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The magnetic excitation spectra in the vicinity of the resonant peak, as observed by inelastic neutron
scattering in cuprates, are studied within the memory-function approach. It is shown that at intermediate doping
the superconducting gap induces a double dispersion of the peak, with an anisotropy rotated between the
downward and upward branch. Similar behavior, but with a spin-wave dispersion at higher energies, is ob-
tained for the low-doping case assuming a large pairing pseudogap.
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The magnetic resonant mode, first observed in the super-
conducting �SC� phase of YBa2Cu3O6+x �YBCO�,1 has been
in the last decade the subject of numerous studies, with the
essential information coming from the inelastic neutron scat-
tering �INS� experiments.2,3 It has been found that the peak
intensity is highest at the commensurate wave vector Q
= �� ,��, while its frequency �r shifts with doping. More
recently, detailed studies of the magnetic response in the vi-
cinity of the resonant peak �RP� revealed several intriguing
but quite universal features. While in the SC YBCO the
stronger component of the resonant mode disperses
downwards,4 another branch apparently emerging from the
same peak shows upward dispersion.5–7 Similar features have
been observed in the underdoped YBCO, wherein the upper
branch evolves into a spin-wavelike mode at higher
energies.8,9 It is quite remarkable that dispersions for various
doping show quite consistent anisotropic intensity within the
q plane6–8 with a rotation angle 45° between the upper and
lower branch.

On the theory side there appears to be a consensus that the
RP can be interpreted as a low-energy collective antiferro-
magnetic �AFM� soft mode, becoming undamped �at least
underdamped� for T�Tc due to the onset of the dx2−y2 SC
gap in the electron-hole excitation spectrum.10 Two limits of
the same scenario seem to be realized. At optimum doping
and in slightly underdoped YBCO the resonant mode is
weak,2 indicating that the collective mode is a weakly bound
excitonic state within the SC gap.10–14 On the other hand, at
low doping the dominant part of the intensity of spin fluc-
tuations with q=Q is within the RP, so the latter one is closer
to an undamped AFM paramagnon mode.15

The downward dispersion of the resonant mode is within
the random-phase approximation �RPA� and related theories
for the dynamical spin susceptibility �q��� �Refs. 10, 13, 14,
and 16� a natural consequence of the closing of the dx2−y2 SC
gap towards the nodal direction of the Fermi surface �FS�.
The RPA seems to capture some upward component �silent
band� after the disappearance of the downward branch.14

In this work we present results of the memory function
approach to spin dynamics,15 which in addition to the above
features reproduces the entire upward dispersion observed
experimentally at intermediate doping. At the same time,
memory function representation offers an appropriate frame-
work �broader than RPA� for the general discussion of the

INS experiments. Thus, it will be shown that the explanation
of collective mode properties at low doping implies the ex-
istence of a large SC-like pseudogap.

The dynamical spin susceptibility can be generally ex-
pressed in the form15

�q��� =
− �q

�2 + �Mq��� − �q
2 , �1�

where the “spin stiffness” �q=−�̇��S−q
z Ṡq

z ��� can be evaluated
within models relevant to cuprates,15 while the “mode fre-
quency” �q= ��q /�q

0�1/2 is related to the static susceptibility
�q

0 =�q��=0�. The latter is a rather sensitive quantity, so we
fix it with the fluctuation-dissipation relation15,17
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whereby the correlation function Cq, is better known within
relevant models, although not directly measured via INS so
far. In the following we base our analysis on the extended
t-J model, i.e., the t-t�-J model, within which Cq is as well
restricted by the sum rule
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4
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and ch is the hole concentration.
Depending on the damping function 	q���=Mq����, Eq.

�1� is able to deal with the overdamped response in the nor-
mal state �NS�, with the spin-wave dispersion at higher en-
ergies �at low doping�, as well as with the RP peak in the SC
phase.

