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Soft and hard boundary effects on the flaw in self-healing capabilities of the nanoscale copper clusters and
biomaterials have been studied using molecular dynamics simulations as well as the theoretical analyses. When
the copper nanocluster size decreases to a compatible magnitude to its flaw, different boundary conditions
change the flaw self-healing capability and lead to different dislocation generation and atom rearrangement
after the copper nanocluster is healed. The theoretical predictions for the copper nanocluster are in good
agreement with the molecular dynamics simulations. Further theoretical investigations demonstrate that the
mineral layer in biomaterials possess a high flaw self-healing capability because of the nanometer scale and
natural soft boundaries caused by the stacking protein and aragonite layered structures.
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I. INTRODUCTION

Since the last decade with the rapid development of nano-
technology and nanoscience, people have devoted time to
fabricate and synthesize artificial nanoscale materials such as
nanowires, nanotubes, nanodots, and nanoclusters.1–4 But
when size goes down to nanoscale, the surface and boundary
effects become significant in these nanoscale materials.
Many superior physical, electronic, and mechanical proper-
ties are discovered due to the strong size and boundary ef-
fects, which have great potential applications in many
fields.5–10 On the other hand, living organisms produce
nature-evolved nanoscale materials with physical properties
that still surpass those of analogous synthetic materials with
similar phase compositions.11–15 Well known examples in-
clude tooth, bone, and mollusk shells, which exhibit soft
�protein� and hard �mineral� laminated structures with a
thickness from a few nanometers to hundreds of
nanometers.16–26 In biomaterials, such as the abalone shell,
the interactions between the mineral and protein layers pro-
duce the hard and soft boundary effects on each material,
respectively, because of their great difference in elastic
modulus.

Various kinds of defects such as flaw and crack have in-
evitably existed in those nanoscale materials and influence
their properties and structures, whereas materials have the
capability to repair their flaws. Presented under the proper
condition, the flaw or crack will heal automatically.27,28 But
at nanoscale, the stability of a flaw may be quite different
from the macroscopic scale and the strong boundary effects
may change the flaws self-healing capability. Unfortunately,
the boundary effects on flaws self-healing in nanoscale ma-
terials were seldom considered in the previous studies.

In our study, we chose the copper �Cu� nanocluster as an
example of nanoscale material. Molecular dynamics �MD�
simulations show that the free and rigid boundaries applied
on the surfaces of the Cu nanoclusters yield a significantly
different self-healing capability for the same defected struc-
tures. The self-healing process can be seen as the adhesion
and bonding of two surfaces of the flaw. We have therefore

developed the theoretical procedure presented by Yu and
Suo27 under the free, rigid displacement boundary condi-
tions. The obtained theoretical predictions agree well with
our MD results. Furthermore, the theoretical model has been
used to investigate the boundary effects on the nanoscale
biomaterials. It is found that the stacking protein and arago-
nite layered structures in biomaterials provide a high flaw
self-healing capability for the mineral layers.

II. MD SIMULATIONS

The molecular dynamics technique, which is based on
Newton’ law, has been employed to study the flaws of self-
healing of the Cu nanocluster because it is a powerful tool
and widely used in nanoscale science. In our simulations, the
empirical embedded atom method �EAM� potential,29 param-
etrized for the copper atom, is used to describe the interac-
tions between Cu atoms. The time step of the MD simula-
tions is chosen to be 1 fs and the Nose-Hoover thermostat is
used to control the temperature.

