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Buckling of multiwalled carbon nanotubes under axial compression
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Buckling of single-walled and multiwalled carbon nanotubes (SWNTs and MWNTSs, respectively) due to
axial compressive loads has been studied by molecular mechanics simulations, and results compared with those
from the analysis of equivalent continuum structures using Euler buckling theory and the finite element
method. It is found that a MWNT of large aspect ratio (length/diameter) buckles as a column with axial strain
at buckling given reasonably well by the Euler buckling theory applied to the equivalent continuum structure.
However, a MWNT of low aspect ratio buckles in shell wall buckling mode with the axial strain at buckling
corresponding to the highest axial strain at buckling of one of its constituent SWNTs. A finite element model
has been developed that simulates van der Waals forces by truss elements connecting nodes on adjacent walls
of a MWNT; the axial strain at buckling from it is close to that obtained from the MM simulations but the two

sets of mode shapes are different.
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I. INTRODUCTION

It is now generally accepted'™” that multiwalled carbon
nanotubes (MWNTs) have mechanical properties quite dif-
ferent from those of single-walled carbon nanotubes
(SWNTs). These differences are reflected in either their mac-
roscopic material properties or their processing and handling
behaviors or both. MWNTs are concentrically nested SWNTSs
with the distance between two adjacent walls of approxi-
mately 3.4 A. Molecular structures of a SWNT and a double-
walled nanotube (DWNT) are shown schematically in Fig. 1.
Atoms on different walls of a MWNT do not share bonds
with each other and interact mechanically through the weak
van der Waals forces. This allows the walls of a MWNT to
slide and twist freely relative to each other. When the outer
wall of a MWNT is loaded in tension, it carries most of the
load. Thus in tension a MWNT will have a lower specific
stiffness than a SWNT. Yu et al.® found that after the fracture
of a MWNT, the inner walls remained intact and the broken
outer wall slid freely in a “sword in sheath” manner. It sug-
gests that the adjoining walls of a MWNT do not transmit
tangential forces between each other. The wall-to-wall shear
interaction is very weak as compared to the normal van der
Walls forces.’

The van der Waals force experienced by atoms of two
adjacent walls is normal to the walls and increases rather
sharply with a decrease in the distance between the two
walls; this effect can be seen in two ways. In bending defor-
mations of a MWNT adjacent walls are seen to move in
unison and act as a beam. The transmission electron micro-
scope (TEM) images of bent nanotubes in composite mate-
rials show that the interwall distance remains relatively un-
changed. When bent to high curvatures, the MWNTs are
found to buckle locally into a rippling wave pattern through-
out the length of the tubes.'®!! Another study in which a
MWNT was repeatedly bent with a specially designed
atomic force microscope (AFM) showed that these rippling
patterns are reversible.!?

The van der Waals force also comes into play in the axial
compression of a MWNT due to caps at each end of the tube.
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A TEM image of a MWNT end cap, taken from Yu et al.'3 is
shown in Fig. 2. The distance between adjacent walls of an
end-cap equals nearly the ideal wall separation distance of
3.4 A. When compressed axially the endcaps may press to-
gether and transmit a part of the applied load to the inner
walls. Thus a MWNT is expected to be stiffer in compression
than in tension, e.g., see Thostenson and Chou'* who studied
the buckling of a nanotube by first aligning the MWNTs
through stretching, and then loading the composite contain-
ing the MWNTs in compression. Several buckling modes,
columnar buckling, and kinking were found.

The failure mode of a nanotube in compression is differ-
ent from that in tension. In tension, two failure modes, i.e.,
brittle failure due to the axial strain exceeding a critical
value, and ductile failure due to excessive plastic deforma-
tions have been proposed. It has been suggested that these
failure modes are best modeled by using quantum mechanics
principles.”> However, in compression, buckling is the pri-
mary failure mode. In buckling, the bond structure of a nano-
tube does not change. This allows for the use of molecular
mechanics (MM), molecular dynamics (MD), and continuum
mechanics (CM) techniques to study compressive failure,
and these three approaches have been used to analyze the
buckling of SWNTs and MWNTs. In particular, Yakobson et
al.'® studied the buckling of a SWNT with the Tersoff-
Brenner MM potential and a shell theory. Sears and Batra'”
delineated the buckling of SWNTs by using the MM3 MM
potential and the Donnell shell theory. Liew et al.” have em-
ployed the MD technique to analyze buckling of SWNTs and