Using the method of equations of motion within the t-J
model it has been shown that the collective spin fluctuations
decay into electron-hole excitations.15 This leads to the
lowest-order mode-coupling approximation for the damping
in the NS

	q��� =
�

2�q�N
� d���f���� − f�� + ����


 �
k

wkq
2 Ak����Ak+q�� + ��� , �4�

where wkq is the effective mode-coupling vertex15 and Ak���
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is the single-particle spectral function. Provided the exis-
tence of “hot spots” k0 where the FS crosses the AFM zone
boundary we assume that at low-� quasiparticles �QP� with
dispersion �k and weight Zk can determine the spectral func-
tion Ak���=Zk���−�k�. This results in a rather constant
	q��� within the NS at low-� and at q	Q. Although it is
derived within the specific prototype model, the form of Eq.
�4� is quite generic for the damping of the collective mag-
netic mode in a metallic system, since the lowest-energy de-
cay processes naturally involve the electron-hole excitations
close to the FS. It should be noted that similar expressions
appear also in theories based on the RPA approach.11,14 For
the SC phase at T�Tc Eq. �4� has to be generalized to in-
clude the anomalous spectral functions11 leading to

	q��� 	
�

2�N
�
k

w̄kq
2 �ukvk+q − vkuk+q�2


 �f�Ek� − f�Ek − ������ − Ek − Ek+q� , �5�

where w̄kq
2 =wkq

2 ZkZk+q /�q, uk, and vk are the usual Bardeen-
Cooper-Schrieffer �BCS� coherence amplitudes, Ek

=
�k
2 +
k

2, and �k=−2t̃�cos kx+cos ky�−4t̃� cos kx cos ky −�
is a renormalized QP band.

In the region of interest, i.e., for q	Q we use for sim-
plicity constant w̄kq	 w̄ which still depends on the QP band
parameters and chemical potential �. In the following we
assume values t̃ / t=0.33, t̃� / t=−0.1, and t	400 meV, which
roughly apply to moderately doped cuprates, and � is related
to doping ch in the usual way. For the SC gap we assume the
dx2−y2 form, 
q=
0�cos qx−cos qy� /2. �q in Eq. �1� is well
known from model calculations15 and generally quite re-
stricted in range, so we take �q=0.5t.

Thus we end up with the following adjustable parameters
at chosen ch: the correlation function Cq, the effective cou-
pling w̄, and the maximum SC gap 
0. The latter is taken
phenomenologically in order to get correspondence with ex-
perimental data. The coupling w̄, or equivalently �weakly �
and q dependent� 	q

0 within the NS has been derived within
the t-J model15 leading to 	Q

0 � t, but significantly renormal-
ized �reduced� due to AFM spin correlations at low doping.
Since a controlled analytical calculation of 	q

0 is difficult to
perform, we furtheron take values for 	Q

0 close to those
found numerically in Ref. 17 for the t-J model. Note that for
the appearance of the upper resonant branch it is crucial that
	Q is not too large, as seems to be inherent within the
RPA,11,14 which otherwise yields in the intermediate-doping
regime formally quite similar expressions to our Eqs. �1� and
�5�. Finally, the ansatz for Cq will depend on doping, as we
discuss below.

Intermediate-optimum doping: Within this regime the col-
lective mode is heavily overdamped in the NS. The indica-
tion for the latter is low intensity of the INS in the relevant
low-energy window. It is then reasonable to assume the
Lorentzian form Cq=CQ / �1+ q̃2 /�2� where q̃=q−Q and the
sum rule, Eq. �3�, relates CQ and �. To be specific, we fix for
the presented case the “optimum” doping at ch=0.15 and �
=1.25 implying CQ	1.0. The SC gap is roughly known
from experiments and we take 
0=40 meV. For results at

intermediate doping we use below 	Q
0 	0.45t �	0.2 eV�.

The spectra in the vicinity of the resonance �q���	�r� for
q	Q have been partly studied in Ref. 15. Presented results
show besides a pronounced downward dispersion also a
weaker upward branch. In Fig. 1 we display �q���� for mo-
menta both along the x axis, q=q�1,0�, and along the zone
diagonal q=q�1,1�, while in Fig. 2 we present the planar q
scans of the intensity �q���� at fixed �.

