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It is shown that the calculation of the magnetic moment of a Friedel-Anderson impurity in mean-field theory
is unreliable. A class of approximate solutions, which contains the mean-field solution as an element, is
expressed in rotated Hilbert space and optimized. The optimal state has considerably lower energy than the
mean-field solution and requires almost twice the Coulomb exchange U to become magnetic. Since most
moment calculations of magnetic impurities, for example the spin-density-functional theory, use the mean-field
approximation the resulting magnetic moments have to be critically reexamined.
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The properties of magnetic impurities in a metal is one of
the most intensively studied problems in solid state physics.
Although some of the experimental anomalies were already
discovered in the 1930s, it is still a subject of great interest.
The work of Friedel1 and Anderson2 laid the foundation to
understand why some transition metal impurities form a
magnetic local moment, while others do not. They consid-
ered a host with an s band in which a transition metal atom is
dissolved. The s electrons can hop onto the d impurity via
the hopping matrix element Vsd. The tenfold degeneracy of a
real d impurity is simplified and reduced to a twofold degen-
eracy for spin up and spin down. If both states are occupied
they repel each other due to the Coulomb exchange energy.
This yields the Friedel-Anderson Hamiltonian

HFA = �
�
��

�=1

N

��c��
* c�� + Edd�

*d� + �
�=1

N

Vsd����d�
*c��

+ c��
* d��� + Und+nd−. �1�

Here a finite s band with N states is used. The c��
* and the d�

*

are the creation operators of the �free� s electrons and the d
impurity. The d�

* states are assumed to be orthogonal to the s
states c�

* �in the following I denote single electron states by
their creation operator�.

In the limit of Vsd=0 and Ed��F ,Ed+U��F the d impu-
rity is magnetic. Anderson concluded that the magnetic mo-
ment survives for small but finite Vsd and derived the criteria
for a magnetic state and the size of the moment in a mean-
field approximation. He found a magnetic state if the product
of Ugd�1 where gd is the additional density of states of the
d resonance.

Kondo3 brought a new twist into the magnetic impurity
problem when he showed that multiple scattering of conduc-
tion electrons by a magnetic impurity yields a divergent con-
tribution to the resistance in perturbation theory. In the fol-
lowing three decades a large number of sophisticated
methods were applied to better understand and solve the
Kondo and Friedel-Anderson model, and it was shown that
at zero temperature a Friedel-Anderson impurity is in a non-

magnetic singlet state. However, above the Kondo tempera-
ture the impurity shows a magnetic moment, and there is
great interest in the size of this moment.

There is a large body of research in which the magnetic
moment of impurities is calculated.4–8 Generally spin-
density-functional theory �SDFT� is used for this task.
Within this theory the electronic structure of the host and the
impurity is calculated from first principles without any ad-
justable parameters. In particular the strength of the Cou-
lomb and exchange interaction are obtained from first prin-
ciples. However, in the final step the mean-field method is
applied to obtain the local magnetic moment. Although this
is a zero-temperature calculation �where the impurity should
be in the Kondo singlet state� it is generally argued that such
a calculation yields the magnetic moment above the Kondo
temperature �which, at lower temperatures, is hidden in the
singlet state�.

In this Brief Report I will show that the mean-field result
for the magnetic moment of impurities is not reliable. By
rewriting the mean-field solution in a rotated basis and opti-
mizing the solution I obtain solutions which are much lower
in energy, require a much larger critical U for the formation
of a moment, and yield smaller moments. And this despite
the fact that the improved solution has the same structure �in
the rotated basis� as the mean-field solution. Since there is a
large body of spin-density-functional theory calculations for
magnetic impurities, a reevaluation of this method might be
required.

I start with Anderson’s �potentially� magnetic state which
he obtained as a mean-field solution. Anderson replaced the
Hamiltonian HFA by

Hmf = HF+ + HF− − U�nd+	�nd−	 , �2�

HF� = ����c��
* c�� + �

�=1

N

Vsd����d�
*c�� + c��

* d�� + Ed,�d�
*d�,

�3�

where �nd+	 and �nd−	 are the average occupation numbers of
the states d+

* and d−
* and Ed,�= �Ed+U�nd,−�	�. The solution of

the mean-field method requires the diagonalization of two
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Friedel resonance Hamiltonians HF� with self-consistent val-
ues for �nd+	 and �nd−	. This straightforward numerical cal-
culation yields the mean-field ground state energy Emf and
the magnetic moment �mf. The energy of the bare magnetic
state Eb.m. is subtracted from Emf, where

Eb.m. = 2�
�=1

n

�� + Ed − �n �4�

is the ground state energy for Vsd=0 and Ed��F ,Ed+U
��F.