FIG. 1. (Color online) Left: Molecular structure of a SWNT
(with end caps). Right: Molecular structure of a bent DWNT (with-
out end caps).
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MWNTs. Continuum structures equivalent to a SWNT em-
ployed in the above three works had different material and
geometric parameters. Yakobson et al.'® assumed that the
pi-bond thickness, 0.066 A, is a good choice for the wall
thickness. Liew et al.” found that the classical shell theory
with the wall thickness of 1.54 A gave results in close agree-
ment with their predictions of the buckling load from the
MD simulations. Sears and Batra deduced the wall thickness
of 1.34 A from MM simulations of the torsional and exten-
sional deformations and the assumption of the material being
isotropic and linear elastic for infinitesimal strains. Sears and
Batra also employed the finite element method (FEM) to
analyze three-dimensional deformations of the equivalent
continuum structure.

During both columnar and wall buckling of a MWNT, the
distance between any two of its adjacent walls may change
thereby altering the van der Waals force among atoms on the
two walls. However, it is not clear whether these interactions
will delay the onset of buckling. Ru'® argued that the addi-
tion of an inner wall to a SWNT will decrease the axial strain
at the onset of buckling of the structure. He used a CM
approach and simulated the effect of van der Waals forces by
applying a uniformly distributed pressure field on a wall; the
pressure field was adjusted so as to give the same resultant
force on each wall of the tube. He modeled each wall of a
double-walled nanotube (DWNT) as a shell with bending
stiffness D(h)=Eh>/[12(1-1?)], where A is the wall thick-
ness, £ Young’s modulus, and v Poisson’s ratio.

Pantano et al.'® also modeled a DWNT as two concentric
thin cylindrical shells each having h=0.75 A, v=0.19, E
=4.84 TPa, and analyzed its buckling deformations by the
FEM. The van der Waals force was simulated as equal and
opposite pressures on the outer wall of the inner cylinder and
the inner wall of the outer cylinder; the pressure varied with
the distance between the two walls. For a SWNT deformed
in bending, they found good correlation between the com-
puted strain energies and the strain at buckling and/or kink-
ing from the MM and the FE simulations. They also obtained
reasonable agreement between the FE and the experimental
results on the rippling of a MWNT deformed in bending.
Pantano et al.’ subsequently applied the same method to
analyze buckling of a nine-walled nanotube in axial com-
pression and found a rippling behavior that propagated
through most of the walls towards the innermost tube. They
also showed that the FE models gave better results for the
buckling initiation and postbuckling behavior of thinner
shells (r=0.75 A) as compared to thicker walls (r=3.4 A).

Arroyo and Belytschko?!' have developed a FE model for
MWNTs. Rather than using a thin shell theory, they replaced
a tube wall by a membrane made of a hyperelastic material
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FIG. 2. TEM images of end-
caps of a MWNT and the rippling
pattern in a bent MWNT [Yu et al.
(Ref. 13)].

and deduced its mechanical properties directly from the
Tersoff-Brenner MM potential, crystal elasticity, and a modi-
fied Cauchy-Born rule. The pressure equivalent to that ex-
erted by the van der Waals forces was applied to the mem-
brane. For torsional, bending and compressive deformations,
they successfully reproduced local buckling, kinking, and
rippling effects, which were very close to the shapes ob-
tained by the MM simulations.