First, a 7100-atom Cu nanocluster has been set up and a
cleavagelike flaw is introduced by removing two rows of
atoms, as shown in Fig. 1�a�. The length, height, and width
of the nanocluster are 9.04, 5.24, and 1.81 nm, respectively.
Free and rigid boundary conditions are applied to the nano-
clusters top and bottom surfaces. After a relaxation of 100 ps
at 300 K, the cleavage is closed completely under both free
and rigid boundaries, and one and two dislocations are gen-
erated in the clusters, respectively, which are denoted in Fig.
1�a�. Then we introduce the same cleavagelike flaw and
boundary conditions to a smaller 3100-atom Cu nanocluster.
The width and length of this cluster are the same as that of
the 7100-atom cluster, but the height deceases to 2.53 nm
and the corresponding L /h increases to 5.71. Under free
boundaries, the flaw is healed after relaxing for 100 ps at
300 K, as shown in Fig. 1�b�. But for the case of rigid
boundary conditions, the same flaw still remains in the clus-
ter after 100 ps. Different from the free boundaries, increas-
ing the L /h of the nanocluster under rigid boundaries the
cleavagelike flaw becomes more difficult to be healed.
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Under the free boundaries, we have shown a larger flaw
by removing three rows of atoms into the same nanocluster
as shown in Fig. 1�a�. After a relaxation of 100 ps at 300 K,
no flaw self-healing process is observed. But for the smaller
nanocluster shown in Fig. 1�b�, the same flaw is healed after
100 ps, as shown in Fig. 2. It is then interesting to note that
the copper nanocluster has a higher flaw self-healing capa-
bility under the free boundaries when its size decreases to a
compatible magnitude to the flaw length.

The effect of the temperature is studied by the MD simu-
lations as well. For the 3100-atom Cu nanocluster under
rigid boundary conditions, no self-healing is observed for the
cleavagelike flaw at 300 K. However, when the system is
heated to 800 K, the self-healing occurs and the defected
structure is repaired. This means that increasing the tempera-
ture to a proper magnitude can improve the flaw self-healing
capability under both free and rigid boundary conditions.

To investigate the effects of boundary conditions on the
healing mechanism, we have calculated the potential energy
of each atom for the healed nanoclusters, and the correspond-
ing total energy distributions are plotted in Fig. 3. Under the
free boundaries, the healed 7100-atom nanocluster is de-
formed to fill the vacancy of the removed atoms and there is
a dislocation formed at the end of the flaw, which causes a
high-energy region �red color� inside the cluster. However,
applying the rigid boundaries, two obvious high-energy re-
gions are found within the healed 7100-atom nanocluster, as
shown in Fig. 3�b�. This is because the rigid boundaries re-
strict the movement of the copper atoms and produce more
dislocations and stress concentration regions. For the smaller
3100-atom nanocluster, the whole structure is fully released,
as shown in Fig. 3�c�, and no high-energy region or stress
concentration appears.

Associating with past researches, the flaw self-healing is
actually a competition process of elastic energy and surface
energy, and this can be described by the continuum mechan-
ics. Theory analysis, therefore, should be a good tool to ex-
plain and guide the molecular dynamics simulations. In the
following section, we develop the procedure presented by Yu
and Suo27 to solve the flaws self-healing for different bound-
ary conditions and compare it with our molecular dynamics
simulations.

III. THEORETICAL CONTINUUM MECHANICAL MODEL

According to Yu and Suo’s theoretical model,27 we as-
sume that a material is divided into two individual parts
along the flaw region: part one has Young’s modulus E1,
Possion’s ratio �1, and thickness t1 and part two with the
corresponding values of E2, �2, and t2. Figure 4 sketches a
cross section of the flaw location, where the flaw has two
surfaces belonging to the relevant parts, respectively. The
solid curves represent the surfaces before bonding with the
sinusoidal gap of flaw length L and amplitude 2H in the x
direction. In the y direction, the flaw has the same sinusoidal

FIG. 1. �Color online� MD snapshots of a copper nanocluster
with a cleavage created by removing two row atoms at 300 K under
free and rigid boundary conditions for �a� L /h=2.67, L /LC=4 and
�b� L /h=5.71, L /LC=4. The cross sections in the height directions
include 30 and 14 rows of copper atoms for �a� and �b�, respec-
tively. The green atoms shown in the right figures are fixed in the
three directions.

FIG. 2. �Color online� MD snapshots of 2400 atom copper nano-
cluster with a cleavage created by removing three row atoms at
300 K under a free boundary condition, L /h=2.67 and L /LC=4.

