 3�b� shows
the variation of the cross section as a function of thickness
for both the central peak �solid line� and the Bragg peak
�dashed line�. The Bragg peak plots were taken from the
exact K�=−G orientation. But the Bragg peak, which from
Fig. 3�a� is clearly asymmetric, has a maximum that is dis-
placed inward somewhat by the mechanism discussed in the
previous section. While both cross sections increase mono-

FIG. 3. �a� The cross section per unit area as a function of
orientation and thickness in the single-channeling model. �b� The
cross section per unit area as a function of thickness at orientations
corresponding to the central and Bragg peaks. �c� The contribution
per 25 Å thick slice to the signal plotted in �b�.
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tonically, slight oscillations can be seen. This is brought out
in Fig. 3�c� where the cross section contribution “per slice” is
shown as a function of thickness. The contribution per slice
oscillates rapidly as a function of thickness at both the cen-
tral peak and the Bragg peak. Note that the peaks of these
two plots are out of step.

To better appreciate why we may consider a contribution
per slice, we reexpress the cross-section expression, Eq. �6�,
in terms of wave functions38

��K,t� = NVc �
G,H

1

t
�

0

t

�K�G,z��K
* �H,z�dz �H,G�K� ,

�8�

where the two-dimensional Fourier transform of the wave
function is given by

�K�G,z� =
1

A
�

A


K�r�,z�e−2�iG·r�dr�. �9�

Equation �8� consists of an integral over z of positive definite
terms, an incoherent sum over contributions from different
depths. This enables us to meaningfully consider contribu-
tions per slice in Fig. 3�c�.

A further useful variant on Eq. �6� uses scattering matri-
ces:

��K,t� = NVc �
G,H

1

t
�

0

t

SG,0�K,z�SH,0
* �K,z�dz �H,G�K� ,

�10�

where the scattering matrix elements are defined by

SG,H�K,z� = �
i

�C−1�K��i
He2�i�i�K�zCG

i �K� , �11�

and may be interpreted as transition matrix elements for elas-
tic scattering between plane wave components K+H and
K+G over a thickness z.

V. DOUBLE CHANNELING

The single-channeling approximation assumes that the in-
elastically scattered electrons can be modeled as plane
waves. This never describes the true scattering; the propaga-
tion of the inelastically scattered electrons should be de-
scribed via Bloch states as is done for the elastically scat-
tered electrons. It has been demonstrated that the single-
channeling model adequately approximates the total signal
when the detector is large,20 because a large detector aperture
integrates over the detailed distribution of the scattered elec-
trons. For the small detector aperture used in the experiment
in Sec. II we anticipate the single-channeling model to be a
poor approximation. Therefore, having discussed the simpler
model by way of introduction, let us now explore the full
double-channeling model.

A. Theory

When the scattered electrons are treated as Bloch waves,
the more realistic treatment, a double-channeling formulation
is obtained. Following Josefsson and Allen20 the cross sec-
tion may be written as

��K,t� = NVc
2m

�2K�
i,j

�C−1�K��i
0�C−1�K�� j

0* �
H,G

CG
i �K�CH

j*�K� �
p�0

� �
i�,j�

C0
j�*�K��C0

i��K��Liji�j��K,K�,t�

� �
H�,G�

�C−1�K���i�
G��C−1�K��� j�

H�*K�

2
XH−H�,G−G�

p �K,K��d�K�. �12�

where

XH−H�,G−G�
p �K,K�� = Fsite

4�2

ma0
2

1

V

Fl,ml

* �q + H − H�,�p�

4�2�q + H − H��2
Fl,ml

�q + G − G�,�p�

4�2�q + G − G��2
, �13�

Fsite = �
n

e−Mn�G−G�−H+H��e2�i�G−G�−H+H��·�n, �14�

Liji�j��K,K�,t� =
exp�2�i��i�K� − � j*�K��t� − exp�2�i��i��K�� − � j�*�K���t�

2�i��i�K� − � j*�K� − �i��K�� + � j�*�K���t
. �15�
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Here the sum over final states p is written in discrete form,
but for ionization will become an integral over the con-
tinuum of energy loss values consistent with the energy win-
dow of the detector. There are small differences between
Eqs. �12�–�15� and the corresponding expression in Josefs-

son and Allen,20 where the boundary condition on the exit
surface was assumed to be different, but Eqs. �12�–�15� are
in keeping with the earlier work of Allen.39

