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The “canonical” variables of the Kosterlitz-Thouless theory—fields �0�r� and ��r�, generally believed to
stand for vortices and phonons �or their XY equivalents, like spin waves, etc.� turn out to be neither vortices
and phonons, nor, strictly speaking, canonical variables. The latter fact explains paradoxes of �i� absence of
interaction between �0 and �, and �ii� nonphysical contribution of small vortex pairs to long-range phase
correlations. We resolve the paradoxes by explicitly relating �0 and � to canonical vortex-pair and phonon
variables.
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I. INTRODUCTION

Three decades ago, Kosterlitz and Thouless developed
an accurate renormalization-group description of what is
now called a Berezinskii-Kosterlitz-Thouless �BKT� transi-
tion1,2—a phase transitions in a wide class of two-dimen-
sional systems characterized by short-range interactions and
global U�1� symmetry. In accordance with the Mermin-
Wagner theorem,3,4 such systems cannot exhibit long-range
order at any finite temperature. Instead, the low-temperature
phase features divergent long-wave fluctuations resulting in a
power-law decay of phase correlations at large distances.1

Kosterlitz and Thouless revealed the importance of configu-
rations with pointlike topological defects or topological
charges, such as Coulomb charges in plasma, dislocations in
crystals, vortices in superfluid and spin systems, etc. At low
temperature, the defects exist only in the form a dilute gas of
bound pairs of opposite topological charges. At higher tem-
perature, pairs of large separation become more probable and
eventual pair dissociation at critical temperature destroys the
algebraic long-range order. Extensive theoretical work1,2,5–9

provides a complete quantitative description of critical prop-
erties in such systems. The theory is corroborated by com-
prehensive experimental studies of 4He films10–13 and super-
conducting Josephson arrays.14 Recent advances in the area
of ultra-cold gases have made it possible to render BKT tran-
sition in optical lattices.15

The Kosterlitz-Thouless �KT� theory starts with a generic
effective action2

A��� = K0� ����2d2r . �1�

For definiteness, we consider the case of a superfluid film, in
which the field ��r� has the meaning of the velocity poten-
tial v= �1/m��� �we set �=1�, and K0=n0 /2mT, where m is
the mass of a particle and n0 is the “bare” superfluid number
density obtained by averaging out microscopic fluctuations
up to some mesoscopic scale l0. Hence, n0�n0�l0�. The field
� is then split

� = �0 + � �2�

into a singular part �0, containing all the topological defects,
and a regular part �.

By definition, �0 satisfies the nonzero velocity circulation
condition

�
Cj

� �0�r�dr = 2�lj , �3�

where C j is a contour enclosing only the jth defect and lj are
integers, while �� is circulation-free. The next crucial step is
to require2

��0�r� = 0 �4�

�except for the isolated points of defects�. The standard mo-
tivation of Eq. �4� is that it guarantees that �0 minimizes the
action when ��0. The definitions of �0 and � thus become
unambiguous and, most importantly, the action takes the
form of two independent terms

A��� = A��0� + A��� . �5�

At this point, one conjectures that �0 and � correspond to
vortices and phonons �spin waves, etc.�, respectively. This
identification, which might seem to be quite natural—or at
least merely terminological and mathematically irrele-
vant—is not that innocent. If the two fields are not canonical
vortices and phonons, then one faces a problem of justifying
writing the partition function in the form2

Z �� exp	− A���
D�� exp	− A��0�
�
j=1

N

d2rj , �6�

where r j is the position of the jth defect and N is the number
of defects. This expression should also include the Jacobian
of the transformation from canonical variables. Remarkable
agreement between the Kosterlitz-Thouless theory and ex-
perimental data suggests that the Jacobian is unimportant,
but without explicitly demonstrating this fact the theory is
incomplete.