FIG. 3. �Color online� Total potential energy distribution of �a�
the 7100-atom cluster under free boundary conditions, �b� the 7100-
atom cluster under rigid boundary conditions, and �c� the 3100-
atom cluster under free boundary conditions after 100 ps relax-
ations at 300 K. Blue, red, yellow, green, and cyan colors indicate
the potential energy from higher to lower. Boundary atoms possess
the highest potential energy, which is emphasized by the blue color.
The arrows denote the dislocations.
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shape and amplitude. The dashed curve represents the as-
suming interface between the two parts. The attractive inter-
atomic force between the two surfaces can lead to the full
bonding and adhesion of the flaw, which effect of force can
be represented by surface energies. Let �1 and �2 be the
surface energies of the two parts of flaw before bonding, and
�12 be the interface energy after bonding. According to the
Dupre work of adhesion27

� = �1 + �2 − �12, �1�

the necessary condition for the two surfaces of the flaw to
adhere and heal is ��0.

The ratio H /L is taken to be so small that the linear elas-
ticity theory applies. Let �u ,v ,w� be the displacement com-
ponent in the �x ,y ,z� directions, respectively, which obey the
Navier equation

�1 − 2v�ui,ij + uj,ji = 0. �2�

The stresses, �ij, relate to the displacements as

�ij =
E

1 + v
�1

2
�ui,j + uj,i� +

v
1 − 2v

uk,k�ij� . �3�

To accommodate the sinusoidal gap, the displacement
field is expected to take the form27

u = sin�kx� cos�ky�f�kz� ,

v = cos�kx� sin�ky�f�kz� ,

w = w0 + cos�kx� cos�ky�g�kz� , �4�

where k=2	 /L, and w0 represents a rigid-body translation.
The coordinates x, y are in the range of 0
x, y
L. The
functions f and g are determined by substituting Eq. �4� with
Eq. �2�, giving

�1 − 2v�f� − 4�1 − v�f − g� = 0,

�1 − v�g� − �1 − 2v�g − f� = 0. �5�

These are ordinary differential equations of constant coeffi-
cients, to which the solution is

f�kz� = �a1 + a2kz�e�2kz + �a3 + a4kz�e−�2kz,

g�kz� = �− �2a1 + �3 − 4v − �2kz�a2�e�2kz

+ ��2a3 + �3 − 4v + �2kz�a4�e−�2kz. �6�

The coefficients ai are to be determined by boundary condi-
tions.

We apply the solution �6� to part one under two different
boundary conditions �BC�; the first is free boundary condi-
tion �BC1�,27 which includes four items: �i� on the free sur-
face �z= t1� the normal stress vanishes, namely �zz=0, �ii� on
the free surface �z= t1� the shear stress vanishes, �zx=0, �iii�
after the flaw is healed and the two parts adhere into one
interface, on the interface �z=0�, the shear stress vanishes
�zx=0, and �iv� on the interface �z=0� the vertical displace-
ment of part one is

w1 = −
H1

2
�1 + cos�kx� cos�ky�� . �7�

The constant H1 is the amplitude of the normal surface dis-
placement of part one. Here we use BC1 denoting the free
boundary conditions and other boundary conditions are de-
noted like this as well. The second boundary condition �BC2�
applied is a rigid boundary. The items �iii� and �iv� in the
rigid boundary conditions are the same as that of the free
boundary conditions, but the differences are in the items �i�
and �ii�. For the rigid boundary conditions; �i� on the free
surface �z= t1� there are no in-plane displacements in the x
and y directions, considering the x direction namely u=0; �ii�
on the free surface �z= t1� there is no vertical displacement in
the z direction, namely w=0.

According to these boundary conditions, the four ai coef-
ficients for the two cases are determined, but they are not
shown here because of the long expressions. Once these co-
efficients are given, all components of the displacements and
stress fields are determined for part one. For simplicity, only
the normal stress on the interface �z=0� is shown here.

For the free boundary conditions, the normal stress on the
interface �z=0� in part one after healing is

��zz�1 =
Ē1kH1

2�2
I�kt1� cos�kx� cos�ky� , �8�

where

I�a� =
e2�2a + e−2�2a − 2 − 8a2

e2�2a − e−2�2a + 4�2a
, �9�

and

Ē1 =
E1

1 − v1
2 . �10�

FIG. 4. The geometry of a cross section of a flaw, the material is
divided into two parts along the flaw.
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For the rigid boundary conditions, the normal stress ��zz�1

on the interface �z=0� has the same expression of the free
boundary conditions, but the expression of I�a� is changed to

I�a� =

e2�2a + e−2�2a +
10 − 24v1 + 16v1

2

3 − 4v1
+

8

3 − 4v1
a2

e2�2a − e−2�2a −
4�2

3 − 4v1
a

.