The above expression for the cross section may be recast
in terms of scattering matrices as

��K,K�,t� = NVc
2m

�2K �
p�0

� �
H,G,H�,G�

1

t
�

0

t

SG,0�K,z�SH,0
* �K,z�S0,G��K�,t − z�S0,H�

* �K�,t − z�dz
K�

2
XH−H�,G−G�

p �K,K��d�K�,

�16�

which can be interpreted as follows: SG,0�K ,z� gives the
probability of elastic scattering from K+0 to K+G through
a thickness z of sample, including absorptive effects;
S0,G��K� , t−z� describes the probability of elastic scattering
from K�+G� to K�+0 by a thickness t−z of sample; and the
inelastic matrix element, involving G−G�, joins these pro-
cesses. A similar thing happens with the complex conjugate
terms. Together the expression embodies the contribution
from all elastic scattering to the depth z, undergoing inelastic
transition, and elastic scattering to the direction K� within
the detector �the integral over d�K� being over all angles
accepted by the detector�.

Figure 4�a� shows the dynamical contribution to the oxy-
gen K-shell cross section as a function of thickness and ori-
entation, which should be compared with the single-
channeling result in Fig. 3�a�. Rather than the contributions
to the central and Bragg peaks increasing monotonically as
they did in the single channeling case, these intensities oscil-
late with increasing sample thickness. Additionally, the dis-
placement of the Bragg peak maximum from the exact K�

=−G orientation shifts back and forth with varying thick-
ness. Figure 4�b� plots the intensities at the two orientations.
This shows not only how pronounced the oscillations are, but
further that they are again out of step �cf. the single-
channeling per slice contributions in Fig. 3�c��, such that
there are thicknesses at which the signal on the Bragg peak
exceeds that on the central peak. A simple qualitative expla-
nation can be given for this oscillatory behavior, but we shall
defer it to discuss some simplifying assumptions which will
enable us to better illustrate how the oscillatory behavior
comes about.

B. Simplifying assumptions

The qualitative differences between the double-
channeling and the single-channeling results demonstrate the
need for the double-channeling model when detectors with
such small apertures are used. However the double-
channeling approach is computationally demanding. The
single-channeling expression scales as N4 while the double-
channeling expression scales as N8, where N is the number of
beams used in the Bloch state calculation and the scaling
follows directly from the number of summations involved in

Eqs. �6� and �12�.20 This was a strong motivating factor in
selecting a systematic row condition rather than a zone axis
orientation, since a smaller number of beams suffices. Fur-
thermore the final Bloch state, depending on K�, is recalcu-
lated for each direction used in the evaluation of the integral
over the detector semiangle and for each energy loss in the
evaluation of the integral over the detector energy window.
However, some simplifications are possible.

FIG. 4. �a� The cross section per unit area as a function of
orientation and thickness in the double-channeling model. �b� Ex-
tracts from �a� at the central and Bragg peaks.
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Rather than discussing the detailed Bloch form, we shall
make approximations on the scattering matrix form of Eq.
�16� for simplicity of notation. The dependence of the scat-
tering matrix on energy is weak on the scale of the 100 eV
detector energy window. Let us therefore take a single rep-
resentative value of K�, say the incident beam energy less the
ionization threshold, and move the scattering matrices out-

side the sum over the final state energy. Moreover the detec-
tor aperture is so small that the scattering matrix dependence
on the direction of K� is weak within the detector. We there-
fore take a representative value for the direction of K�, and
reduce the integration over the detector semiangle to a prod-
uct of the integrand with the detector solid angle. Equation
�16� then simplifies to