Apart from Jacobian, there is also an issue of peculiar
“collective” behavior of formally independent fields �0 and
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�. Asymptotic long-range phase correlations in a superfluid
are due to phonons. The corresponding action in terms of the
genuine phonon field �̃ is

A�̃ =
ns

2mT
� ���̃�2d2r , �7�

with ns the macroscopic superfluid density. Would � stand
for phonons, we were to identify its long-wave harmonics
with �̃. This, however, would imply n0�l0�=ns, which is defi-
nitely not the case since �0�0 at the length scale l0. This
paradox can be formulated as an observation that it is impos-
sible to renormalize the sound velocity by vortex pairs with-
out the phonon-vortex coupling. The only logical solution is
then that � is not a phonon field.

Another paradoxical circumstance is associated with in-
terpreting �0 as a purely vortex field. In a two-dimensional
�2D� superfluid, all vortices are bound in microscopic pairs
and one would not expect them to be directly observable in
long-range correlation properties. The only physical way for
vortex pairs to manifest themselves at the macroscopic scale
is to renormalize the superfluid density. However, the re-
quirement �4� implies that vortex pairs do contribute to the
long-range correlations. The way they do it reveals a con-
spiracy between �0 and �.5 Due to statistical independence
of the fields �0 and �, the one-particle density matrix at
large distances

	�r� � �exp�i��r� − i��0��
 �8�

factorizes: 	�r��
�0
�r�
��r�, where


�0
�r� = �exp�i�0�r� − i�0�0��
 , �9�


��r� = �exp�i��r� − i��0��
 . �10�

Remarkably, the independent correlation functions 
�0
and


� make no physical sense separately, since they both de-
pend on the bare superfluid density n0, but when the two are
combined in 	�r�, the parameter n0 drops out, and the density
matrix decays with the proper exponent mT /2�ns.

5

A rational explanation of this “secret agreement” between
�0 and � is that being mathematically independent, the two
fields are deeply connected physically. The above-mentioned
structure of the correlation function even suggests a qualita-
tive form of the connection: The long-wave part of the
vortex-pair field �0 actually belongs to phonons, not vorti-
ces.

In what follows, we trace the model �1� back to its dy-
namical Hamiltonian form and derive the canonical param-
etrization of vortices and phonons from that starting point. In
doing so, we utilize the formalism recently developed by two
of us,16 from which it is directly seen that the positions of
vortices 	r j
 and the field � are canonical variables only in
the limiting cases of incompressible fluid ���0� and vortex-
free environment ��0�0�, respectively. An explicit trans-
form from 	r j
 and ��r� to the canonical variables justifies
that the deviation of the Jacobian from unity is irrelevant in
the context of the KT theory. Our analysis allows us to re-
formulate KT theory in terms of canonical variables: vortex
pairs and genuine phonons, coupled to each other in the most

intuitive way: Vortex pairs interact with the long-wave fluc-
tuations of the velocity field precisely the same way they
interact with a homogeneous velocity field. This interaction
naturally accounts for the renormalization of the long-
wavelength-phonon stiffness and leads to the coarse-grained
effective action in the form of Eq. �7�. In complete agree-
ment with physical understanding of vortex pairs as essen-
tially local objects, we demonstrate that the far-field of �0�r�
belongs to phonons. Correspondingly, the long-range decay
of phase correlations is governed by the statistics of long-
wavelength phonons only, i.e., by the effective action �7�.

Putting aside the issue of the Jacobian and pior to the
discussion of the dynamic model, a purely statistical insight
into the problem can be obtained by constructing an alterna-
tive to ��0 ,�� set of variables. �For simplicity, below we
deal with only one vortex-antivortex pair; the generalization
to finite �but small� density of pairs is straightforward.� Con-
sider a vortex pair of separation R=r1−r2 located at the
point rp= �r1+r2� /2, where r1 and r2 are the positions of the
vortices with l1=1 and l2=−1, respectively. Introduce an
auxiliary field �0�r� such that it approaches �0�r� when
�r−rp � �R, and, in contrast to �0�r�, is regular at all dis-
tances. This definition fixes the dipole moment of the new
field