�11�

This means that Possion’s ratio �1 of part one will affect the
stress distribution under the rigid boundary conditions and
this effect should be a great difference from the free bound-
ary conditions.

We can apply the same procedure to part two,27 and the
normal stress on the interface �z=0� in part two after healing
is

��zz�2 =
Ē2kH2

2�2
I�kt2� cos�kx� cos�ky� . �12�

After the flaw is healed, equilibrium requires that the normal
stress on the interface be continuous, ��zz�1= ��zz�2 and H1

+H2=2H. Then the normal stress on the interface can be
obtained as

�zz =
kH
�2

cos�kx� cos�ky�� 1

Ē1I�kt1�
+

1

Ē2I�kt2�
	−1

. �13�

The elastic energy stored in the two parts after complete
bonding and healing can be computed by the work done by
�zz on the interface to close the misfit gap of the two flaw
surfaces. The elastic energy of the joint is

U =
1

2



0

L 

0

L

�w2 − w1��zzdxdy , �14�

where

w2 − w1 =
H

2
�1 + cos�kx� cos�ky�� . �15�

Using the expression �13�, and integrating this equation, we
obtain

U =
	H2L

4�2 � 1

Ē1I�kt1�
+

1

Ē2I�kt2�
	−1

. �16�

When two surfaces of the flaw transform into one inter-
face, the free energy of the joint of flaw changes by U
−�L2; here �L2 is the surface energy of the forming inter-
face. Complete bonding and healing of the flaw occur if this
free energy change is negative, namely27

U − �L2 � 0. �17�

Replacing U with the expression �16�, we find the critical
condition of the height for the adhesion and healing of the
flaw

HC
2

�L
=

4�2

	 � 1

Ē1I�kt1�
+

1

Ē2I�kt2�
	 . �18�

Here 2HC stands for the critical flaw height. If the flaw
height is below the critical value, the two surfaces will bond
together and the flaw is healed over the entire area. If the
flaw height is beyond this critical value, the flaw cannot be
healed. Free and rigid boundary conditions produce different
I�a� in the flaw critical height expression �18�, so the bound-
ary effects will greatly influence the flaws self-healing
ability.

IV. DISCUSSION

Using the theoretical model, we have studied the flaw
self-healing capability of the Cu nanocluster under the free
and rigid boundary conditions. In our calculations, the pa-

rameters Ē2, �, and L are kept constant, so the dimensionless

Ē2Hc
2 /�L could be the critical self-healing condition. Pos-

sion’s ratio � of the Cu cluster is taken as 0.34 and the thick-
ness ratio t2 / t1 of the two cluster parts is 1. Figure 5 gives

the variations of the critical condition Ē2Hc
2 /�L with the pa-

rameter L / t1 for the defected nanocluster. As the ratio L / t1 is

less than two, there is an evident limitation for the Ē2Hc
2 /�L.

This means that the free and rigid boundaries produce the
same critical flaw height when the nanocluster is large

enough. When L� t1, the critical height Ē2Hc
2 /�L of the free

boundary increases sharply with the increasing of L / t1, but

the critical height Ē2Hc
2 /�L of the rigid boundary deceases

with the increasing of L / t1, and the difference in the critical
conditions is remarkably enlarged.

For comparison, we also give the Ē2Hc
2 /�L results of MD

simulations in Fig. 5 for the same Cu nanocluster under the
free and rigid boundaries. The surface energy parameter � is
calculated by the commonly used expression Eb /40, where

FIG. 5. �Color online� Theoretical predictions and MD simula-
tions for the critical conditions of the flaw self-healing in Cu nano-
clusters under the free and rigid boundary conditions. The error bars
of MD simulations are obtained by increasing one atom layer height
for the cleavagelike flaw.
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E is Young’s modulus and b is the nearest atom distance. We
chose the cleavagelike flaws in our MD simulations. The
critical height of the healed cleavage is decided by the height
of the maximum removed atom layers, and it is discrete, not
continuous, in the MD simulation results. One atom layer
change in the cleavage height will lead to a great difference
in the final result of Ē2Hc

