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The weak anisotropy of the interfacial free energy � is a crucial parameter influencing dendritic crystal
growth morphologies in systems with atomically rough solid-liquid interfaces. The physical origin and quan-
titative prediction of this anisotropy are investigated for body-centered-cubic �bcc� forming systems using a
Ginzburg-Landau theory where the order parameters are the amplitudes of density waves corresponding to
principal reciprocal lattice vectors. We find that this theory predicts the correct sign �100��110 and magnitude
��100−�110� / ��100+�110��1% of this anisotropy in good agreement with the results of molecular dynamics
�MD� simulations for Fe. The results show that the directional dependence of the rate of spatial decay of solid
density waves into the liquid, imposed by the crystal structure, is a main determinant of anisotropy. This
directional dependence is validated by MD computations of density wave profiles for different reciprocal
lattice vectors for �110� crystal faces. Our results are contrasted with the prediction of the reverse ordering
�100��110 from an earlier formulation of Ginzburg-Landau theory �Shih et al., Phys. Rev. A 35, 2611 �1987��.
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I. INTRODUCTION

The advent of microscopic solvability theory1–3 in the
1980s led to the prediction that the anisotropy of the excess
free energy of the crystal-melt interface is a crucial param-
eter that determines the growth rate and morphology of den-
drites, which shape the microstructures of many commercial
metallic alloys. This prediction was largely validated by
phase-field simulations4,5 of dendritic solidification during
the 1990s. More recent work in the present decade has fo-
cused on the quantitative prediction of both the magnitude
and the anisotropy of the interfacial free energy � using mo-
lecular dynamics �MD� simulations.6–22 In parallel, experi-
mental progress has been made to determine this anisotropy
in metallic systems from accurate equilibrium shape
measurements,23–25 which extend pioneering measurements
of this anisotropy in transparent organic crystals.26,27

MD-based methods, including the cleaving technique6–9

and the capillary fluctuation method,10,14 have been success-
fully developed to compute � and to accurately resolve its
notoriously small anisotropy of the order of 1%. These meth-
ods have been applied to a wide range of systems, including
several elemental face-centered-cubic �fcc�,10,11,14,16,17 body-
centered-cubic �bcc�,16,17,20 and hexagonal-close-packed18

metals, as well as one fcc metallic alloy13 modeled with
interatomic potentials derived from the embedded-atom-
method �EAM�, the Lennard-Jones system,8,15

hard-sphere,7,21,22 and repulsive power-law potentials,9 and,
most recently, a bcc molecular organic succinonitrile19 used
extensively in experimental studies of crystal growth pat-
terns.

In systems with an underlying cubic symmetry, the mag-
nitude of the crystalline anisotropy has been traditionally
characterized by comparing the values of � corresponding to
�100� and �110� crystal faces. MD calculations have yielded
anisotropy values ��100−�110� / ��100+�110�=0.5–2.5 %, and

experimental values extracted from equilibrium shape mea-
surements fall generally within this range. What determines
physically the positive sign and the magnitude of this aniso-
tropy, however, remains unclear. One interesting clue is that
MD-calculated anisotropies generally depend more on the
crystal structure than on the microscopic details of intermo-
lecular forces for the same crystal structure, and anisotropies
tend to be consistently smaller for bcc than for fcc
structures.20 A striking example of the former is the fact that
MD studies of Fe �Refs. 16 and 17� and succninonitrile,19

with the same bcc structure but entirely different intermo-
lecular forces, have yielded comparable anisotropies around
0.5%. The weaker anisotropy of � for bcc compared to fcc
structures is also consistent with experimental measurements
of anisotropy values in the range of 0.5–0.7 % and 2.5–5 %
for the bcc and fcc transparent organic crystals succinonitrile
and pivalic acid, respectively.27,28

The fact that anisotropy appears to depend more strongly
on crystal structure than inter-molecular forces suggests that
it may be possible to predict this critical parameter from a
continuum density wave description of the solid-liquid inter-
face, which naturally incorporates anisotropy because of the
broken symmetry of the solid. The simplest of such descrip-
tions is the Ginzburg-Landau �GL� theory of the bcc-liquid
interface developed by Shih et al.29 The order parameters of
this theory are the amplitudes of density waves correspond-

ing to the set of principal reciprocal lattice vectors �K� i�, and
the free-energy functional is derived from density functional
theory �DFT�30–32 with certain simplifying assumptions.