Here the buckling of MWNTs without endcaps is studied
with the MM simulations, and also by analyzing three-
dimensional deformations of the equivalent continuum struc-
ture with the goal of elucidating the effect of van der Waals
forces and the aspect ratio on columnar, shell-wall, and
mixed-mode buckling. The nanotube structure is identified
by using the White et al.?? notation, in which the graphite
basal vector (a,b) defines the cylindrical joining points of
the nanotube. For MWNTs the notation [(a,b),(c,d),...],
defines the structure of the innermost to the outermost tubes.
The consideration of end caps introduces the difficulty of
determining accurately the tube length, and also of finding an
equivalent continuum structure. Previous studies'®?" on the
buckling of nanotubes have also ignored endcaps. The actual
tube length is larger than that considered here which means
that buckling load will be a little smaller than that found
here. Also, we have applied axial displacements to atoms that
are ~10 A from each end of the tube. In light of the Saint-
Venant principle?® which states that the precise prescription
of boundary loads is unimportant provided that one considers
deformations far away from the points of their application,
our analysis provides reasonably good estimates of the buck-
ling load. We note that experimentalists”*~2% employ the
Euler beam theory? to interpret the response of a nanotube
in bending, and extract Young’s modulus.

II. ANALYSIS OF THE PROBLEM

A. Molecular mechanics potential

The MM3 class II pairwise potential with higher-order
expansions, cross-terms, and type 2 (alkene) carbon atoms is

FIG. 3. (Color online) Left: a continuum structure equivalent to
a DWNT. Right: a cross section of the FE model showing truss
elements connecting nodes on two concentric tubes.
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used.’® This potential is appropriate for carbon nanotubes
due to the similarity between graphitic bonds in a nanotube
and the aromatic protein structures for which the potential
was constructed.

B. Virtual experiments

The mechanical response of a nanotube is simulated with
the computer code TINKER (Ref. 31) by following a proce-
dure that closely mimics traditional macroscopic material
tests. In summary, it involves finding the minimum energy
configuration of an unloaded nanotube, referred to as the
relaxed structure or the relaxed configuration. The deformed
configuration is then estimated, displacement boundary con-
ditions applied to atoms at the end faces to simulate axial
compression, and remaining atoms moved axially to their
estimated positions. The appropriate displacement boundary
condition available in TINKER applies prescribed displace-
ments to specified atoms in all three directions. In these
simulations a circumferential ring of atoms ~10 A from
each end of the nanotube, on each wall, is chosen and dis-
placement boundary conditions are enforced on these atoms.
These boundary conditions are equivalent to clamped end
conditions in an engineering mechanics analysis. With these
atoms moved to their final positions and held there, the re-
maining atoms are allowed to move freely till the minimum
energy configuration is attained. The process is repeated for
different displacements prescribed on atoms on the circum-
ferential ring to acquire data for the energy vs the axial strain
curve. The axial strain is defined as the change in the initial
length of the tube divided by the initial length. This dupli-
cates what is done in experiments where the loading device
moves end faces either at a prescribed rate or by a prescribed
amount. The axial load is then usually read off from the
machine. MM simulations were favored over MD simula-
tions because they are quasistatic in nature as are the physi-
cal tests described above and the problems studied herein.

MM simulations neglect kinetic energy of the system, and
essentially give one deformed state for a given strain level.
An equilibrium configuration corresponds to the minimum of
the potential energy. When displacements are prescribed at
the end faces with the remaining surfaces free of surface
tractions or loads, the equilibrium configuration corresponds
to the minimum of the strain energy of the body.

In these studies the computer code TINKER automatically
selected between the truncated Newton and the negative cur-
vature methods of minimizing the potential energy. The con-
vergence gradient and the cutoff distance were set at 0.001
rm.s. and 15.0 A, respectively. It should be noted that the
use of the negative curvature method often overlooked the
buckling of a tube. It was found in a previous study'” that a
shell-wall buckled shape minimizes the strain energy of the
tube by decreasing certain energy terms such as those due to
a change in the bond length, while increasing others such as
those due to the bond torsion and the out-of-plane terms.