2 /�L. Therefore, Fig. 5 gives the
possible error of the critical self-healing condition by in-
creasing one atom layer height for the flaw. Comparing the
MD simulation with theoretical analysis, most of the MD
simulation results agree well with the variations of theoreti-
cal predictions. Decreasing the material size, the free bound-
aries improve the flaw self-healing capability but the rigid
boundaries weaken this capability. Due to different flaw
shape hypothesis and temperature effects in the MD simula-
tions, there are some differences between the MD and theo-
retical results, but the theoretical variations still locate in the
error range of MD simulations. The consistency of the MD
simulation with the theoretical calculations proves nicely the
strong boundary and size effects on the flaws self-healing
properties in nanoscale materials.

In terms of Eq. �18�, the critical condition of height HC is
directly related to Young’s modulus and the flaw length L.
Lower Young’s modulus lead to a higher height HC, and this,
accordingly, improves the flaws self-healing capability. On
the other hand, keeping the ratios L / t1 and L / t2 unchanged
by modifying t1 and t2 values in the expression �18�, as well
as increasing the flaw length L can increase the critical
height HC under both the free and rigid boundaries. This
theoretical prediction of the flaw length effects also coincides
with the MD simulation results.

V. FLAW SELF-HEALING IN BIOMATERIALS

In multilamella structure of biomaterials as mentioned
above, both the mineral and protein lamellae are in the scale

of nanometer. Because of their interactions and different
elastic modulus, the protein layer produces soft boundary
restriction effects on the aragonite layer. These boundary ef-
fects are not completely equal to the free or rigid boundaries
because the surface of the lamella may be stretched or com-
pressed due to the interlayer interactions. To investigate the
boundary effects on the flaws self-healing properties in bio-
materials, we use the same theoretical procedure but two
different force boundary conditions are introduced on the
mineral layer surfaces. The first force boundary conditions
�BC3� are: �i� on the free surface �z= t1�, we assume the
normal stress increases linearly with the surface vertical dis-

placement, namely �zz= K̄1w, where K̄1 is an appropriate
elastic modulus; �ii� on the surface �z= t1� there are no in-
plane displacements in the x and y directions, only consider-
ing the x direction, namely u=0, the items �iii� and �iv� are
the same as that of the free boundary conditions �BC1�. The
second force boundary conditions �BC4� are almost the same
as that of the first force boundary conditions, the only differ-
ence is item �ii�: on the surface �z= t1� the shear stress van-
ishes, namely �zx=0. The hard or soft boundary effects ex-
isting on the surfaces of the mineral layer are realized by

adjusting the appropriate force constant K̄1. Solving these
two kinds of force boundary conditions, the obtained normal
stress �zz expressions on the interface as well as the final
critical height expressions are the same as the previous re-
sults of other boundary conditions, but the I�a� is changed.
For the case of the first force boundary conditions �BC3�, we
let I�a� equal to

I�a� = I1�a�/I2�a� , �19�

where

I1�a� = e2�2a +
�1 − v1� + K

− �1 − v1� + K
e−2�2a +

2K�5 − 12v1 + 8v1
2�/�3 − 4v1� + 4�2�1 − v1�a + 2�2�1 + v1�a2

− �1 − v1� + K
, �20�

I2�a� = e2�2a −
�1 − v1� + K

− �1 − v1� + K
e−2�2a

−
2�1 − v1� + 4�2K/�3 − 4v1�

− �1 − v1� + K
a , �21�

K =
�2

4

K̄1

E1k
�1 + v1��3 − 4v1� . �22�

For the second force boundary conditions �BC4�, we also let
I�a� equal to

I�a� = I1�a�/I2�a� ,

but I1�a� and I2�a� are changed

I1�a� = �− 1 + e4�2a + 4�2ae2�2a��− 1 − e4�2a + 2�1

+ 4a2�e2�2a� − 2�1 − e2�2a�2K2�− 1 + e4�2a

+ 4�2ae2�2a� − 2K�− �2 − �2e8�2a − 2�2�1

+ 12a2�e4�2a� + 4K���2 − 4a + 2�2a2�e6�2a

+ ��2 + 4a + 2�2a2�e2�2a� , �23�

I2�a� = − ��− 1 + e4�2a + 4�2ae2�2a� − �2K�1 − e2�2a�2�2,

�24�
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K = �1 − v1
2�

K̄1

E1k
. �25�

Checking these results, the critical height HC is determined
not only by the Possion ratio and Young’s modulus but also

by the appropriate force constant K̄1. Details of the theoret-
ical analysis for the flaws self-healing in biomaterial are pre-
sented in the following part.

