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Experimental determination of the nonextensive entropic parameter ¢
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We show how to extract the ¢ parameter from experimental data, considering an inhomogeneous magnetic
system composed by many Maxwell-Boltzmann homogeneous parts, which after integration over the whole
system recover the Tsallis nonextensivity. Analyzing the cluster distribution of Lag;Sry3;MnO; manganite,
obtained through scanning tunneling spectroscopy, we measure the g parameter and predict the bulk magne-
tization with good accuracy. The connection between the Griffiths phase and nonextensivity is also considered.
We conclude that the entropic parameter embodies information about the dynamics, the key role to describe

complex systems.

DOLI: 10.1103/PhysRevB.73.092401

It is widely accepted that the statistical description of a
system should be based on its dynamics; however, it is an
information that indeed does not lie in the Boltzmann en-
tropy. This fact opens a path for new and different statistics
other than the Boltzmann one. In this direction, Tsallis ther-
mostatistics has been strongly used in a number of different
contexts.! This framework is applicable to systems which,
broadly speaking, present at least one of the following prop-
erties: (i) long-range interactions, (ii) long-time memory, (iii)
fractality, and (iv) intrinsic inhomogeneity.!> Manganese ox-
ides, or simply manganites, seem to embody three out of
these four ingredients: they present Coulomb long-range
interactions,>™ clusters with fractal shapes,6’7 and intrinsic
inhomogeneity.*®!! Indeed, a sequence of previous
publications'>"'* has shown that the magnetic properties of
manganites can be properly described within a mean-field
approximation using Tsallis statistics.

In the present Brief Report, through an analogy to the
works of Beck!® and Beck and Cohen,'® we consider an in-
homogeneous magnetic system composed by many homoge-
neous parts with different sizes, each one of them described
by the Maxwell-Boltzmann statistics. By averaging the mag-
netization over the whole system, we recover the Tsallis non-
extensivity. From this point of view, an analytical relation-
ship between the g parameter and the moments of the
distribution was obtained. The robustness of the present
model was tested using scanning tunneling spectroscopy
(STS) conductance maps, where the ¢ parameter could be
obtained and, consequently, the bulk magnetization pre-
dicted. In order to strengthen the connections between inho-
mogeneity and nonextensivity, it is shown that the descrip-
tion of manganites using Griffiths phase!”"!% is related to the
nonextensive treatment, which contains the dynamics of the
system.

We start considering a magnetic system formed by small
regions, or clusters of Maxwell-Boltzmann bits, each of them
with magnetization M given by the simple Langevin
function.'® The clusters are distributed in size, and therefore
in their net magnetic moment. Thus let f(u) be the distribu-
tion of magnetic moment of the clusters. The average mag-
netization of the sample will be given by
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(M) =J Mf(pw)du. (1)
0

Our goal is to connect the above expression to the nonex-
tensive magnetization that is calculated in Refs. 14 and 20:

1
M, = (ZIijq) [cothq xX— )_c] , (2)
where x=pu, H/KT, coth, is the generalized g-hyperbolic
cotangent,?! ¢ € Re is the Tsallis entropic parameter, and u,,
means the magnetic moment of each nonextensive cluster.
The nonextensive correlations lie inside each cluster,
whereas the interactions interclusters remain extensive. This
guarantees that the total magnetization will be additive.'*

Microscopic analysis. From Egs. (1) and (2), the average
and nonextensive magnetic susceptibilities can be derived:
(x)=(u?)/3kT and quq,uie/ 3kT, as well as the saturation
values of the magnetization: (M);,=(u) and M, g,
=M,/ (2—¢q). Thus, equating those limits ((x)=x, and
(M)=M ), we find a microscopic analytical expression
to the g parameter, in the sense that it is related to micro-
scopic information (distribution of magnetic moments):

2 )
q2-q) ( 3)
where () and (u?) are the first and second moments of the
distribution f(u), respectively. This result is valid for any
f(w), and is analogous to that obtained by Beck!> and Beck
and Cohen'® in other contexts.

Macroscopic analysis. From Eq. (2) we can obtain a mac-
roscopic analytical expression for the g parameter (similarly
to what was done in Ref. 14), in the sense that it is now
related to macroscopic quantities:

3kTx
ME

sat

q(2-q)’= (4)

where x and M, are the experimental magnetic susceptibil-
ity and saturation value, respectively. Note that for an ho-
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FIG. 1. (a) Scanning tunneling spectroscopy images on

Lag 7Sr53Mn0O3/MgO manganite thin film, after Becker et al. Ref.
9. White regions mean conducting (ferromagnetic) clusters and the
black regions stand for insulating (paramagnetic) phase. The main
graphic is the cluster size distribution of the image at 278 K, pro-
portional to the cluster magnetic moment distribution, where, using
Eq. (5), g=2.95 could be directly obtained. (b) Using the mean-field
(reduced) generalized magnetization [Eq. (2): + symbol], we could
predict the bulk magnetization, in a satisfactory agreement with the
measured one (O symbol), in a reduced scale M/ M (18 K) Ref. 9.

mogenous superparamagnetic-like system, g=1.