The following observations can be made on the basis of
Figs. 1 and 2: �a� both presentations clearly reveal two
branches emerging from the same coherent resonant mode at
�r	41 meV. Intensity plots of both branches within the q
plane are squarelike around AFM Q �see Fig. 2�, however,
with quite pronounced anisotropy. �b� For the downward
branch the intensities are strongest along the �1, 0� direction.
This is consistent with the faster dispersion along the zone
diagonal �1, 1� �see Fig. 1�a�� which reduces intensity rela-
tive to the �1, 0� direction and deforms the constant � scan
into a squarelike pattern. �c� The anisotropy is less pro-
nounced for ���r but the overall pattern is rotated through
45°: the dispersion is strongest along the �1, 0� direction,
while intensity is largest along the �1, 1� direction. �d� Above
the damping threshold �=�Q�2
0 the upward branch
merges into an incoherent response broad both in q as well
as in �. Note, however, that the incoherent part still exhausts
most of the intensity sum rule, Eq. �2�, even for q=Q.

Let us give some explanation for the behavior of the col-
lective mode as observed in Figs. 1 and 2. At intermediate
�near optimum� doping the normal-state damping is large,

FIG. 1. Magnetic fluctuations spectra �q���� �arbitrary units� at
intermediate doping ch=0.15 for momenta: �a� along the x direction
q=q�1,0� and �b� along the zone diagonal q=q�1,1�.
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	Q��Q, and the collective mode is heavily overdamped in
the NS. The sharp RP at Q appears due to the steplike van-
ishing damping 	Q����Q�=0 within the SC phase, where
�Q=2
k* and k* represents the location of the hot spot on
the FS. Since the damping cutoff is below the characteristic
mode frequency, �Q��Q, the character of the resonant
mode is excitoniclike,10,11 i.e., the resonant mode appears
below but close to �Q and consequently carries only a small
part of the whole sum rule, Eq. �2�.15 The dispersion of the
mode, both the downward14,16 as well as the upward one, is
intimately related to the properties of the SC gap 
k. As
noted before,11,14,15 the damping function 	q��� shows for
q�Q several steps, in contrast to a single step at Q. Thresh-
olds are determined by the hot spot condition, i.e., by pro-
cesses of zero-energy electron-hole excitations �in the NS�
connecting Fermi surfaces kF1+kF2=q+K where kFi are
wave vectors on the FS and K are reciprocal lattice vectors.
Within the SC phase this leads to steps in the damping at
�i�q�= �
kF1

�+ �
kF2
�. Away from q=Q there are in general

four nontrivial �i�q�, i=1–4, with a possible degeneracy for
q with a higher symmetry in the Brillouin zone.

The lowest step at �1�q� pushes the downward resonant
branch as �r�q���1�q�. The latter should for q=q�1,1� ap-
proach zero at qn=2kFn where kFn is the nodal point on the
FS. It is, however, clear from Fig. 1�b� that the branch loses
intensity before reaching this qn. The dispersion of �1�q�
along the �1, 0� direction is substantially weaker, as seen in
Fig. 1�a�, which leads to squarelike contours and the �1, 0�
dominated anisotropy in Fig. 2. The upper branch in our
analysis appears as an exciton-like resonance below next
thresholds, i.e., �u�q���i�q� , i�1, where the condition for
observing such a resonance is �a� that the finite damping

	q��u� is not too large, and �b� that �q
2 /	q

0 ��4�q�. The
latter condition is necessary to insure that a measurable
amount of spectral weight builds up at threshold �i�q� by
way of Eq. �2�. Finally, for ���4�q� the damping 	q��� is
large and quite constant and any resonant features disappear
into the strongly overdamped AFM paramagnonlike back-
ground.

Low-doping: As already noted, at low doping the effective
vertex w̄ is reduced due to enhanced AFM fluctuations re-
sulting in a smaller normal-state damping 	Q��� �Refs. 15
and 17� but also in larger CQ, which induces spin-wavelike
dispersion at larger �, as observed in INS experiments.8,9

Both facts lead to lowering of �Q�ch,15 which at the same
time corresponds closer to the resonance �r	�Q. Moreover,
the resonance peak exhausts substantial part of the sum rule.
To account for the spin-wavelike dispersion at q̃�� and a
possible influence of a weak incommensurability
�i= �±� ,0� , �0, ±�� we assume

Cq = A�
i

4
1


�2 + 3�q − Qi�2
, �6�

where Qi=Q+�i, and A is fixed by the sum rule, Eq. �3�. In
contrast to intermediate doping, a direct application of the
damping, Eq. �4�, with a single SC gap seems not to be
sufficient to describe the observed INS results. First, the RP
in underdoped YBCO appears to remain broad �not resolu-
tion limited� for T�Tc, compatible with a finite damping
persisting in the SC phase.2,3,9 Still, there is some signature
of a double dispersion,9 although the downward dispersing
mode is much less pronounced.