Figure 6 displays the critical conditions of flaw self-
healing inside mineral layers under different boundary con-

ditions. The parameters Ē1 / Ē2=1 and t2 / t1=1 means that the
flaw just locates in the middle of the aragonite layer. For
simplicity, we assume all the materials possessing the same
Possion’s ratio of 0.3. The external loading as well as the

force boundary effects are denoted by the parameter K̄ /Ek.

Here we assume K̄ /Ek=0.01, representing a soft boundary
with the mineral layer contacting with a protein layer, and

K̄ /Ek=10, representing a hard boundary with the mineral
layer directly contacting with other mineral layer. Everything
is equal and no boundary effects occur when the ratio of the
flaw length and material thickness L / t1�2. After that, for

the case of K̄ /Ek=0.01, the critical conditions Ē2Hc
2 /�L of

BC3 and BC4 are increasing with the increasing of L / t1.

However, when the corresponding force parameter K̄ /Ek in-
creases to 10 and the boundary is harder, the flaws self-
healing capability decreases with the L / t1 increasing, and the
two variations of BC3 and BC4 almost overlap with that of
the rigid boundary conditions �BC2�. For the same L / t1, the
critical height of Hc under soft boundary conditions is obvi-
ously higher than that of the hard boundary conditions. That
means the mineral layer possesses a higher flaw self-healing
capability when it contacts with a protein layer. As the pa-

rameter K̄ /Ek approaches 0 and infinity, the variations are
evolved to their limited cases of the free and rigid bound-
aries, respectively.

Except inside the interior of the lamella, the flaws self-
healing problem in the interface between the aragonite and

protein layers can be solved using this procedure as well. We
use part one and part two to represent the protein layer and
the aragonite layer, respectively. According to the experi-
mental observations, we chose the thickness ratio t2 / t1 of the
aragonite and protein layers to be 40. The mineral layer is
much stiffer than the protein layer, so we assume their

Young’s modulus ratio Ē1 / Ē2=0.1 and 0.01. The variations

of Ē2Hc
2 /�L for these cases are plotted in Fig. 7. Comparing

these curves, it is interesting to find that the critical condition

Ē2Hc
2 /�L of Ē1 / Ē2=0.01 is about 10 times higher than that

of Ē1 / Ē2=0.1 at each corresponding abscissa L / t1. Softer
protein possesses better deformability and flowing behaviors
so that it could easily repair the possible defects on the sur-
face of the mineral layer, and hence improve the flaws self-
healing capability in biomaterials.

VI. SUMMARY

The flaw or crack self-healing capabilities in a nanoscale
material are very sensitive to its boundary conditions when
the material size decreases to a compatible magnitude to its
defect. For a Cu nanocluster, the free boundaries improve the
flaw or crack self-healing capability, but the rigid boundaries

FIG. 6. �Color online� The critical conditions for the flaw heal-
ing inside the mineral layer under different boundary conditions,

Ē1 / Ē2=1, t2 / t1=1, K̄ /Ek=0.01, and K̄ /Ek=10.

FIG. 7. �Color online� The critical conditions for the flaw heal-
ing inside the interface of mineral and protein layers under different

boundary conditions. �a� Ē1 / Ē2=0.01, t2 / t1=40 and �b� Ē1 / Ē2

=0.1, t2 / t1=40.
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weaken this capability remarkably. We develop the con-
tinuum mechanical theory model by presenting various
boundary conditions, and the theoretical predictions agree
well with the molecular dynamics simulations. Soft bound-
aries, increasing temperature in a suitable range, decreasing
the cluster size as well as a lower Young’s modulus can
improve the flaw or crack self-healing capabilities. Further
theoretical investigations show that the mineral layer in bio-
materials has a high flaw self-healing capability because of

the natural soft boundaries caused by the protein layer. Our
study provides an explanation for the self-optimization pro-
cess in biomaterial evolution.
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