Experimental connection with the microscopic analysis.
The colossal magnetoresistance (CMR) effect,® usually ob-
served on manganites, has been explained in terms of intrin-
sic inhomogeneities,®®° which lead to the formation of insu-
lating and conducting domains within a single sample, i.e.,
electronic phase separation in a chemically homogeneous
sample. The inhomogeneities alter the local electronic and
magnetic properties of the sample and should therefore be
visible via STS??>2 or magnetic force microscopy
(MFM).24’25

Becker and co-workers’ measured STS in a
Lay7Srg3MnO5;/MgO thin film and visualized a domain
structure of conducting (ferromagnetic) and insulating (para-
magnetic) regions with nanometric size. This manganite has
a transition from a metallic phase (below T) to an insulating
phase (above T.), with a strong phase coexistence/
competition around 7 -~ 330 K. The STS conductance maps
obtained by those authors at 87, 150, and 278 K are repro-
duced in Fig. 1(a). From these 1-bit images (black regions
mean insulating/paramagentic phase and white regions stand
for conducting/ferromagnetic phase), we have determined
the distribution of clusters size. Considering that the cluster
size ¢, measured in pixels, is proportional to the magnetic

PHYSICAL REVIEW B 73, 092401 (2006)

moment w of the cluster, Eq. (3) can be rewritten as

(@ ()

The conductance map at 278 K has a distribution of clusters
as presented in Fig. 1(a), and, using Eq. (5), we obtain from
the data ¢g=2.95.

With this value of ¢, the total magnetization of the system
can be predicted by considering the mean-field approxima-
tion into the generalized magnetization [Eq. (2)], where x
=3m, /1, my=M ] fre, 1=T/T, and T'=298 K (Ref. 12)
(see Refs. 12 and 14 for details concerning the mean-field
approximation applied to the nonextensive magnetization).
This procedure results in a satisfactory agreement between
the predicted reduced magnetization (1,=0.25) and the ex-
perimental one, obtained measuring the bulk magnetization,’
as presented in Fig. 1(b). The images at 87 and 150 K were
not analyzed, since the clusters have already percolated.

The procedure described above shows how to extract the
q parameter from experimental data and then how to apply
the obtained ¢ parameter to predict macroscopic quantities of
the system. In addition, these results exemplify the relation
between nonextensivity and microscopic inhomogeneities.
Finally, it is important to stress that ¢ is related to the dy-
namics of the system, since it measures the distribution of
magnetic moments, that contains the dynamics.

Experimental connections with the macroscopic analysis.
Prj 05Cap9sMnO; (T-=110 K), LaMnO; (T-=138 K), and
Lay;,CagsMnO; (T-=225K) are interesting examples of
manganites. The inverse susceptibility as a function of tem-
perature presents a strong downturn around 7. These
samples were prepared and measured as reported in Refs. 26
and 27, except the La-Ca manganite, where the experimental
susceptibility was reproduced from Ref. 18.

The lower panels of Fig. 2 (0 symbols) present the g
parameter obtained from the macroscopic analysis; using Eq.
(4), the measured magnetic susceptibility (experimental data
presented in the upper panels of Fig. 2) and the magnetic
saturation value for the above cited manganites (Pr-
manganite: 8.9 emu/g and La-manganite: 8.5 emu/g). This
procedure was not done for the La-Ca manganite, since Ref.
18 does not provide the corresponding absolute values for
the magnetic susceptibility.

Connections with Griffiths phase. An extensive number of
papers Refs. 28-32, and references therein, deal with the
dynamics of random magnetic systems, with special atten-
tion for a diluted Ising ferromagnet. The systems of interest
are obtained by starting with an ordinary Ising model, which
contains spins located on the vertices of a regular lattice. For
a bond dilution, the nearest-neighbor interactions J;; are in-
dependent random variables taking the values J and O with
probabilities p and 1-p, respectively. For a site dilution,
Jij=Jcic;, where ¢; ;=1 or 0, with probabilities p and 1-p,
respectively. This diluted ferromagnet is in the Griffiths
phase!7-18:39-32 if jts temperature is between the critical tem-
perature T(p) and the critical temperature Tg=Tc(1) of a
pure/nondiluted system. In Fig. 3, the dilution p-temperature
T plane sketches this scenario.

q(2-q)*. (5)
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Salamon and co-workers!”!8 have used the idea of Grif-
fiths singularity to study manganites, considering a distribu-
tion of the inverse magnetic susceptibility \:
AN exp(- A/N)