For the numerical calculation an s band with a constant
density of states is used, ranging from −1 to +1. This band is
divided into N=48 equal cells. Each s subband is half filled,
i.e., the number of occupied states in each spin subband is
n=N /2. In Fig. 1 the numerical results for Emf −Eb.m. are
plotted for 
Vsd
2=0.05. The Coulomb repulsion U is varied
between 0.2 and 1.2. Together with the Coulomb repulsion
the d*-state energy Ed is varied so that Ed and �Ed+U� lie
symmetrically about the Fermi energy, i.e., Ed=− 1

2U.
In the mean-field calculation the impurity is nonmagnetic

for U�Ucr�0.275. For U�Ucr the spin up and down sub-
bands split. The resulting magnetic moments are plotted in
Fig. 2 �curve with circles�.

Since the mean-field solution is the product of two
n-electron states of the two Friedel Hamiltonians FF+ and
HF− we consider these solutions of the Friedel Hamiltonian
�3� in some detail. As shown in Refs. 9 and 10 the exact
ground state of HF with n �spinless� electrons can be written
in the form

	F = �A�a0
* + B�d*��

i=1

n−1

ai
*
0. �5�

Here 
0 is the vacuum state and a0
* is a sister state to d*

which is built from the states of the s band

a0
* = �

�=1

N

��
0c�

*. �6�

Reference 10 shows how to calculate the coefficients ��
0

from the parameters of the Hamiltonian HF and the occupa-
tion number n. The ai

* are orthogonal to a0
* and to each other

and their �N−1� submatrix of the s band Hamiltonian H0

=���n� is diagonal �see Eq. �8��. The states ai
* are uniquely

determined from the state a0
*. Their form is

ai
* = �

�=1

N

��
i c�

*. �7�

The ai
* �1� i�N−1� together with a0

* represent an alterna-
tive basis.

In this alternative basis the free electron Hamiltonian H0
=��=1

N ��c�
*c� takes the form

H0 = �
i=1

N−1

E�i�ai
*ai + E�0�a0

*a0 + �
i=1

N−1

Vfr
a �i��a0

*ai + ai
*a0� .

�8�

In the Hamiltonian �8� the a0
*-state represents an artificial

resonance state. I will call it in honor of Friedel an artificial
Friedel resonance state �AFR state�. It is a sister state to the
state d*.

The full �spin independent� Friedel Hamiltonian can be
written as

HF = �
i=1

N−1

E�i�ai
*ai + E�0�a0

*a0 + Edd*d + Vsd
a �0��d*a0 + a0

*d�

+ �
i=1

N−1

Vsd
a �i��d*ai + ai

*d� + �
i=1

N−1

Vfr
a �i��a0

*ai + ai
*a0� , �9�

where

E�i� = �
�

��
i ����

i ,

FIG. 1. A comparison between the ground-state energies of the
mean-field calculation and the AFR method �see text below�.

FIG. 2. The magnetic moment as a function of the Coulomb
energy U, using the mean-field solution and the AFR method of the
present calculation.
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E�0� = �
�

��
0����

0,

Vsd
a �i� = �

�

Vsd�����
i ,

Vfr
a �i� = �

�

��
i ����

0. �10�

In the Hamiltonian �9� the d* state and the localized a0
*

state are on equal footing. The second line in Eq. �9� yields
the hopping between ai

* and d* �first term� and ai
* and a0

*

�second term�. For the state �A�a0
*+B�d*� the individual hop-

ping matrix elements cancel each other, making 	Fr the
ground state.

In the next step the mean-field solution is rewritten in the
AFR form of the Friedel ground state. Since the Hamiltonian
consists of a Friedel Hamiltonian for each spin the mean-
field state is the product of two states of the form of Eq. �5�.
Therefore this mean-field state �the exact solution of the
mean-field Hamiltonian� can be written as

	0 = �A−a0−
* + B−d−

*��A+a0+
* + B+d+

*� �
�,i=1

n−1

ai�
* 
0

= �Aa0−
* a0+

* + Bd−
*a0+

* + Ca0−
* d+

* + Dd−
*d+

*� �
�,i=1

n−1

ai�
* 
0

= A	A + B	B + C	C + D	D, �11�

where

A+
2 + B+

2 = 1, A−
2 + B−

2 = 1,

A = A+A−, B = A+B−,

C = A−B+, D = B+B−. �12�

Each of the four states 	A, 	B, 	C, and 	D is normalized,
and they are all orthogonal to each other. In the magnetic
solution one has A+�A− and B+�B−. Also the two rotated
bases 
a0+

* ,ai+
* � and 
a0−

* ,ai−
* � are different in the magnetic

state.
So far the many electron state in Eq. �5� is identical to

the mean-field solution. This state consists of an electron
background ��,i=1

n−1 ai�
* 
0 multiplied with the sum of four

two-electron states, consisting of the combinations
�a0−

* a0+
* ,d−

*a0+
* ,a0−

* d+
* ,d−

*d+
*� which have Sz=0. The mean-

field wave function opens an interesting playing field for
variation to find the optimal state. One can optimize the co-
efficients A, B, C, and D while dropping the individual nor-
malization conditions �12� and replacing them by