This theory has yielded predictions of � for various bcc
elements that are in reasonably good agreement with experi-
ments. Moreover, it has provided an elegant analytical deri-
vation of the proportionality between � and the latent heat of
fusion, in agreement with the scaling relation �n−2/3=�L
proposed by Turnbull33 and recently corroborated by MD
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simulations,9,16 where n is the solid atomic density and L is
the latent heat per atom. This theory, however, predicts the
wrong ordering �100��110. This apparent failure could be
due to the truncation of larger-�K� � modes, i.e., density waves
corresponding to reciprocal lattice vectors K� with �K� �� �K� i�.
However, paradoxically, a strong dependence of the aniso-
tropy on larger-K� modes would be hard to reconcile with the
weak dependence of this quantity on details of intermolecu-
lar forces seen in MD studies, since these forces dictate the
amplitudes of these modes in the crystal where the density is
sharply peaked around atomic positions.

To shed light on this paradox, we reconsider the simplest
GL theory of the bcc-liquid interface based on the minimal
set of principal reciprocal lattice vectors. Our calculation dif-
fers principally from the one of Shih et al.29 in the derivation
of the coefficients of the gradient square terms in the GL
free-energy functional. Each term measures the free-energy
cost associated with the spatial variation, in the direction n̂
normal to the solid-liquid interface, of a subset of equivalent
density waves with the same magnitude of the direction co-

sine K̂i · n̂ and hence the same amplitude. Shih et al. choose
these coefficients to be proportional to the number of princi-
pal reciprocal lattice vectors in each subset. This procedure,
however, turns out to yield an incorrect directional depen-

dence �i.e., dependence on K̂i · n̂� of the rate of decay of
density waves into the liquid. Here we find that the inclusion
of the correct directional dependence, as prescribed by DFT,
yields the correct ordering �100��110 and a reasonable esti-
mate of the magnitude of anisotropy. Furthermore, we vali-
date this directional dependence by MD computations of
density wave profiles.

II. GINZBURG-LANDAU THEORY

We review the derivation of the GL theory and compare
our results to MD simulations in the next section. The theory
is derived in the DFT framework where the free energy of an
inhomogeneous system is expressed as a functional F
=F�n�r��� of its density distribution n�r��, which can be ex-
panded in the form

n�r�� = n0	1 + 

i

ui�r��eiK� i·r� + ¯ � �1�

where the order parameters ui are the amplitudes of density
waves corresponding to principal lattice vectors �110
 of the

reciprocal fcc lattice, and the contribution of larger-K� modes
denoted by “¯” is neglected. Expanding the free energy as a
power series of the ui’s around its liquid value Fl�F�n0�
yields

�F =
n0kBT

2 	� dr� a2

i,j

cijuiuj�0,K� i+K� j

− a3

i,j,k

cijkuiujuk�0,K� i+K� j+K� k

+ a4 

i,j,k,l

cijkluiujukul�0,K� i+K� j+K� k+K� l
+ b


i

ci�dui

dz
�2� ,

�2�

where we have defined �F�F−Fl and the gradient square
terms arise from the spatial variation of the order parameters
along the direction normal to the interface parametrized by
the coordinate z. The Kronecker delta �m,n, which equals 0 or
1 for m�n or m=n, respectively, enforces that only combi-
nations of principal reciprocal lattice vectors that form

closed polygons K� i+K� j + ¯ =0 contribute to the free-energy
functional. Closed triangles generate a nonvanishing cubic
term that makes the bcc-liquid freezing transition first order.
The multiplicative factors ai and b are introduced since it is
convenient to normalize the sums of the c’s to unity �i.e.,

ici=1, 
i,jcij�0,K� i+K� j

=1, etc.�. To complete the theory, one
needs to determine all the coefficients appearing in the GL
free-energy functional.