��K,K�,t� = NVc �
H,G,H�,G�

1

t
�

0

t

SG,0�K,z�SH,0
* �K,z�S0,G��K�,t − z�S0,H�

* �K�,t − z�dz�H−H�,G−G��K,K�� , �17�

where

�H−H�,G−G��K,K�� =
2m

�2K
�
p�0

K�

2
XH−H�,G−G�

p �K,K����K�,

�18�

in which ��K� is the solid angle subtended by the detector.
Careful comparison of the content of Eqs. �13� and �18� with
that of Eqs. �1� and �2� draws out the similarity that has
motivated us to revert to a �-matrix element notation. For
the small detector used, signals calculated in this way differ
imperceptibly from those given in Fig. 4�b�.

Equation �17� offers some insight into the oscillatory fea-
tures in Fig. 4. Compare Eq. �17� with the dynamical term in
the single-channeling result of Eq. �10�: the scattering matri-
ces for the incident wave are unchanged, but Eq. �17� in-
cludes two further scattering matrices describing the scat-
tered electron. Moreover, the additional matrices depend not
only on the depth of ionization but also on the total specimen
thickness t.

The integrand in the single-channeling case, Eq. �10�, is
positive definite. As a result the total signal derives from the
incoherent sum of the contributions from all depths within
the sample. This is evident in Fig. 3 where the signal grows
monotonically with increasing thickness, since the signal
arising from a crystal of thickness t+	t is simply the sum of
that deriving from a crystal of thickness t plus the �positive�
contribution from the final portion of thickness 	t. This en-
abled us to plot a per slice contribution as the difference in
total cross section between crystals of different thicknesses.
But in the double-channeling case the integrand in Eq. �17� is
also positive definite and the contributions from each depth
add incoherently. How then does the oscillatory behavior
arise?

The difference between the two cases, which allows for
oscillatory behavior in the double-channeling treatment, is
that the integrand in Eq. �17� depends not only on the depth
z but also on the total crystal thickness t. Thus while for a
given thickness t the total signal derives from an incoherent
sum over the individual slices, the evaluation for a different
thickness t+	t is not simply a matter of adding a further
contribution from the 	t layer. Rather the entire sum needs to

be reevaluated because the contribution from each depth will
change due to the new total thickness. The thickness depen-
dence of the integrand is present only in the scattering ma-
trices for the channeling subsequent to energy loss, and as
such the difference expresses the physical property that the
signal detected from ionization of some atom at a particular
depth will depend on thickness of crystal remaining: chan-
neling through the remaining portion affects the probability
of the scattered electron reaching the detector.

FIG. 5. �a� �S0,0�K�=0 , t−z��2 as a function of the event depth z
for t=1050 and 1150 Å. �b� �S0,0�K�=0 ,z��2�S0,0�K�=0 , t−z��2 as
a function of event depth z. The total cross section consists of the
sum of integrals over z of such products weighted by the inelastic
scattering coefficients.
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Let us take an example to get a better feel for how this
comes about. We shall consider the symmetric orientation
K�=0. The inelastic scattering coefficients in Eq. �18� are
now essentially those of Eq. �1�. In particular it is still true
that at this orientation �0,0 is significantly larger than all
other �H,G. In the single-channeling expression of Eq. �10�,
this restriction reduced the sum to a single term: �S0,0�K ,z��2.
However, in the double-channeling expression of Eq. �17�
this restriction only allows us to collapse two of the four
sums by forcing G�=G and H�=H. To demonstrate the idea
we shall consider only the single case G�=H�=0 from this
sum; other terms will be important, but this term will serve
our illustration. Figure 5�a� plots �S0,0�K�=0 , t−z��2, the
scattering matrix contributions from the scattered electron
with G�=H�=0 in Eq. �17�, for t=1050 and 1150 Å. These
thickness values were chosen because they correspond to an
adjacent minimum and maximum in the oscillatory total
cross section as seen in Fig. 4�b�. Though positions of the
peaks and troughs in Fig. 5�a� are almost fully out of step,
both plots have comparable amplitudes.