A2 + B2 + C2 + D2 = 1. �13�

Far more important one can optimize the states a0+ and a0−.
For this purpose the Hamiltonian HFA is expressed in the

bases 
a0+
* ,ai+

* � and 
a0−
* ,ai−

* �. One obtains for the expectation
value of the ground-state energy E0

E0 = A2�E−�0� + E+�0�� + B2�E−�0� + Ed� + C2�E+�0� + Ed�

+ D2�2Ed + U� + 2�AB + CD�Vsd
− �0� + 2�AC

+ BD�Vsd
+ �0� + �

�,i=1

n−1

E��i� . �14�

For a given set of states 
a0±
* ,ai±

* � the energy E0 in Eq.
�14� depends on the coefficients A, B, C, and D. One obtains
the lowest energy by varying E0 with respect to these coef-
ficients. This yields a 4
4 matrix for the coefficients vector
�A ,B ,C ,D�. The lowest eigenvalue gives the energy expec-
tation value, and its eigenvector gives the coefficients. The
resulting state I denote as the magnetic state 	AFR and the
solution as the AFR solution.

The central part of the numerical calculation is the varia-
tion of the states a0+

* and a0−
* until the absolute minimum of

the energy is reached.
As in the mean-field theory the numerical calculation it-

self determines whether the lowest state possesses a mag-
netic moment or not. If the solution is magnetic then a0+

* and
a0−

* approach different states and the coefficients B and C
have different values. The resulting magnetic moment is de-
fined as the difference in the occupation of the d+

* and d−
*

states, i.e., �=B2−C2.
In Fig. 1 the energy expectation value E0 of the optimal

magnetic state 	AFR is plotted as the curve with the triangles
�again the same energy Eb.m. has been subtracted�. The new
ground-state energy lies considerably below the mean-field
energy.

In Fig. 2 the resulting magnetic moments that one obtains
with the mean-field approximation and with the new method
are plotted. One recognizes that the new solution suppresses
the magnetic moment up to a considerably larger value of
Ucr�0.46. This is almost twice the value of the mean-field
theory.

How do we have to interpret the fact that the AFR solu-
tion suppresses the magnetic moment up to a much larger
critical Coulomb exchange interaction? Since this state has a
lower energy expectation value, does this mean that its mag-
netic moment is more reliable? The author prefers a some-
what different interpretation. The Friedel-Anderson impurity
does not like a broken symmetry. The mean-field approach
does not give the multielectron state any wiggling room.
Only the values for Ed,� can be altered with increasing U.
The AFR solution on the other hand possesses a lot more
flexibility since the AFR states can adjust. Therefore the
symmetric multielectron state survives to a considerably
larger Coulomb exchange interaction. It might be that neither
state yields the right magnetic moment for the impurity. The
present calculation raises serious questions about the mean-
field approach. This might also apply to the spin-density-
functional theory �SDFT� for magnetic impurities. This
theory is a very complex theory and it is difficult to judge
from the outside all the intricacies. It should yield the correct
charge and spin densities for the correct functional. But in
the final step the majority of SDFT calculations use a two-
spin-fluid model where each electron fluid adjusts in the
�mean� field of the other.

To conclude, in this paper an approximate solution for the
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Friedel-Anderson impurity is expressed in a rotated Hilbert
space 
a0±

* ,ai±
* �. Its center piece are two artificial resonance

states a0+
* ,a0−

* for the spin up and down s electrons. They
determine uniquely the remaining bases 
ai+

* � , 
ai−
* �. The AFR

states are combined with the d-electrons for spin up and
down d+

* ,d−
* into two-electron states of total Sz=0, i.e.,

�Aa0−
* a0+

* +Bd−
*a0+

* +Ca0−
* d+

* +Dd−
*d+

*�. Then the �n−1� lowest
states of the two �N−1� bases 
ai±

* � are occupied yielding the
s-electron background �i=1,�

n−1 ai�
* 
0. The compositions of the

AFR states a0+
* ,a0−

* are calculated by numerical variation
which rotates the s-electron bases in Hilbert space.

The energy of the resulting state lies clearly below the
mean-field solution. The critical value of the Coulomb ex-
change energy Ucr for the formation of a magnetic moment is
almost twice as large as in the mean-field solution. Since in
many calculations of the magnetic moment of impurities the
mean-field approximation is used one has to reevaluate the
resulting moments. This may also apply to the impurity cal-

culations which use the spin-density-functional theory be-
cause in the majority of these calculations the mean-field
theory is used in the final analysis.

Since the ground state of the Friedel-Anderson impurity is
a singlet state one might suspect that the structure of the new
solution with the lower energy and smaller magnetic moment
is somewhat closer to the singlet state than the mean-field
solution. This is not the case. Both the mean-field and the
present solution are in a symmetric state for small U; both
show a similar asymmetry between spin up and down in the
magnetic state. The mean-field solution belongs to the same
class of wave functions as presented here �which are given
by the general form of Eq. �11��.
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