The coefficients of the quadratic terms are obtained from
the standard expression for the free-energy functional that
describes small density fluctuations of an inhomogeneous
liquid

�F =
kBT

2
� � dr� dr�� �n�r�����r� − r���

n0
− C��r� − r������n�r���

�3�

where �n�r���n�r��−n0 and C��r�−r���� is the direct correlation
function whose Fourier transform

C�K� = n0� dr� C��r���e−iK� ·r� �4�

is related to the structure factor S�K�= �1−C�K��−1.
The two expressions for �F, Eqs. �2� and �3�, can now be

related by assuming that the amplitudes of density waves
vary slowly across the interface on a scale �1/Kmax where
Kmax is the value of K corresponding to the peak of the struc-
ture factor. Accordingly, ui�z�� can be expanded in a Taylor
series about z,

�n�r��� � n0

i
	ui�z� +

dui�z�
dz

�z� − z�

+
1

2

d2ui�z�
dz2 �z� − z�2 + ¯ �eiK� i·r��, �5�

where the contribution “¯” involving higher-order deriva-
tives can be neglected. Namely, terms proportional to �z�
−z�ndnui�z� /dzn�1/ �Kmaxw�n, where w is the characteristic
width of the solid-liquid interface, i.e., the scale over which
order parameters vary from a constant value in the solid to
zero in the liquid. Hence, these terms vanish at large n under
the assumption that w�1/Kmax. Substituting this expression
in Eq. �3� and carrying out the integral over r��, we obtain

�F �
n0kBT

2
� dr�	


i,j

1

S��K� i��
uiuj�0,K� i+K� j

− 

i

1

2
C���K� i��

	�K̂i · n̂�2�dui

dz
�2� , �6�

where C��K��d2C�K� /dK2. Comparing Eqs. �6� and �2�, we
obtain at once
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a2cij =
1

S��K� 110��
, �7�

bci = −
1

2
C���K� 110���K̂i · n̂�2, �8�

where we have used the fact that all reciprocal lattice vectors

have the same magnitude �K� i�= �K� 110�. Summing both sides of
Eq. �7� and using the normalization 
i,jcij�0,K� i+K� j

=1 gives

a2 = 

i,j

�0,K� i+K� j

S��K� 110��
=

12

S��K� 110��
, �9�

and cij =1/12. Similarly, summing over i both sides of Eq.
�8�, and using the normalization 
ici=1, yields

b = −
1

2

i

C���K� 110���K̂i · n̂�2 = − 2C���K� 110�� , �10�

where the second equality can be shown to be independent of
the direction of n̂, and

ci =
1

4
�K̂i · n̂�2. �11�

To make the difference between the above derivation of
the ci’s and the one of Shih et al. explicit, consider one of the
�110� crystal faces with n̂ pointing in the �110� direction. The

set of 12 principal reciprocal lattice vectors �K� i� correspond-
ing to the �110
 directions can be separated into three subsets

with the same value of �K̂i · n̂�2: subset I with eight vectors

��011� , �01̄1� , �011̄� , �101� , �1̄01� , �101̄� , �01̄1̄� , �1̄01̄�� and

�K̂i · n̂�2=1/4, subset II with two vectors ��110� , �1̄1̄0�� and

�K̂i · n̂�2=1, and subset III with two vectors ��1̄10� , �11̄0��
and �K̂i · n̂�2=0. Density waves in a given subset have the
same amplitude denoted here by u, v, and w for subsets I, II,
and III, respectively.