I'(c-1,A/T)

fN) = (6)

to explain the sharp downturn in the (x)~'(7) curve (behavior
usually observed in manganites, as displayed in the upper
panels of Fig. 2). In the expression above, ¢ is a parameter of
the distribution, I' stands for the incomplete Gamma func-

tion, and
( T )2(1—B)
— -1
Tc

VAV )
(-7
Tg

A=a

where a is a free parameter, $=0.38 is a critical exponent for
the pure system, assumed to be three-dimensional
Heisenberg-like, and T; is the Griffiths temperature.!718.30-32
From Eq. (6) one can find the inverse
susceptibility:33

average

(o =ate LD ®)
(c,AIT)
that fits the strong downturn usually found on manganites.
The Curie law y=u?/3kT of a small Maxwell-Boltzmann
region tells us that inhomogeneities in x can arise from dis-
tributions of either w or T (or both). Thus we can obtain from
Eq. (6) a corresponding distribution of magnetic moments:

f(lu) ) (i)c—l 2M26—3 ( A,LLZ)

— | -ZE 9
37) T(c-1.Am) SP\7 37 ©

and, consequently, the g parameter:

) T(AMT(c-1LAIT) i
(@ Te—tnamy "d@-a7 (0

This result shows that, since (u) and (u”) are both tempera-
ture dependent, one can expect that g will also be
T-dependent. This is expected, since the distribution of mag-
netic moments changes as a function of temperature, chang-
ing also the ¢ parameter. Indeed, it can be observed in the
STS images presented in Fig. 1(a), reinforcing the idea that ¢
is related to the dynamics of the system.
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FIG. 3. Connections between Griffiths phase and nonextensivity,
in a g-p-T space. p-T plane: usual magnetic phase diagram for a
site/bond  diluted magnetic system, where SPM is the
superparamagnetic-like phase, PM the paramagnetic phase, FM the
ferromagnetic phase, and Gr the Griffiths phase. This plane contains
the critical temperature T and dilution p, basic (and static) infor-
mation about the system. The ¢-T plane contains information re-
lated to the dynamics of the system, through Eq. (10). See text for
details.
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From the above, one can write the nonextensive magnetic
susceptibility:

_ e _ 4= X’ W) _

1
Xe= 3kt KT sir =X (1)

that is equal to the average one. It is important to note that,
once we know f(w), the value of ¢ can be directly obtained,
and, consequently, x,. The present approach, as well as those
presented previously, does not consider the entropic index ¢
as a fitting parameter, but as a known quantity, previously
determined and directly related to the inhomogeneity and
dynamics of the system.

The model described above [Eq. (11)] is presented in the
upper panels of Fig. 2. To obtain those results, the distribu-
tion of magnetic moments f(u) presented in Eq. (9) has the
following parameters: c¢=-0.04, @=0.002 K, and T,
=510 K, for Pr;;5Cag 9sMnO5; ¢=0.01, a=4.7 X 108 K, and
T;=555 K, for LaMnOs; and ¢=0.32, a=0.066 K, and T
=335 K, for Lay;Cay;MnO;. These parameters for the
La-Ca manganite are considerable different from those pre-
sented in Ref. 18, due to the remarkable difference between
the fit presented by those authors and that one sketched in
Fig. 2. The entropic index ¢ (lower panels of Fig. 2) is not a
free parameter and could be obtained a priori, using Egs. (3)
and (9). It is important to stress the agreement between the
measured q parameter using the macroscopic analysis and
the present approach.

The connection between Griffiths phase and nonextensiv-
ity can be visualized considering the ¢ parameter as another
dimension; an independent variable in a ¢-p-T space, as
sketched in Fig. 3. Analogously to the Curie temperature, a
dilution p characterizes a diluted magnetic system, since
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these (static) quantities are unique for a certain system. If we
know only p and T(p), it is not possible to achieve the
dynamics of this diluted magnetic system. For instance,
given a dilution p, and consequently a Curie temperature
To(p), there are ( p[\,/\,) different ways to dispose these spins,
considering a site dilution problem with N available posi-
tions in the lattice. Different distributions of spins imply dif-
ferent dynamics and, consequently, different macroscopic
quantities, like magnetization. In this sense, these quantities
[p and T(p)] are static. On the other hand, the results pre-
sented in this Brief Report shown how the g parameter is
related to the dynamics of the system and, once known ¢, the
dynamics is consequently determined. Thus we propose that
the p-T plane at g=1 is a static plane, whereas the ¢-T plane
[Eq. (10)], for a certain value of p [or T(p)] takes account
the dynamics of the system.

Summarizing, in the present Brief Report we have shown
that the g parameter measures the inhomogeneity and dy-
namics of a given inhomogeneous magnetic system. From
the measured ¢, obtained from scanning tunneling spectros-
copy on manganites (a microscopic information), one can
predict a thermodynamic quantity, the bulk magnetization (a
macroscopic information); the entropic parameter contains
the dynamics, connecting the microscopic and macroscopic
information. The present model was also successfully ap-
plied to other manganites (bulk and thin films) and melt-spun
granular alloys, reinforcing the conclusions made.
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