A sinusoidal perturbation with an amplitude of 0.5% of
the tube length is introduced in the relaxed configuration of
the nanotube to facilitate its buckling. Prescribing a pertur-
bation in the form of the estimated buckled shape is a com-
mon practice when analyzing buckling of nonlinear engi-
neering structures. In a linear theory, such as the Euler beam
theory,”® the buckling problem is analyzed as a stability
event yielding only the critical buckling load, and the ampli-
tude of the buckled shape is infinity; it thus precludes the
stable growth of a buckled mode shape. In a nonlinear theory
a perturbation on the perfect geometry is required to allow
for the growth of the mode shape. Thus a separate criterion
such as the lateral maximum deflection is required to define
the initiation of the buckling of a structure. The estimated
buckled shape, often found from the linear analysis, gener-
ally allows for the smooth growth of the buckled shape. Ran-
dom noiselike perturbations used in nonlinear FE analyses*”
have been found to work very well. Their advantage is that
they do not favor a buckling mode. However, they some-

085410-3



A. SEARS AND R. C. BATRA

PHYSICAL REVIEW B 73, 085410 (2006)

FIG. 5. (Color online) Radial
pressure vs radial strain derived
from MM simulations of radial
expansion/contraction of a wall of
a nanotube.
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times inhibit the growth of a buckling mode and must be
performed numerous times to insure that the lowest critical
buckling load or strain has been found. Such perturbations
were attempted in this study and were not found to perform
well. While buckling load and strain is sensitive to the per-
turbation size, the effect can be minimized through conver-
gence studies and the smallest acceptable amplitude of the
perturbation can be ascertained. The tube is assumed to have
buckled when the maximum lateral deflection equals the
smaller of 1% of its length or 10% of the radius of the (16,0)
SWNT; the former criterion was used for long tubes which
buckled in columnar modes, and the latter for the short tubes
which buckled in shell-wall buckling modes.

C. Continuum models

Following the work of Sears and Batra,!” we modeled a
SWNT as a cylindrical tube made of an isotropic linear elas-
tic material with the following values of material and geo-
metric parameters 7=1.34 A, E=2.53 TPa, and v=0.19. The
equivalent continuum model of a MWNT is comprised of
concentric tubes of mean radius equal to that of a wall of a
MWNT, h=1.34 A, E=2.53 TPa, and v=0.19. While analyz-
ing it as an Euler column or beam,? it was assumed that the
distance between two adjacent walls remains unchanged; it is
referred to as a rigid gap model signifying a fixed gap be-
tween two adjacent walls. This assumption allows the
MWNT column to have an area and moment of inertia which
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are simply the sum of those for the individual walls. We note
that the Euler buckling theory can only predict the critical
buckling strain for columnar buckling. Shell-wall buckling
modes were found by modeling each tube as a shell, and
analyzing deformations of the structure with the FEM using
eight-node quadratic shell elements. The problem formula-
tion allowed for small strains but large rotations.

Numerical experiments with different FE meshes revealed
that the computed solution for a (16,0) SWNT of aspect ratio
(Iength/diameter) 1:1 converged when 16 elements were em-
ployed in the circumferential direction; the convergence cri-
terion was defined as the coarsest mesh for which the axial
strain at the onset of buckling became independent of the
mesh size. The effect of van der Waals forces is accounted
for by incorporating uniform truss elements connecting

nodes on adjacent cylindrical shells. Nodes on adjoining
cylindrical shells were taken to lie on the same radial
lines allowing for a regular distribution of uniform radial
truss elements as depicted in Fig. 3. The area of cross
section A of a truss element was chosen so that
(A X number of truss elements/axial length of the cylinder)
=II(D,—-D,), where D, and D, are the mean diameters of the
inner and the outer walls of the DWNT. Due to a mismatch
in the number of degrees of freedom of a node on a cylin-
drical shell and that at the ends of a truss, a set of coincident
nodes on virtual elements were defined; a virtual element
linked a node on a truss to its counterpart on the cylindrical
shell.

Young’s modulus of a truss element was assumed to vary
with the axial strain in that element. Two such relations were
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developed and used. The first one is called the pseudopres-
sure model and is based on MM simulations of radial
expansion/contraction of a wall of a DWNT.3* A relation
between the pressure acting on a wall and its radial displace-
ment is developed from the van der Waals intermolecular
energy versus the wall separation distance depicted in Fig. 4.
Equation (1) describes the least squares fit to the intermo-
lecular energy W vs gap s between two adjacent walls

K[b(s+r)+1]
bz(rg - riz)

where 2.6 A<s<3.4 A, K=9.5x 1072 J/A3, b=531/A, ¢
=3.52 A. The radial force versus s relation can be found by
differentiating Eq. (1) with respect to s from which pressure
can be computed. The resulting pressure versus the radial
strain relation is shown in Fig. 5. It was used to deduce the
axial force versus the axial displacement relation for a truss
element, and is called the “pseudopressure model.” Since the
sum of the area of cross section of truss elements was set
equal to the average surface area of the walls, the radial
pressure equals the axial stress in a truss element.