To see how they lead to very different total cross sections
these terms must be coupled with the scattering matrix am-
plitude for the incident electron. For H�=G�=H=G=0, the
relevant term in Eq. �17� is �S0,0�K�=0 ,z��2�S0,0�K�=0 , t
−z��2, which is plotted in Fig. 5�b�. The difference between
the two thicknesses is now pronounced, the integrated con-
tribution for t=1150 Å being twice as large as that for t
=1050 Å. This follows because the peaks in Fig. 5�a� for the
greater thickness coincide with those in the incident electron
amplitude �S0,0�K�=0 ,z��2, as seen in Fig. 3�c�. Thus cases
where the maxima in the oscillatory channeling amplitude of
the incident electron coincide with those of the scattered
electron lead to large total cross sections. Thicknesses at
which the maxima of one tend to coincide with the minima
of the other lead to smaller total cross sections. The result is
that the channeling of both incident and scattered electrons
conspire to give strong oscillatory behavior of the total cross
section as a function of thickness.

C. Thickness averaging and comparison with experiment

The strong oscillatory behavior in the double-channeling
cross section complicates the process of matching to experi-
ment since several different thickness values can give quan-
titatively similar positioning and weighting of the peaks.

In the ideal world, one would prefer to compare calcula-
tions to data measured from a specimen of precisely known
thickness. For the case of the NiO crystal employed during
these measurements, we were not afforded this luxury. The
single crystal of NiO used in this work, as described in Sec.
II, was tapered in profile as would be the case of any speci-
men prepared by ion-beam milling. The wedge-shaped na-
ture of the analyzed volume defined by the probe diameter
varied from a minimum of around 39 nm to a maximum of
around 78 nm. This deviation corresponds to the experimen-
tal observation that the outer periphery of the probe diameter
was bounded at its thickness extremes by extinction contours
corresponding to one and two extinction distances �G for a
�200� reflection. We shall use this information as a constraint

in a numerical fit to the data to estimate t and �t where a
sample with uniform thickness variation between thicknesses
t and t+�t is assumed.

The experimental data was processed as follows. The cen-
troid of the central peak for the experimental data was
slightly offset, the digital step not being in perfect alignment
with the center of the �000� beam. This was corrected by
interpolation between the existing data points and shifting
back to a symmetric position. In principle, for a perfect, slab-
like NiO crystal, the cross section for positive and negative
tilts would be identical. This was not quite true of the experi-
mental data and an average of the left and right halves was
performed to generate a reduced data set. The variation of
the halves about this average may be regarded as indicative
of nonstatistical errors �specimen nonuniformity, electronic
noise in the detector� and was taken as a rough estimate of
the error in the data.

That said, it should be noted that some “error” will be
introduced into the simulations through the approximations
made. We simulate a systematic row orientation as an effec-
tive one dimensional problem, though this approximation
cannot quite be realized in practice. We allow for an attenu-
ation due to thermal scattering, but we do not include a dif-
fuse contribution to account for detectable ionization events
caused by thermally scattered electrons.

We define a fit parameter f�t ,�t� which is simply a sum
of squares measure,

f�t,�t� = �
i

�Ii
expt�t,�t� − a�t,�t�Ii

sim�t,�t��2, �19�

where Iexpt denotes the experimental number of counts, Isim

denotes the simulated number of counts, and the sum over i
runs over the orientations in the �reduced� data set. The
simulated intensity Isim�t ,�t� is rescaled by a constant
a�t ,�t� for each different set of parameters �t ,�t� such that
the mean of the experimental and simulated data are the
same. Some such pinning is necessary in a comparison with
experimental data to put the number of counts on the same
scale.

