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Small and stable drops of 3He atoms can only exist above a minimum number of particles, due to the
combination of the 3He atom Fermi statistics and its light mass. An accurate estimation of this minimum
number using microscopic theory has been difficult due to the inhomogeneous and fermionic nature of these
systems. We present a diffusion Monte Carlo calculation of 3He drops with sizes near the minimum in order to
determine the stability threshold. The results show that the minimum self-bound drop is formed by N=30
atoms with preferred orbitals for open shells corresponding to maximum value of the spin.
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Liquid 3He drops offer a unique combination in nature of
Fermi statistics, neutral charge and self-bound character.1,2

The interest in their physical knowledge explains the contin-
ued effort from both the experimental3 and theoretical
sides4–8 towards a better description of their particular prop-
erties. Experimentally, 3He drops are currently generated in
the laboratory by means of a free jet expansion from a stag-
nation source chamber through a thin walled nozzle.1 The
estimated temperature of the Fermi drops is 0.15 K and
therefore they are in their normal state. The nonsuperfluid
character of 3He drops has been detected in a series of
experiments9 where single molecules were embedded in the
drops. If the molecule is surrounded by 4He, the rotational
spectrum presents a sharp structure which has been attributed
to the superfluid nature of 4He, whereas for a 3He drop a
broad peak is observed.

The smaller mass of the 3He atom, and more fundamen-
tally its Fermi statistics, introduces sizeable differences in
the stability of the drop with respect to 4He. Two 4He atoms
form a bound state but a minimum number of 3He atoms is
necessary to form a self-bound system.5 This difference is
observed in the experimental setup since very small 4He
drops are detected in the jet, starting from the dimer, whereas
it has been proven to be difficult to observe 3He drops with
less than 1000 atoms.3 Reducing this number and generating
drops with a number of atoms closer to the threshold limit is
one of the most important challenges for the next future.
Small 3He drops are expected to present “magic numbers”4

whose experimental determination would be a clear signature
of their Fermi statistics and a new benchmark for quantum
many-body theories for inhomogeneous systems.

As a result of the complexity arising from the combina-
tion of Fermi statistics and inhomogeneity, the number of
microscopic works on 3He drops is significantly smaller than
those devoted to 4He drops. The first systematic study was
carried out by Pandharipande et al.5 in the eighties using the
variational Monte Carlo �VMC� method. This calculation
used a trial wave function incorporating backflow correla-
tions to correct the nodal surface of the noninteracting sys-
tem and predicted that a drop with 40 atoms is self bound.
More recently, Guardiola and Navarro7 carried out a detailed
VMC calculation of small 3He drops including in the trial
wave function configuration-interactionlike correlations.

These new correlations improved the energy in a significant
way and the smallest bound drop was estimated to be the one
formed by 35 atoms. Recently, the same authors8 have ob-
tained a lower value �32� for this upper-bound threshold in a
diffusion Monte Carlo calculation �DMC� restricted to the
atom’s number range 31–34. Therefore, the improvement of
both the trial wave function and the theoretical approach has
progressively reduced the minimum number of atoms re-
quired for a self-bound drop. It is worth mentioning that
using a nonlocal density-functional approach6 this critical
number was estimated to be slightly smaller �29� than these
microscopic calculations.

In this report, we present a DMC calculation of small 3He
drops around the threshold limit for self-binding. In the
simulation we use the fixed-node �FN� approximation,10

which provides an upper bound to the exact eigenvalue, and
the release-node �RN� method11 to estimate the quality of the
FN upper bound. The approach is the same we followed in
the past in the DMC calculation of the equation of state of
bulk12 and two-dimensional �Ref. 13� 3He. The results show
that the minimum number for a self-bound drop is 30 and
that in open-shell configurations the optimal energy corre-
sponds to maximum spin. The latter conclusion was also
pointed out in previous density functional6 and VMC work.7