Analysis of buckling deformations with this pressure ver-
sus strain relation gave axial strains at buckling that were
higher than those obtained from the MM simulations. Thus a
second axial force versus axial displacement relation, termed
the “trilinear truss model,” was developed. It has relatively
low modulus near the ideal wall separation distance or zero
radial strain, and allows the adjoining walls to move nearly
independently of each other and small perturbations to de-
velop. The modulus is nearly constant for moderate values of
the axial strain in a truss element, and then increases very
rapidly to a value much higher than that given by Eq. (1) so
as to force the two adjoining walls to move in unison with
each other. We emphasize that this ad hoc model is not a
curve fit, and is based on an intuitive argument that the two
tubes deform essentially independently in the beginning, and
after certain level of straining their deformations are coupled
to each other. To closely mimic the MM simulations, the
initial configuration of the continuum structure was given the
same perturbation as the molecular structure, and nodes at
the end faces of the continuum structure were moved axially
and then kept fixed in all three directions.

W=2xL exp[—b(s—c)], (1)

III. RESULTS
A. Buckling of a SWNT

The buckling of a SWNT does not involve interactions
between adjacent walls; one can thus examine the adequacy
of the equivalent continuum structure. The axial strain at
buckling versus the length of a (16,0) tube (tube diameter,
D=11.9 A) for various values of the tube length is shown in
Fig. 6. The MM simulation results are compared with those
obtained from the Euler column theory and the FE analyses
of continuum cylindrical tubes of different wall thicknesses
but the same axial stiffness, i.e., having the same value of E
multiplied by the area of cross section. For tube lengths
greater than 120 A (L/D>10), the three sets of results are
very close to each other. However, for tube lengths less than
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@ b) @

FIG. 8. (Color online) Examples of MWNT buckling modes (a)
columnar with close-up view, (b) shell wall, (c) crimped.

100 A the axial strains computed from the MM simulations
and the FE analysis are very close to each other but both are
much less than that given by the Euler buckling theory. This
is because the buckling mode shifts from a columnar mode
to a shell wall mode for the MM and the FE simulations
which the Euler theory cannot predict.

B. Correlation between the buckling of SWNTs and MWNTs

A close scrutiny of results for the buckling of a SWNT
suggests the following question: will the axial strain at buck-
ling of a MWNT equal the lowest of those at which SWNTs
constituting it buckle or will the adjacent walls tend to sup-
port each other and increase the axial strain at buckling? One
way to answer it is to compare results of buckling of a
double wall nanotube (DWNT) with those of buckling of its
SWNTs; these are shown in Figs. 7(a) and 7(b) for the
[(7,0),(16,0)] and the [(16,0),(25,0)] DWNTs. These DWNTs
were chosen because the wall separation distance in MWNTs
produced from them is close to 3.4 A. Results for the con-
stituent SWNTSs are also shown for easy comparison.

For large aspect ratios (length/outer wall diameter) of the
[(16,0),(25,0)] DWNT, MM simulations reveal that the axial
strain at buckling of a DWNT is between those of its con-
stituent SWNTSs, and for each tube the MM simulation result
is close to that predicted by the Euler buckling theory. This
implies that the walls act in unison, which is confirmed by
the columnar buckling mode shape that retains the ideal wall
separation distance between the two walls as seen in Fig. 8.
The wall separation distance was found to remain near 3.4 A
throughout the postbuckling response. It supports the rigid
gap assumption made in the analysis of continuum structures
equivalent to MWNTs with the Euler buckling theory. How-
ever, for short tubes the axial strain at buckling of the
DWNT equals that of the (7, 0) SWNT. In this range, the (25,
0) SWNT due to its shallower curvature buckles in the shell
wall buckling mode (e.g., see Fig. 8) at a lower value of the
axial strain than that needed for it to buckle in the axial
buckling mode. Thus, one might expect the outer wall of the
DWNT to begin to buckle first and cause the DWNT to
buckle. However, the inner wall with its higher value of the
axial strain in shell-wall buckling mode remains straight and
supports the outer tube until the axial strain reaches that of
the inner (16,0) tube to buckle in shell-wall buckling mode
and both walls of the DWNT buckle in unison in a shell-wall
buckling mode. The situation is less clear in the transition
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FIG. 9. (Color online) Buckling of a [(7,0),16,0)] DWNT in the
absence of van der Waals forces.