� r��0�r�d2r = 2��R � ẑ� , �11�

where ẑ is a unit vector along the z axis. Make a transforma-
tion

��r� = �̃�r� − �0�r� , �12�

which just shifts the field � by a regular �rp ,R�-dependent
field �0, and thus does not change the configurational vol-
ume: D�=D�̃. After this transformation, the long-range be-
havior of the density matrix is completely described in terms
of the filed �̃

	�r� � �exp�i�̃�r� − i�̃�0��
 . �13�

This simplification comes at a price: The vortex pair now
couples to �̃. The structure of the interaction term between
the pair and the long-wave harmonics of the field �̃ �such
that 
�R, where 
 is the characteristic wavelength� is most
transparent. It reads

Aint =
2�n0

mT
�R � ẑ� � �̃�rp

, �14�

i.e., the vortex pair interacts with the long-wave part of �̃
exactly the same way it would interact with a homogeneous
velocity flow �1/m�� �̃�rp

. One does not have to take this
interaction into account explicitly in the KT renormalization
group treatment, since its only relevant effect is to replace n0
with ns for phonons. �The effect of phonons on the statistics
of vortex pairs is negligibly small in the limit of R→�, as is
clear from a direct estimate, see also below.� There is little
doubt at this point that �̃ corresponds to genuine phonons
and one just needs to formally demonstrate this fact.

We start with Popov’s hydrodynamic Lagrangian,17
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L =� d2r�− n0�̇0 − ��̇ − ��̇0� − H , �15�

H =� d2r� n0

2m
����2 +

1

2�
�2 +

n0

2m
���0�2 + n0v0 · ��0� .

�16�

Here, the energy functional H has been expanded to the lead-
ing order with respect to small density fluctuations ��n0,
�0 and � are defined by Eqs. �3� and �4�, v0 is the velocity of
a global flow, and � is the compressibility. The typical vortex
core size �a0=�� /n0m is much smaller than any other
physical length scale.

If the term �d2r��̇0�T were absent, � and � would be
the canonical conjugate phonon variables, while

� d2rn0�̇0 = − 2�n0�
j

ljyjẋj , �17�

where �xj ,yj��r j, would imply that xj and yj are the canoni-
cal conjugate vortex variables. However, T is linear in the
time derivatives of xj and yj and also contains � making the
set of variables 	� ,�
, 	r j
 not canonical, and meaning that
H in these variables is not a Hamiltonian.

We are interested here only in the KT theory for the su-
perfluid phase in the vicinity of the transition, including the
critical point, where the concentration of vortex pairs of size
�R is much smaller than R−2 as R→�. Correspondingly, at
a phonon wavelength 
 only pairs with R�
 contribute to
the renormalization of the sound velocity. This allows us to
use the small parameter

R/
 � 1 �18�

for deriving canonical variables in the form of a regular per-
turbative expansion starting from the zeroth approximation
	� ,� ,r j
.16

It is straightforward to show that

T = �
j

2�lj�ẑ � �Q�r j��ṙ j , �19�

where Q�r� is defined by �Q�r�=��r�. We first switch to the
Fourier representation of 	� ,�


��r� = �
q

��q�/2V�eiqrcq + e−iqrcq
*� ,

��r� = − i�
q

�1/2V�q��eiqrcq − e−iqrcq
*� , �20�

where �q= ��n0 /�m�q and 	cq ,cq
*
 are resembling �and to the

zeroth approximation coincide with� the classical-field coun-
terparts of phonon creation and annihilation operators, and V
is the system volume. Let the vortex �l1=1� and the antivor-
tex �l2=−1� in a pair have coordinates r1=rp+R /2 and r2

=rp−R /2, respectively. Next, we expand Q�r j� in T into
series with respect to qR�1. The resulting terms are elimi-
nated by iteratively correcting the variables 	r j
, 	cq ,cq

*
 as
described in Ref. 16, so that the Lagrangian takes on the
canonical form

L = �
q

iċ̃qc̃q
* + 2�n0�

j

ljỹ jẋ̃ j − H	r̃ j, c̃q, c̃q
*
 , �21�

where r̃ j = �x̃j , ỹ j� and c̃q, c̃q
* are the Hamiltonian variables.

