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The radial breathing and G-band vibrational modes of all 300 single-walled carbon nanotubes in the radius
range from 2 to 12 Å were calculated within a symmetry-adapted nonorthogonal tight-binding model. The
dynamical matrix was calculated within this model using the linear-response approximation. The obtained
phonon frequencies show well-expressed radius and chirality dependence and family behavior. The curvature-
induced effects on the frequencies are found to be important for small- and moderate-radius tubes. The strong
electron-phonon interactions in metallic tubes bring about Kohn anomalies of certain phonon branches. Among
the Raman-active phonons, these interactions have strongest effect on the longitudinal tangential A1 phonons of
metallic tubes, whose frequency becomes lower than that of the transverse tangential A1 phonons. The calcu-
lated frequencies are compared to available theoretical and experimental data.
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I. INTRODUCTION

The vibrational and electronic properties of carbon nano-
tubes have amazing peculiarities originating from the quasi-
one-dimensionality of these systems.1 The carbon nanotubes
are synthesized in a large variety of structures. Some of them
consist of a single cylindrical graphitic layer, so-called
single-walled nanotubes. Others comprise a number of co-
axial layers, so-called multiwalled nanotubes. The nanotubes
often stick together in bundles. In both cases, the separate
carbon layers are coupled together by weak van der Waals
interactions. Therefore, the main object for the study of the
vibrational and electronic properties of the nanotubes is the
isolated single-walled nanotubes �later on referred to simply
as the nanotube�. The effect of the interlayer interactions on
these properties can be accounted for by using the theory of
perturbations. The theoretical predictions of these properties
can be applied directly for the purposes of the structural
characterization of the produced nanotubes. In particular, the
Raman scattering measurements on nanotube samples reveal
that the spectra are dominated by a low-frequency band
�100–450 cm−1� and a high-frequency band �1500–
1650 cm−1�. The former originates from a vibrational mode
with uniform radial atomic displacements �the so-called
radial-breathing mode �RBM��. The frequency of this mode
is roughly inversely proportional to the nanotube diameter2–4

with small deviations from this law depending on chirality,
intertube interactions, and interactions with the environment.

The higher-frequency band �so-called G band� arises from
six tangential bond-stretching vibrational modes of symme-
tries 2A1, 2E1, and 2E2 �see, e.g., Ref. 5�. This band is usu-
ally observed as two subbands: a G+ subband with almost
tube-independent frequency and a G− subband with decreas-
ing frequency with the decrease of the tube radius.6 In an
early theoretical work on phonons in nanotubes3 it was stated
that the tangential modes have either longitudinal optical
�LO� or transverse optical �TO� character with respect to the
tube axis. Later on, it was argued that these modes are only
approximately longitudinal and transverse.7 It was proven

that for the G-band frequencies holds that A1
LO�A1

TO, E1
LO

�E1
TO, and E2

LO�E2
TO but the order of the three pairs of

frequencies depends on the particular model.8 It was argued
that the strong electron-longitudinal optical phonon interac-
tion in metallic tubes results in softening of the A1

TO mode
frequency leading to the appearence of a subband with a
broad and asymmetric lineshape in the lower-frequency
shoulder of the G− subband.9 In imperfect tubes, the latter
subband is often observed to widen and shift with the laser
excitation energy that was explained with double-resonance
processes in nanotubes.10 Due to the complexity of the pro-
cesses giving rise to the G band, this band has not been used
so far and possibly cannot be used for detailed structural
characterization of the nanotube samples.

The theoretical work on the phonon dispersion of nano-
tubes has so far been limited to calculations within a force-
constant model using the zone-folding method2 or for the
folded tube structure.3,4 The calculations for all tubes of
practical interest were made possible within the symmetry-
adapted scheme incorporated in a force-constant lattice-
dynamical model for nanotubes.4 However, this model has
the disadvantage of using force constants extracted from fit-
tings to experimental data on graphite and therefore these
constants may not describe the tube curvature effects well.
Another possibility is to obtain the phonon dispersion from
empirical tight-binding models,11–13 ab initio models14–16 us-
ing the supercell method, and ab initio models17,18 using the
perturbation technique. The tight-binding models generally
overestimate the bond-stretching phonon branches by
5–10 %. The reasons for this are the incomplete atomic basis
set used and the approximate description of part of the
electron-electron interactions by pair potentials. The ab initio
results overestimate the experimental data by about 1%. In
all cases, the calculations were limited to achiral tubes and to
a few chiral ones. The only known to the authors symmetry-
adapted ab initio code19 has not been used for phonon cal-
culations. The reasons for this are possibly the intractably
large supercells needed to calculate the force-constant matrix
in most cases and/or the necessity to add a linear-response
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module to the code for the direct evaluation of the dynamical
matrix. An implementation of the symmetry-adapted scheme
exists for the nonorthogonal tight-binding �NTB� model.20

This model allows for the easy incorporation of the linear-
response module and large-scale phonon calculations for
nanotubes. It is therefore tempting to accomplish calcula-
tions of the zone-center phonons for all tubes of practical
interest and to reveal the radius and chiral-angle dependence
of the most important of them: the RBM and the G-band
phonons.