zone where mixed column and crimping buckling modes are
prevalent. The same trends are present for the [(7,0),(16,0)]
DWNT and the axial strain at buckling is intermediate be-
tween those of the constituent SWNTs for large aspect ratios
but equals that of the (16,0) SWNT for small aspect ratios.
In order to clearly delineate the effect of van der Waals
forces we also analyzed the buckling of a [(7,0),16,0)]
DWNT by artificially annulling these forces; the resulting
buckled shape is exhibited in Fig. 9. It is clear that the inner
tube buckled first and passed through the walls of the outer
tube. With the effect of van der Waals forces included, the
outer tube would have prevented the inner tube from buck-
ling. This would occur until the axial strain in the two tubes
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reached a level at which they will buckle into a columnar
mode shape.

For the DWNT replaced by an equivalent continuum
structure with the distance between the two cylindrical tubes
kept fixed, predictions from the Euler buckling theory match
with those from MM simulations for tubes of large length but
deviate considerably for tubes of small length due to the
shell wall buckling experienced by tubes of small length. The
deviation between the axial strains at the initiation of buck-
ling from MM simulations and the Euler buckling theory
occurs at a smaller value of length for a DWNT than that for
a SWNT.

Buckling of a [(7,0),(16,0),(25,0)] TWNT was also stud-
ied by both MM simulations and the Euler buckling theory.
The axial strain at the initiation of buckling versus the tube
length is plotted in Fig. 10. As for the SWNTs and the
DWNTs the axial strain at the initiation of buckling in long
tubes matches well with that computed from the Euler theory
and they have columnar buckling modes. With a decrease in
the tube length, the axial strain at buckling begins to deviate
from that given by the Euler theory and the buckling mode
transitions from pure columnar to columnar with crimps. For
tube lengths smaller than 100 A, pure axial shell wall buck-
ling modes emerge at the axial strain close to that of the
(16,0) SWNT. For a fixed length, the (16,0) SWNT has the
highest axial strain at buckling because the (7,0) SWNT
buckles in the columnar mode at a much lower axial strain. A
close scrutiny of results depicted in Figs. 8 and 10 reveals
that the axial strain at buckling of a low aspect ratio MWNT
can be reasonably predicted from the highest axial strain at
buckling of any one of its constituent SWNTs.

Some interesting buckling modes found from the MM
simulations for a [(16,0),(25,0),(34,0)] TWNT are shown in
Fig. 11. For a moderate tube length of 156 A (L/D=~6) the
outer tube is first seen to buckle into rippling pattern at 7%
axial strain. This rippling pattern is similar to buckling pat-
terns found in bent MWNTs where multiple shallow shell

o1 ‘ high ‘t It in at buckling for the (16,0) ° ((7.0).(16.0)(25,0) MM3
' Ighest axial strain at buckling Tor the f
' SWNT & axial strain for the shell wall ((7.,0),(16,0),(25,0)) Euler
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FIG. 11. (Color online) The emergence of rippling waves in a
TWNT followed by deep shell wall buckled shape with increasing
axial compressive strain.

waves with equivalent wavelengths are repeated. However,
here the buckling is caused by axial compression, and ripples
go only one wall deep. As the tube is compressed further, the
middle tube is also forced into the rippling pattern at 7.9%
axial strain. Shortly thereafter at 8.0% axial strain the whole
tube buckles into the shell wall buckling mode seen on the
right. This phenomenon reinforces the hypothesis that the
inner walls effectively support the outer walls against buck-
ling. For a different initial perturbation the same tube is seen
to buckle into a fully developed shell wall buckling mode at
8% strain; thus the buckling response is dependent upon the
initial perturbation and is nonunique. However, typical val-
ues of the axial strain for the shell wall buckling mode of a
(16,0) SWNT are about 8.0%.