The sign problem in a DMC simulation is usually dealt
within the FN approximation.10 Along the calculation, the
wave function f�R ,��=�T�R���R ,�� �R=r1 , . . . ,rN�
evolves according to the imaginary-time ��� Schrödinger
equation, with �T acting as importance sampling function
and nodal constraint. For long enough time �→�, ��R� is
the lowest energy state compatible with the nodal surface
imposed by �T�R�. The trial wave function we have used has
a Jastrow-Slater form

�T�R� = �
i�j

N

f�rij��↑�↓, �1�

with a two-body correlation factor

f�r� = exp�−
1

2
� ��r�	

N
+ �b

r
�
�	 . �2�

In Eq. �1�, �↑ ��↓� is a Slater determinant for the spin-up
�spin-down� particles filled up with single-particle orbitals
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corresponding to the polynomial part of the harmonic oscil-
lator basis. From a practical point of view, the use of this
basis is clearly advantageous since the resulting Slater deter-
minant is of the Vandermonde type and therefore translation-
ally invariant. With this model, and considering the Jastrow
part as a function of relative distances only, spurious energy
contributions due to the movement of the center of mass are
not present. The orbitals are chosen in its Cartesian coordi-
nate representation, and for incomplete shells we have fol-
lowed the prescription used by Guardiola and Navarro7

which warrants invariance under 90 deg rotations with re-
spect to the Cartesian axis.

The quality of the upper bound in the FN approach de-
pends on the accuracy of the nodal surface defined by �T�R�.
The nodal surface of �T�R� �1� corresponds to the one of a
noninteracting system. Therefore, this model is expected to
be too simple for describing a correlated liquid as 3He. Using
the imaginary-time Schrödinger equation, one can prove that
the first correction �corresponding to a short imaginary-time
interval� to the noninteracting nodal surface corresponds to a
displacement of the coordinates due to correlations with all
the other particles.15 These corrections are known as back-
flow correlations and are constructed by replacing the coor-
dinates ri of particles in the Slater determinants by

r̃i = ri + �B

j�i

N

��rij�rij . �3�

Similarly to previous studies of the homogeneous liquid,12,13

we have used for the function ��r� a Gaussian, ��r�
=exp�−��r−rB� /
B
2�; �B, rB, and 
B are variational param-
eters.

The FN method provides a rigorous upper bound on the
ground-state energy but does not provide information on the
quality of the upper bound, i.e., the difference between the
energy obtained and the exact eigenvalue. In order to esti-
mate the bias due to the particular model nodal surface we
have used the RN technique.11 In the RN method, the walk-
ers are allowed to cross the nodal surface determined by
�T�R� for a finite lifetime tr and a sign � or � is assigned to
each one. To this end, the importance sampling wave func-
tion is chosen positive

��R� = ��T�R�2 + a2
1/2, �4�

with a as a constant, and the fermionic energy is obtained by
projecting on the antisymmetric component �T�R�. The
method would arrive to the exact ground-state energy for tr
→�, but this limit is not accesible in liquid 3He due to the
rapid emergence of bosonic noise. Nevertheless, the initial
slope can be well determined and its value can be used for
comparing different nodal surfaces and for an estimate of the
magnitude of the bias introduced by the FN approximation.12

All the DMC simulations have been carried out using the
HFD-B�HE� Aziz potential,14 which has proved high accu-
racy in the microscopic description of the bulk phases of
liquid 4He and 3He.15 The parameters entering into �T�R�,
Eqs. �2� and �3�, are adjusted variationally. The dependence
on the number of atoms in the drop is only significant for the
parameter � �2�: for N=30, �=4.0 �−1 and for N=40, �

=4.4 �−1, increasing linearly with N ��=2.556 Å�. The op-
timal values of the rest of parameters are: 	=1, 
=5, b
=1.14 �, �B=0.34, rB=0.75 �, and 
B=0.54 �.