Figure 6�a� shows a surface plot of f�t ,�t�. This plot too
shows oscillatory behavior. In particular, for small values of
�t there are values of t for which simulations are signifi-
cantly different to experiment. At these points we tend to find
significant differences either in the precise location of the
Bragg peaks or, more usually, significant differences in the
relative peak heights when comparing the simulations with
the experimental data.

Figure 6�b� shows a contour plot of the fit parameter in
Fig. 6�a� where the vertical range has been truncated to bring
out the structure near the minima. The three significant
minima evident have been labeled, with lower labels corre-
sponding to deeper minima, and correspond to the �t ,�t�
parameter sets �1� �230 Å,110 Å�, �2� �450 Å,120 Å�, and
�3� �685 Å,110 Å�. The lowest minimum occurs for a thick-
ness range that is smaller than the lower bound on the thick-
ness that was determined by experimental measurements. It
can therefore be discarded. The second minimum is well
within the likely range determined experimentally. The third
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is also a possibility, though not so low a minimum as the
second �the ratio of f�t ,�t� values is 2.4, although this is not
evident in Fig. 6�b� due to binning in the contour plot�.
Therefore we estimate the the crystal thickness in the illumi-
nated region varied between 450 and and 570 Å.

Figure 6�c� shows the processed data set, with error bars
determined from the averaging procedure. The solid line
shows the double-channeling simulation for the optimum pa-
rameters as determined by the fit, while the dashed line
shows the single-channeling simulation for the same param-
eters. The double-channeling simulation agrees very well
with the experimental data on the position and relative
heights of the peaks. The same cannot be said of the single-
channeling simulation, an indication that this is indeed a case
where the double-channeling model is required to adequately
model the experiment. There are some discrepancies between
the double-channeling simulation and the experimental data
between the peaks, but they are of less concern, within the
expectations of the approximations made. It is clear that
double-channeling is critical not just to obtain a good fit to
the data but even to adequately predict the peak positions
and relative intensities.

VI. CONCLUSION

We have presented the theory to describe electron energy
loss cross sections in both single- and double-channeling
models, incorporating the nonlocality of the effective scatter-
ing potential. The former, simpler case allowed us to intro-
duce the Bloch wave and scattering theory methods while
providing some insight about the origin of the Bragg peaks.

However, the more important consideration arising from
the use of detectors with small acceptance angles is the ne-
cessity to include the channeling of the scattered electron,
the double-channeling method. Using NiO as a case study, it
was demonstrated that the double-channeling cross section
oscillates significantly as a function of specimen thickness.
As we have shown, this oscillatory behavior is a natural con-
sequence of the channeling of the scattered electrons. The
oscillatory behavior may complicate the use of simulations
to set up or interpret experimental results if the specimen
thickness is not well known, though in this case a fit to the
data returned a plausible estimate for the thickness. The use
of detectors with very small apertures aids approximations
that increase the efficiency of the double-channeling calcula-
tions, facilitating further exploratory simulation.

Averaging over a range of energy losses enabled us to
focus on the channeling effects rather than the fine structure.
But an important consequence of these findings is the aware-
ness that the optimum conditions for high-angular-resolution
energy loss spectroscopy are precisely those for which the
effects of channeling of the scattered electron are most pro-
nounced.
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FIG. 6. �a� Fit parameter as a function of the
initial thickness t and the thickness range �t. �b�
Contour plot of the fit parameter in �a� truncated
to bring out the structure near the minima. Three
significant minima, labeled by the white indices,
are evident. The minima correspond to
�t ,�t� parameters �1� �230 Å,110 Å�, �2�
�450 Å,120 Å�, and �3� �685 Å,110 Å�. �c�
Comparison between the processed experimental
data, the best-fit double-channeling simulation
using the parameters from minimum 2, and the
single-channeling simulation using the same
parameters.
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