PHYSICAL REVIEW B 73, 085410 (2006)

C. Results from the continuum model of a MWNT

As the buckling of a SWNT does not involve interactions
between adjacent walls, the adequacy of the equivalent con-
tinuum structure of a SWNT can be studied. The axial strain
at buckling vs the length of a (16,0) tube (tube diameter, D
=11.9 A) for various values of the tube length is shown in
Fig. 12. The MM simulation results are compared with those
obtained from the Euler buckling theory, and the analyses of
equivalent continuum cylindrical tubes by the FEM with the
tube modeled as a shell. For tube lengths greater than 120 A
(L/D>10), the three sets of results are very close to each
other, indicating that both the Euler buckling theory and the
FE analysis of the equivalent continuum structures accu-
rately predict global buckling modes. For short tubes in the
shell wall buckling regime, the MM simulations yield the
axial strain at buckling versus tube length curve that is nearly
flat around the 8.0% axial strain. In this range, the FE analy-
sis predicts the correct mode shape, with a somewhat flat
curve with axial strain at buckling between 8.2 and 8.6%.
This shows the adequacy of the equivalent continuum struc-
ture of a SWNT and the analysis techniques.

Previous studies?® on bending of a continuum structure
equivalent to a DWNT showed that when the gap between
two concentric cylindrical tubes is assumed not to change,
the Euler beam theory gives results quite close to those ob-
tained from MM simulations. We note that MM simulations
showed that the gap between two adjacent walls does not
change during bending. Furthermore, the Euler buckling
theory applied to a continuum structure equivalent to a
SWNT and a MWNT of large aspect ratios predicts axial
strain at buckling very close to that given by the MM simu-
lations. Therefore, analyses of buckling deformations of a
MWNT should focus on local buckling effects and on the
transition between global and local effects. Deformations of
a [(16,0),(25,0)] DWNT and a [(16,0),(25,0),(34,0)] TWNT

FIG. 12. (Color online) Axial
strain at buckling vs tube
length for a (16,00 SWNT
(tube diameter=11.9 A) com-
puted from MM simulations, FE
analysis and the Euler buckling
theory.
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FIG. 13. (Color online) For a

DWNT, axial strain at the initia-
tion of buckling vs the tube length
from FE analyses of five con-
tinuum structures (analyses with
Euler buckling theory for three
continuum structures that differ in
E and wall thicknesses, and two
different ways of modeling van
der Waals forces in the FE analy-
sis) and the MM simulations.
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were studied with the MM simulations, and of their equiva-
lent continuum structures by the FE method and the Euler
buckling theory on the assumption that the two end faces are
clamped. A sinusoidal perturbation with amplitude of 0.5%
of the tube length, introduced to facilitate buckling in the
MM simulations, was also applied in the FE analyses.

Results from the Euler buckling theory for the following
three continuum structures equivalent to the DWNT were
computed: (a) two concentric tubes of mean diameter equal
to that of the walls of the DWNT, h=3.4 A, E=0.99 TPa; (b)
same as in (a) except h=1.34 A, E=2.53 TPa; (c) each tube
modeled as a thin shell of thickness 0.66 A, E=5.12 TPa.
Thus, the equivalent stiffness EA/L for the three continuum
structures is the same. For the FE analysis, the DWNT was
replaced by the continuum structure (b). The nodes on these
surfaces were connected by truss elements whose axial force
versus axial strain curve is shown in Fig. 4 for both the
pseudopressure and the trilinear cases.