Table I contains results for the total �E /N� and kinetic
energy �K /N� per particle as a function of the number of
atoms N in the drop. With the exception of the first row for
N=32, 35, and 38 the calculations have been made using
orbitals with invariance under 90 deg rotations with respect
to the coordinate axis. According to our results, the threshold
limit for a self-bound drop is N=30 and all cases studied
with equal N but diferent spin Sz show a preferred state cor-
responding to the maximum value of the spin. The latter
result can be also interpreted taking into account the magic
numbers which close a shell �of the spin-up or spin-down
atoms�, which in the range studied correspond to values 10,
20, and 35. The results contained in Table I show that the
optimal energies follow the rule of having at least one closed
shell, with preference for the smallest one: 10 for N=29 and
20 for N=31–39.

The lowest total energies of the 3He drops are shown in
Fig. 1 as a function of their number of atoms N. The line on
top of the DMC data corresponds to polynomial fits and are

TABLE I. Total �E� and kinetic �K� energy per particle of small
3He drops as a function of the number of atoms. Sz is the z compo-
nent of the total spin of the drop. Figures in parentheses are the
statistical errors.

N Sz E /N �K� K /N �K�

29 9/2 0.0194�10� 3.395�65�
30 5 −0.0006�11� 3.630�13�

4 0.0067�12� 3.630�15�
3 0.0184�12� 3.595�13�

31 9/2 −0.0078�12� 3.682�18�
3/2 0.0056�12� 3.666�13�

32 4 −0.0258�18� 3.808�15�
3 −0.0180�12� 3.729�11�
0 0.0003�10� 3.751�12�

33 7/2 −0.0377�13� 3.822�13�
5/2 −0.0340�11� 3.836�14�
1/2 −0.0190�13� 3.857�15�

34 3 −0.0535�15� 3.935�16�
0 −0.0330�12� 3.942�16�

35 5/2 −0.0649�13� 4.02�2�
3/2 −0.0639�16� 3.999�19�

36 2 −0.0839�15� 4.122�13�
1 −0.0792�17� 4.124�18�

37 3/2 −0.1016�15� 4.228�17�
38 1 −0.1211�19� 4.26�3�

0 −0.118�2� 4.241�18�
39 1/2 −0.1372�16� 4.349�16�
40 0 −0.1564�17� 4.442�17�
43 3/2 −0.1702�15� 4.583�16�
55 15/2 −0.2848�18� 5.463�16�
70 0 −0.412�2� 5.72�2�
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only intended as to guide the eye. As one can see in the
figure, the behavior of the energy with N is not monotonous
in the regime studied showing a kink for N=40, a doubly
magic number N↑=N↓=20. This kink is a remnant of the
shell model chosen to describe the antisymmetry of the sys-
tem in absence of correlations. Dynamical correlations in-
duced by the interatomic potential smooth significantly this
effect but, for these small drops, it is still clearly observable.
On the other hand, Fig. 1 shows that in the regime N
=30–40 the DMC data display a regular behavior, which is
well reproduced by a second-degree polynomial. This feature
yields us confidence on the calculation itself and on the
method followed for the selection of orbitals in the Slater
determinants.

Although the search for an exact and stable quantum
Monte Carlo algorithm for solving the N-fermion Schröd-
inger equation continues, the intrinsic difficulty of the prob-
lem raises the question about the maximum information one
can obtain at present from the available Monte Carlo meth-
ods. The only really stable method, which can manage a
significant number of fermions, is FN. With FN one is able to
compute rigorous upper bounds to the ground-state energy,
with the only constraint of the model nodal surface contained
in �T. The introduction of backflow correlations in the model
has proven to be of crucial importance in order to decrease
the bias introduced by �T. Also for 3He drops, this introduc-
tion allows for a much better description: for N=40, back-
flow correlations make the energy per particle to decrease
0.03 K, roughly a relative improvement of 25%.