It follows that the correct coefficient of the gradient
square terms for a given order parameter u, v, or w, is ob-
tained using the expression for ci given by Eq. �11� with the

corresponding value of �K̂i · n̂�2 for the corresponding subset
I, II, or III, respectively. These coefficients are ci=1/16
for subset I, ci=1/4 for subset II, and ci=0 for subset III.
These coefficients yield the gradient square terms

−C���K� 110���du /dz�2 and −C���K� 110���dv /dz�2 in the GL free-

energy functional �2� since there are eight equivalent recip-
rocal lattice vectors in subset I and 2 in subset II, respec-
tively. The coefficient of �dw /dz�2 vanishes since the
principal reciprocal lattice vectors in subset III are orthogo-
nal to n̂ and ci=0.

In contrast, Shih et al. choose the ci’s to be equal for all
subsets with a nonvanishing direction cosine �subsets I and
II�, and ci=0 for subsets with principal reciprocal lattice vec-
tors orthogonal to n̂ �subset III�. Since there is a total of ten
reciprocal lattice vectors in subsets I and II, the normaliza-
tion condition 
ici=1 yields ci=1/10. These coefficients

yield the gradient square terms −�8/5�C���K� 110���du /dz�2 and

−�2/5�C���K� 110���dv /dz�2 in the GL free-energy functional
�2�, which are weighted proportionally to the number of re-
ciprocal lattice vectors in each subset, and differ from the
correct terms derived above.

For the �100� and �111� crystal faces, the weighting pro-
cedure of Shih et al. and Eq. �11� give coincidentally the
same coefficients of the gradient square terms. Thus these
cases need not be repeated here. The results for the different
crystal faces are summarized in Table I.

The determination of all the other coefficients in the GL
free-energy functional is identical to the calculation of Shih
et al. The coefficients of the cubic and quartic terms, cijk and
cijkl, respectively, are determined by the ansatz that all poly-
gons with the same number of sides have the same weight,
which yields cijk=1/8 and cijkl=1/27; for quadratic terms,
this ansatz reproduces the result cij =1/12 derived above
since there are 12 two-sided polygons formed by the princi-
pal reciprocal lattice vectors. Using these coefficients and
identifying each ui with the order parameter u, v, or w, de-

pending on whether the corresponding K� i on one side of a
polygon belongs to subset I, II, or III, respectively, Eq. �2�
reduces for �110� crystal faces to

�F =
n0kBT

2
� dr��a2	2

3
u2 +

1

6
v2 +

1

6
w2�

− a3	1

2
u2v +

1

2
u2w� + a4	12

27
u4 +

1

27
v4 +

1

27
w4

+
4

27
u2v2 +

4

27
u2w2 +

1

27
w2v2 +

4

27
u2vw�

− C���K� 110���du

dz
�2

− C���K� 110���dv
dz
�2� . �12�

TABLE I. Comparison of coefficients of square gradient terms ci predicted by Eq. �11� �DFT� and Shih et
al. �Ref. 29� for the �100�, �110�, and �111� crystal faces. For each orientation, the 12 principal reciprocal

lattice vector are grouped into subsets where K̂i · n̂ have the same magnitude in each subset.

100 110 111

�K̂i · n̂�2 0 1/2 1/4 1 0 0 2/3

Number of K� i’s 4 8 8 2 2 6 6

ci �Eq. �11�� 0 1/8 1/16 1/4 0 0 1/6

ci �Ref. 29� 0 1/8 1/10 1/10 0 0 1/6
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The corresponding expression of Shih et al. differs by the
coefficients of �du /dz�2 and �dv /dz�2 that have an extra mul-
tiplicative factor of 8 /5 and 2/5, respectively, as discussed
above. Their expressions for �F for the �100� and �111� crys-
tal faces are identical to ours since Eq. �11� and the equal
weight ansatz yield coincidentally the same ci’s for these
faces.

Finally, the coefficients a3 and a4 are determined by the
constraints that the equilibrium state of the solid is a mini-
mum of free energy, ��F /�ui�ui=us

=0, where us is the value
of all the order parameters in the solid, and that solid and
liquid have equal free energy at the melting point, �F�us�
=0. These two constraints yield the relations a3=2a2 /us and
a4=a2 /us

2 that determine a3 and a4 in terms of a2 given by
Eq. �9�, which completes the determination of all the coeffi-
cients.