Results from these studies are exhibited in Fig. 13. We
note that the Euler column buckling predictions match well
with those from the MM simulations. In the columnar buck-
ling regime, the FE analysis of each one of the three con-
tinuum structures gives results close to those obtained from
the MM simulations. The FE analyses could also predict the
transition of buckling from columnar to shell wall mode. It
shows that it is less critical how van der Waals forces are
modeled in the continuum structure as far as the analysis of
columnar buckling and its transition into shell wall buckling
mode is concerned. In fact, the trilinear truss model seems to
perform slightly better, especially in the pure shell wall
buckling modes. With the radial pressure versus the radial
strain relation fitted to MM simulations, the computed axial
strain at buckling is slightly higher than that given by the
MM simulations.

For the DWNT studied, buckling modes obtained from
the MM simulations and the FE analyses of the two con-
tinuum structures are depicted in Fig. 14. Mode shapes for

350

the pure shell wall buckling and columnar buckling modes
match well with those obtained from the MM simulations.
However, mixed modes during the transition from columnar
to shell wall buckling were more difficult to capture; it is due
to the simplicity of continuum models used here. The con-
tinuum model of Arroyo and Belytschko?! predicts some of
complex buckling modes but it is considerably more sophis-
ticated than the ones examined here.

Buckling deformations of a continuum structure equiva-
lent to a TWNT were also analyzed and results were found to
be similar to those for a DWNT; these are shown in Fig. 15.
The van der Waals forces were modeled with the same ap-
proaches as those used for continuum structures equivalent
to the DWNTs. As for the DWNT, the FE analysis of defor-
mations of the continuum structure can predict well the co-
lumnar buckling mode. Results for the transition from the
columnar to the shell wall buckling mode are qualitatively
similar to those obtained from the MM simulations. How-

/777

L=100 L =140

T.=1R0

FIG. 14. (Color online) For a DWNT, buckling modes computed
with (top) FE analyses of equivalent continuum structures with
truss elements connecting corresponding atoms of the two tubes,
and (bottom) MM simulations; pictures in the bottom part are
shifted to the left to align them with proper values of their lengths.
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0.1 3
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§ TWNT, axial strain at buckling vs
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.§ 0.04 1 analysis of equivalent continuum
5 structures and MM simulations.
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ever, the FE analysis was not able to replicate all of the
buckling modes found from the MM simulations. The open
circle in the figure indicates when rippling deformation
modes, exhibited in Fig. 10, appeared during axial compres-
sion of the TWNT. This deformation mode is neither pre-
dicted by the FE analysis nor by the Euler buckling theory.
There is no experimental data available on buckling defor-
mations of a MWNT; thus computed results could not be
compared with experimental observations.

IV. CONCLUSIONS

We have studied buckling of axially compressed multi-
walled carbon nanotubes by using molecular mechanics
simulations, the Euler buckling theory, and the finite element
method; the latter two approaches employ continuum struc-
tures equivalent to the nanotubes. It is found that the van der
Waals forces among atoms on adjacent walls of multiwalled
nanotubes play a significant role. The van der Waals forces
cause the MWNT to generally buckle as a unit, that is, the
buckled shape is the same for all walls. The present work
makes the following new contributions.

For columnar buckling modes, the axial strain at the onset
of buckling equaled that given by the simple Euler column
theory. The buckling mode transitions from columnar to shell
wall buckling as the tube length is decreased. During the
transition columnar buckling modes include crimping which
is a form of shell wall buckling. The axial strain at the ini-

tiation of the shell wall buckling mode equals the largest of
those of the single-walled nanotubes constituting a multi-
walled nanotube. An interesting rippling pattern was found in
the buckling response of a triple-walled nanotube which il-
lustrates the resistance provided by the individual walls
against buckling.

The buckling modes computed from the finite element
analysis of equivalent continuum structures, with the van der
Waals forces simulated by truss elements, are close to those
obtained from the molecular mechanics simulations; how-
ever, the transition zone mode shapes are not replicated. Fi-
nite element results suggest that while the consideration of
the van der Waals forces is critical, their exact modeling is
not very critical as adequate results were found for two dif-
ferent mathematical representations. The modeling of van
der Waals forces by truss elements is new and provides an
easy way to simulate them. It helps understand how these
forces coordinate the buckling of different walls of a nano-
tube. The magnitude of the van der Waals force can be com-
puted from Eq. (1).
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