As in a previous work on bulk liquid 3He, we have used
the RN technique to get some insight on the quality of the
upper bound provided by the FN method. Although the RN
method is unstable in the sense that the subjacent bosonic
component asymptotically overwhelms the Fermi signal, the
initial slope of the energy with the released time tr can be
determined with enough precision to make a comparison be-
tween different model nodal surfaces possible.12 This kind of
analysis is shown in Fig. 2, where the RN energies calculated
with a �T containing or not backflow correlations are plotted
as a function of tr. Figure 2 shows a reduction of the slope by
a factor of 2 when backflow correlations are present in �T
pointing to a significant improvement of the upper bound �an
exact wave function would show zero slope�. However, this

improvement is worse than the one we observed in the past
in a similar calculation of bulk 3He.12 In fact, also the vari-
ance observed in the present simulation of the drops is larger
than the one estimated in bulk. Both comparisons point to a
somehow incomplete treatment of the inhomogeneity inher-
ent to drops. Possible improvements on this line could be
obtained by changing the functional dependence of correla-
tions, from ��ri−rj�� to �ri ,rj�.16 Notwithstanding, this modi-
fication would introduce additional complexity in the calcu-
lation and require from new correlation functions which at
present are not very well known.

The present DMC results for 3He drops, near the thresh-
old limit for self-binding, are compared with recent MC data
in Fig. 3. In Fig. 3, the VMC energies correspond to the best
variational calculation up to date.7 The high quality of the
upper bounds there achieved comes from the introduction of
configuration-interaction correlations in the Jastrow part. The
resulting limit for self-binding was N=35, quite close to our
result �N=30�, and the difference with respect to the present
results increases slightly with N. The orbitals we have used,

FIG. 1. Total energy of 3He drops as a function of the number of
atoms N. The error bars are smaller than the symbol size. The line
on top of the DMC data is a guide to the eye.

FIG. 2. Evolution of the energy with released time tr for a N
=40 3He drop. Circles and squares correspond to Jastrow-Slater
wave functions with and without backflow correlations, respec-
tively. In both cases, we subtract to the RN energies the energy at
initial time Et0=E�tr=0� for an easier comparison. The statistical
error bars are essentially constant in this tr range; they are not
shown for major clarity of the released signal.

FIG. 3. Threshold limit for self-binding in 3He drops. Solid
circles correspond to the present results. Open circles stand for the
FN-DMC calculation from Ref. 8, and squares for the VMC results
from Ref. 7.
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which are essentially the same used in this VMC estimation,
do not have in general good angular momentum quantum
numbers. In principle, that can be considered a defficiency of
the model and the results obtained could be worse than the
ones obtained with better wave functions. However,
Guardiola17 proved using VMC that the energies of 3He
drops are independent of the orbital angular moment and that
they depend only on the spin.

Recently, Guardiola and Navarro8 have reported FN-
DMC results for 3He drops in the range N=31–34 �also
shown in Fig. 3�. They use the same interatomic potential
and the same Jastrow factor but a different shell structure in
the Slater determinant, and also a different form for the back-
flow function. Their results show a minimal number N=32
for a bound drop and energies that are above our results in
the number range considered. We have verified that a signifi-
cant part of the difference between that calculation and the
present one lies in the different functional form used for
backflow correlations. In Ref. 8, the form ��r�=� /r3 instead
of a Gaussian is used; for a N=34 drop it supposes an energy
loss of �0.26 K.

In conclusion, we have carried out an accurate calculation
of small 3He drops using FN-DMC and RN-DMC that has
allowed for a reduction in the threshold limit for self-
binding; our results show that this minimum number is N
=30. Similarly to previous density-functional6 and micro-
scopic calculations,7 our results confirm that the ground-state
energy is achieved for maximum spin or, in other terms, for
shell configurations where the number of atoms of one of the
two species �up or down� closes a shell. In the N range stud-
ied, the energy shows kinks for N=30 and N=40 which cor-
respond to magic numbers of the underlying shell model; its
signal is however quite depressed by the relevance of 3He-
3He dynamical correlations.
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