III. RESULTS AND COMPARISON WITH MD
SIMULATIONS

The order parameter profiles for �110� crystal faces were
calculated by minimizing �F given by Eq. �12� with respect
to the order parameters u, v, and w, and by solving numeri-
cally the resulting set of coupled ordinary differential equa-
tions with the boundary condition u=v=w=us in solid and
u=v=w=0 in liquid. The value of �110 was computed using
Eq. �12� with these profiles. The same procedure was re-
peated for the �100� and �111� crystal faces.

We used input parameters for the GL theory computed
directly from the MD simulations in order to make the com-
parison with these simulations as quantitative and precise as
possible. These parameters include the peak of the liquid

structure factor �S��K� 110��, which yields a2=3.99 using Eq.

�9�, C���K� 110��=−10.40 Å2, and the amplitude of density
waves corresponding to principal reciprocal lattice vectors in
the solid us=0.72.

The MD simulations were carried out using the EAM po-
tential for Fe from Mendelev, Han, Srolovitz, Ackland, Sun
and Asta34 �MH�SA�2� and the same thermodynamic en-
semble and geometries as in Ref. 17, which need not be
repeated here. The main difference of the present simulations
is the way in which the MD results were used to calculate
density wave profiles. In Ref. 17, the amplitudes were com-
puted by averaging over many configurations the instanta-
neous value of a planar structure function �i.e., the magni-
tude of the complex Fourier coefficients of the density�. With
this approach the amplitudes of density waves saturate to a
small nonvanishing value in the liquid. These amplitudes,
however, are generally expected to vanish in the liquid that
has no long range order, consistent with the GL theory.

To calculate amplitudes that vanish in the liquid, the fol-
lowing procedure is followed. We first compute the average
number density n�r��=n�x ,y ,z�, with z measured from a fixed
reference plane of atoms in the solid. During the MD simu-
lations, only those configurations where the solid-liquid in-
terface has the same average position along z were consid-
ered. As described in detail by Davidchack and Laird,35 this
procedure avoids an artifical broadening of the density pro-

files due to either the natural fluctuations in the average po-
sition of the interface or Brownian motion of the crystal. The
interface position is found by first assigning to each atom an
order parameter proportional to the mean square displace-
ment of atoms from their positions on a perfect bcc lattice.
�The order parameter calculation is the same as that used in
the capillary fluctuation method and is described in more
detail in Ref. 16.� Then an order parameter profile as a func-
tion of z is computed by averaging within the x-y plane and
the interface position is that value of z where the averaged
order parameter is midway between the bulk liquid and bulk
solid values.

Next, we compute the �x-y�-averaged density

n�z� =
1

LxLy
�

0

Lx �
0

Ly

dx dy n�r�� , �13�

which is illustrated in Fig. 1. Last, we calculate the ampli-
tude of density waves from the Fourier transform

ui =
1

LxLy�z
�

0

Lx �
0

Ly �
zj

zj+1

dx dy dz n�r��exp�iK� i · r�� , �14�

where zj and zj+1 correspond to sequential minima of n�z�
and �z�zj+1−zj. In addition, ui is evaluated at the midpoint
of this interval, �zj +zj+1� /2. The order parameters u and v
were computed for �110� crystal faces using K� 110 and K� 101,
respectively.

The results of the present GL theory are compared to
those of Shih et al. and MD simulations in Fig. 2 and Table
II. Using Eq. �12� with the ci’s given by Eq. �11�, we obtain
the correct ordering of interfacial free energies �100��110
and a weak capillary anisotropy ��100−�110� / ��100+�110�
�1%, consistent with the results of MD simulations for bcc
elements,9,16,17,19,20 while the ansatz of equally weighted ci’s
of Shih et al. �with the values listed in Table I� gives the
reversed ordering �100��110. Note that the predictions of GL
theory are to be compared to the MD results with the
MH�SA�2 potential in Table II since this potential is used
here to compute input parameters for this theory given in
Table III. MD results for the other potentials are mainly in-
cluded to illustrate the dependence of � and its anisotropy on
details of interatomic forces.