To account for these observations, we generalize at low
doping the damping function 	q���, Eq. �5�, as follows. In-
side the SC �pseudo� gap, i.e., for ���1�q�, we assume a
finite damping 	q

c���. Although at low doping there are some
indications for the existence of yet another �spin� gap �c
��r,

2,3,9 whereby 	q
c����c�=0, a potential dispersion of

	q
c����c� does not have any significant effect on the RP

and we assume further for simplicity a constant 	c through-
out the pseudogap.

In Figs. 3 and 4 we display results for low T	0, corre-
sponding to low doping ch	0.1, where following parameters

FIG. 2. �Color online� Normalized intensity plot of �q���� in the
q plane at intermediate doping for selected energies � below and
above the RP at �r	41 meV.

FIG. 3. �q���� �arbitrary units� at low doping ch=0.1 for q
=q�1,0�.
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have been adopted: �=�=0.3 �implying CQ	1.6�, damping
	Q

0 =60 meV, 	c=18 meV, and the SC �pseudo� gap 
0
=38.5 meV. While � and 
0, and even 	c, are accessible
from experimental data, 	Q

0 has been chosen to still repro-
duce the spin-wavelike response observed experimentally at
higher energies. This causes the upward dispersion to be-
come stronger as compared to intermediate doping �Figs. 1
and 2� while RP becomes broader due to finite 	c, but still
underdamped. There is also a signature of a downward
branch with the same anisotropy as for the intermediate dop-
ing, but less pronounced and losing fast in intensity.

Let us further discuss the correspondence of presented
results with INS data on cuprates. Within the presented
memory function approach two distinctive regimes emerge
depending mainly on the NS damping 	Q

0 and on the corre-
lation length �. Both are doping sensitive,17,18 whereas the
SC �pseudo� gap 
0 remains approximately constant
throughout the low to intermediate doping regime. Thus for
intermediate doping where the NS response is strongly over-
damped, reflecting both large 	Q

0 and �, our results agree
with features seen in optimum or slightly underdoped YBCO
well below Tc:

5–7 �a� a sharp RP of small integrated intensity
appearing slightly below the lower edge of an otherwise fea-
tureless continuum, �b� pronounced downward dispersion
with an enhanced intensity along the �0, 1� direction, and �c�
broader and less pronounced upward dispersive branch with
somewhat stronger intensity along the �1, 1� direction in a
narrow energy range above �r. While all the above features
also appear in INS experiments on underdoped cuprates, e.g,
in underdoped YBCO,8,9 there are also some important dif-
ferences: �a� the downward dispersion is less pronounced,
while the upward dispersion evolves into spin waves at
higher �, and �b� the RP appears well below the treshold
energy �Q and acquires a finite width. Within the present
approach with 	Q

0 and � as the only relevant parameters such
a scenario is possible only if 	Q

0 is substantially reduced due
to AFM spin fluctuations from its value at optimal doping.
Moreover, a finite RP peak width and large integrated inten-
sity seem to imply a nonvanishing damping 	c inside the SC
pseudogap. Here the sum rule of Eq. �2� becomes particu-
larly effective and tends to suppress the downward disper-
sion unless Cq itself becomes incommensurate.

In conclusion, we have shown that the RP double disper-
sion and its anisotropy are a notrivial consequence of the
damping 	q��� in the SC phase, reflecting the nature of the
gap 
q and related thresholds �i�q�. In this sense, the INS
results on RP serve as a very stringent test for the mechanism
of the collective mode decay and the structure of the SC gap.
While our basic assumption15 of the decay into electron-hole
excitations, consistent with other authors,11,14 does not offer
much freedom of interpretation at intermediate doping,10–14

at low doping an AFM spin-fluctuation scenario seems more
appropriate. We get a reasonable explanation of experiments
only after assuming a finite damping 	c within the SC
pseudogap. We should point out that a similar quasi-
universal development is observed even in non-SC
cuprates.19
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FIG. 4. �Color online� Normalized intensity plot of �q���� in the
q plane at low doping. The RP is at �r	33 meV.
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