For our purposes we shall need only the leading correction,
which does not change the vortex variables

r j = r̃ j , �22�

and for the phonon variables, yields

cq = c̃q + 2��n0a0q

2V2

�qxR̃y − qyR̃x�
q2 eiqr̃p, �23�

where an equivalent set of vortex variables R̃= r̃1− r̃2, r̃p
= �r̃1+ r̃2� /2, is used. The Jacobian of the transformations
�22� and �23� equals unity. If higher-order �in � /n0�1 and
qR�1� terms are included in Eqs. �22� and �23�, the devia-
tion of the Jacobian from unity is of the order of �� /
n0��qR�. From now on we omit the tildes over the vortex
canonical variables in view of Eq. �22�.

The canonical phonon fields, �̃, �̃, are defined analo-
gously to Eq. �20�, with 	c̃q , c̃q

*
 replacing 	cq ,cq
*
. After sub-

stituting Eq. �23� for cq in Eq. �20� and taking the sum over
q the original variable � is expressed in terms of the canoni-
cal variables as

��r� = �̃�r� −
��r − rp�yRx − �r − rp�xRy�

�r − rp�2
. �24�

Now we note that at large distances from the vortex pair
�r−rp � �R, the field �0�r� is given by5

�0�r� =
��r − rp�yRx − �r − rp�xRy�

�r − rp�2
. �25�

Along with Eq. �24�, this implies that sufficiently far from
rp, �0�r� does not belong to the vortex-anti-vortex pair at all,
but is actually a part of the phonon field �̃.

After a standard algebra, the Hamiltonian assumes the
form

H = Hv + Hph + Hint1 + Hint2,

Hv =
2�n0

m
ln�R/l0� + 2Ec,

Hph =� d2r� n0

2m
���̃�2 +

1

2�
�̃2� ,

Hint1 = 2�n0�R � ẑ�v0,

Hint2 =�2�n0

m
�R � ẑ� � �̃�

rp

. �26�

This form is almost identical to the original effective action
in terms of R and � of Refs. 2 and 5–7. Besides the presence
of �, which is trivially integrated out in the partition func-
tion, the only distinctive feature of the Hamiltonian �26� is
the term Hint2, which couples the vortex dipole moment R to
the fluid velocity in the sound wave ���̃�rp

.
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Consider the thermodynamics of the system �26� near the
critical point Tc=�ns /2m. The coupling term Hint2 does not
change the statistics of vortices, since its typical value is
small, Hint2 /T�qR�1, whereas the contribution of Hv di-
verges logarithmically. Therefore, the superfluid density ns
= �1/mV��2F /��0�

2 �v0=0, �=x ,y, where F=−T ln Z, is given
by the Kosterlitz renormalization group flow.5 In contrast,
Hint2 is essential for the phonon statistics. Since its structure
is identical to the vortex coupling to the uniform flow, aver-
aging over R and rp straightforwardly leads to the coarse-
grained effective action for the long-wavelength phonons
governed by the renormalized stiffness Eq. �7�.

To summarize, we have shown that the simplicity of the
parametrization �2�–�4�—the statistical independence of the
fields �0 and �—comes at a price of the substantial lack of
its physical meaning, apart from the inconvenience of calcu-
lating off-diagonal correlators, where direct contribution of

vortex pairs has to be explicitly evaluated with the only goal
to replace bare superfluid density n0 with its renormalized
value. An alternative parametrization in terms of phonon
variables �or their XY equivalents� renders the Kosterlitz-
Thouless scheme even more mathematically simple and ac-
curate, while making it physically transparent. The vortex-
phonon interaction that appears in the effective Hamiltonian
does not lead to any complications, because the structure of
this interaction is exactly the same as that of the interaction
of vortex pairs with a homogeneous external flow and the
only effect of this interaction is to ensure that both phonons
and vortices are controlled by the renormalized superfluid
density.
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