FIG. 1. Comparison of planar density profiles n�z� from MD
simulations �solid line� and the present Ginzburg-Landau theory
�dashed line� for �110� crystal faces.
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Figure 1 shows that the planar density profile predicted by
GL theory, obtained by substituting Eq. �1� with the numeri-
cally calculated order parameter profiles into Eq. �13�, is in
remarkably good agreement with MD simulations on the liq-
uid side. The discrepancy on the solid side is due to the fact

that GL theory neglects the contribution of larger �K� � recip-
rocal lattice vectors that contribute to the localization of den-
sity peaks around bcc lattice positions in MD simulation.

Figure 2 shows that the amplitude profiles and the inter-
face widths predicted by GL theory are in good agreement
with MD simulations. The MD results clearly validate the
directional dependence of the rate of spatial decay of density
waves in the liquid that is the main determinant of the aniso-
tropy of �. This directional dependence is most clearly seen
by examining the amplitude profiles on the liquid side of the
interface. In this region, the amplitudes of density waves are

sufficiently small that one can neglect the cubic and quartic
terms in the GL free-energy functional. The resulting linear
second-order differential equations for u and v obtained by
minimizing this functional can be solved analytically, and
have exponentially decaying solutions that are compared to
the MD results in Fig. 3. The coefficients of the gradient
square terms in the free-energy functional control the decay
rates. The u and v profiles �i.e., the amplitude of density

waves corresponding to K� 101 and K� 110� calculated with coef-
ficients that depend on the angle between the principal recip-
rocal lattice vectors and the interface normal through Eq.
�11�, which is consistent with DFT, have different decay
rates that are in good quantitative agreement with the MD
results. In contrast, u and v profiles calculated based on the
ansatz29 of equal weights for the ci’s have the same spatial

TABLE II. Comparison of interfacial free energies for different crystal faces �in erg/cm2� and anisotropy
parameter 
4���100−�110� / ��100+�110� predicted by Ginzburg-Landau theory with input parameters from
MD simulations for Fe with the EAM potential of MH�SA�2 �Ref. 34� �Table III�, and obtained from MD
with the MH�SA�2 potential and two other potentials.

100 110 111 
4 �%�

MD �ABCH� �Ref. 16� 207.3 �10.1� 205.7 �10.0� 205.0 �10.0� 0.4�0.4�
MD �pair� �Ref. 16� 222.5 �14.1� 220.2 �14.0� 220.8 �14.0� 0.5�0.5�

MD �MH�SA�2� �Ref. 16� 177.0 �10.8� 173.5 �10.6� 173.4 �10.6� 1.0�0.6�
GL �present calculation� 144.26 141.35 137.57 1.02

GL �Ref. 29� 144.26 145.59 137.57 −0.46

FIG. 2. Comparison of numerically calculated nonlinear order
parameter profiles u and v for �110� crystal faces obtained from the
present GL theory �solid line� and the GL theory of Shih et al. �Ref.
29� �dashed line� and computed from MD simulations using Eq.

�14� with K� 101 and K� 110 for u and v, respectively �solid circles�.

FIG. 3. Comparison of analytically calculated linearized order
parameter profiles u and v for �110� crystal faces near the liquid
from the present GL theory �solid line� and the GL theory of Shih et
al. �Ref. 29� �dashed line�, and computed from MD simulations

using Eq. �14� with K� 101 and K� 110 for u and v, respectively �solid
circles�.
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decay rate, which does not agree with the MD results.
It is interesting to note that Mikheev and Chernov

�MC�,36,37 in a formulation of the anisotropy of the solid-
liquid interface mobility, also stress the importance of the
decay rate of the amplitude of density waves. The MC model
predicts crystal growth rates and anisotropies that are in
qualitative agreement with MD simulations of fcc systems.
The theory, however, is linear in the sense that only the ef-
fective widths of the density profiles, which are allowed to

vary with K� and n̂, are required and the authors make no
attempt to compute, as was done here, the full amplitude
profile as a function of z.

Finally, even though we have focused primarily in this
paper on crystalline anisotropy, it is useful to re-examine the
prediction of GL theory for the magnitude of � and for the
Turnbull coefficient using input parameters from the present
MD simulations. Shih et al.29 derived an analytical expres-
sion for the magnitude of � in the isotropic approximation
where all the order parameters are assumed to have the same
profile through the interface, i.e., ui�z�=u for all i. In this
approximation, the free energy density reduces to the sum of
the gradient square term b�du /dz�2 and a quartic polynomial
in u. The stationary profile u�z� that minimizes the free en-
ergy is then an exact hyperbolic tangent profile and the ana-
lytical expression for the interfacial energy is

� =
n0kBTm

6
us

2�a2b�1/2. �15�

Furthermore, Shih et al. related the latent heat �per atom� to
the temperature variation of the inverse of the peak of struc-
ture factor proportional to a2 �Eq. �9��,

L =
Tm

N
� ��F

�T
�

T=Tm

=
kBTm

2

2
us

2�da2

dT
�

T=Tm

�16�

where N is the number of atoms in the system. This yields
the expression for the Turbull coefficient

� =
�n0

−2/3

L
=

n0
1/3�a2b�1/2

3Tm�da2/dT�T=Tm

, �17�

which Shih et al. evaluate using parameters for the hard
sphere system.29 Using the values of the various coefficients
obtained from MD simulations listed in Table III, Eq. �15�
yields a value of �=147.4 erg/cm2 in reasonably good
agreement with the average values of � for the different crys-
tal faces in Table II obtained from MD simulations and the
fully anisotropic GL calculation with different order param-
eter profiles. With the same coefficients, Eq. �16� yields a

latent heat value L=0.114 eV/atom about 30% lower than
the MD value in Table III, where the difference can be at-

tributed to the contribution of larger-K� modes that are ne-
glected in GL theory. Equation �17� in turn predicts a value
of the Turnbull coefficient �=0.45 that is about 25% larger
than the MD value ��0.36, owing to the underestimation of
the latent heat of melting in GL theory with input parameters
of Table III from the present MD simulations. In the future, it
would be interesting to test how the Turbull coefficient pre-
dicted by GL theory �Eq. �17�� varies with input parameters
computed from MD simulations using different interatomic
potentials.

IV. CONCLUSIONS

We have revisited the simplest GL theory of the bcc-
liquid interface whose order parameters are the amplitudes of
density waves corresponding to principal reciprocal lattice
vectors. We find that, despite its simplicity, this theory is able
to predict the density wave structure of the interface and the
anisotropy of the interfacial energy, in reasonably good
quantitative agreement with the results of MD simulations.

A main determinant of the anisotropy of the interfacial
energy in this theory is the rate of spatial decay of density
waves in the liquid. This decay rate must depend on the
angle between principal reciprocal lattice vectors and the di-
rection normal to the interface for this theory to be consistent
with DFT. This directional dependence, which we validated
quantitatively by MD simulations, is a direct reflection of the
underlying crystal structure. Therefore, the present results
provide a simple physical picture of the strong relationship
between crystal structure and crystalline anisotropy, consis-
tent with the findings of a growing body of MD-based and
experimental studies of crystalline anisotropy.

An interesting future prospect is to extend the GL theory
to other crystal structures, and in particular fcc-liquid inter-
faces. This requires, however, to consider the coupling of
density waves corresponding to the principal reciprocal lat-

tice vectors to larger-K� modes, which makes the theory in-
trinsically more complicated.
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TABLE III. Values of input coefficients for Ginzburg-Landau theory computed from MD simulations
using the EAM potential for Fe from MH�SA�2 �Ref. 34� and average values of � and latent heat of melting
from these simulations.

a2 b �Å2� da2 /dT �K−1� us � �erg/cm2� L �eV/atom�

MD �MH�SA�2� 3.99 20.81 0.00163 0.72 175�11� 0.162
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