Here we present the results for the radius and chiral-angle
dependence of the RBM and the G-band modes of a large
number of nanotubes obtained within a symmetry-adapted
NTB model.20,21 First, the tight-binding approach to the lat-
tice dynamics of nanotubes is presented �Sec. II�. In Sec. III,
the results for the phonon dispersion of graphene are dis-
cussed in comparison with available experimental and theo-
retical data. In Sec. IV, the phonon dispersion of three nano-
tubes is presented and the effect of the strong electron-
phonon interaction on the longitudinal tangential A1 modes is
discussed. The dependence of the frequencies of the men-
tioned zone-center phonons on the tube radius and chiral
angle is derived. It is shown that the zone-folding method
fails to reproduce this dependence fairly well for narrow up
to moderate-radius tubes, in which case, the use of the nano-
tube structure for phonon calculations is mandatory. The pa-
per ends up with conclusions.

II. THEORETICAL PART

A. The ideal nanotube structure

The ideal nanotube is a cylindrical structure consisting
from sp2 bound carbon atoms as in graphene. It can be
viewed as obtained by cutting an infinite strip of graphene
perpendicular to the lattice vector Ch=L1a1+L2a2 through its
beginning and end, and rolling up the strip into a seamless
cylinder �a1 and a2 are the primitive translations of graphene
and L1 and L2 are integer numbers�. The nanotube is
uniquely specified by the pair �L1 ,L2� for L1�L2�0. The
tubes are termed achiral �“armchair” tubes for L1=L2 and
“zigzag” tubes for L1�L2=0� and chiral �all other tubes�,
depending on the presence of a vertical plane of symmetry.
The tubes can also be characterized by their radius R and
chiral angle � which is the angle between the chiral vector
and the nearest zigzag of carbon-carbon bonds. The nanotube
has N carbon pairs in the unit cell. Similar to graphene,
where a two-atom unit cell can be mapped onto the entire
sheet by use of the two primitive translations vectors, a two-
atom unit cell can be mapped onto the entire tube by means
of two different primitive screw operations. A screw opera-
tion �S � t� translates the tube at a distance t along the tube
axis and rotates the tube at an angle � around the axis. Any
screw operation is a combination of integer numbers of the
two different primitive screw operations �S1 � t1�l1�S2 � t2�l2.
Such an operation coincides a given atom with its equivalent
one on the tube. Under a given screw operation, the position
vector of an atom in the zeroth unit cell R�0�� is transformed
into the position vector of an equivalent atom R�l��

which can be written mathematically as R�l��
= �S1 � t1�l1�S2 � t2�l2R�0��=S�l�R�0��+ l1t1+ l2t2, where l
��l1 , l2� is the cell index, �=1,2 labels the atoms in each
cell, and S�l�=S1

l1 ·S2
l2. The use of the screw symmetry in

atomistic calculations of nanotube properties makes possible
large-scale simulations of the physical properties of all tubes
of practical interest.4

B. The symmetry-adapted force-constant dynamical model

The force-constant lattice dynamical model for nanotubes
can be constructed as a Born model of the lattice dynamics
based on a two-atom unit cell.4,22 In the adiabatic approxi-
mation, the atomic motion is conveniently decoupled from
the electronic one. For small displacements u�l�� of the at-
oms from their equilibrium positions R�l��, it is customary
to use the harmonic approximation and represent the atomic
Lagrangian as a quadratic form of u�l��. Using the transla-
tional periodicity, rotational boundary condition, and the
screw symmetry of the tube, the solution to the equations of
motion can be sought in the form

u	�l�� =
1

	M





S	
�l�e
���ql�exp i�	�l�l + z�l�q − �t� ,

�1�

where M is carbon atom mass, 	�l�=2��l1N2− l2N1� /N, and
z�l�= �L1l2−L2l1� /N; l is the azimuthal quantum number �l
=0,1 , . . . ,N−1� and q is the one-dimensional wave vector
�−�q���. Substituting Eq. �1� in the equations of mo-
tion, one obtains the system of six homogeneous linear equa-
tions

�2�ql�e	���ql� = 

��


D	
�����ql�e
����ql� , �2�

where the dynamical matrix D	
���� �ql� is defined as

D	
�����ql� =
1

M


l��

�	��0�,l����S�
�l��exp i�	�l��l

+ z�l��q� . �3�

The eigenfrequencies �2�ql� are solutions of the characteris-
tic equation

�D	
�����ql� − �2�ql��	
����� = 0. �4�

Substituting the solutions �2�qlj� �j=1,2 , . . . ,6� in Eq. �2�,
one can obtain the corresponding eigenvectors e	�� �qlj� �j
=1,2 , . . . ,6�. For each q there are 6N vibrational eigen-
modes �phonons� but the number of the different �2�qlj� can
be lesser due to degeneracy. Using Eq. �3� it can be proven
that D is Hermitian and therefore �2�qlj� are real and
e	�� �qlj� can be chosen orthonormal.

C. The symmetry-adapted tight-binding model

In the force-constant model of the lattice dynamics, the
interatomic interactions are modeled by means of constant
parameters. Therefore, the effect of the tube curvature on the
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phonon dispersion is included only through the structural
parameters of the tube. Moreover, the electron density defor-
mation due to the ionic displacements is most often ignored.
On the other hand, the interatomic forces depend on the
atomic configuration and the electron density deformation is
an important factor modifying the phonon dispersion. An at-
tempt to include both effects can be made within the tight-
binding approach.

In the symmetry-adapted NTB model,20 in view of the
translational periodicity, rotational boundary condition, and
the screw symmetry, one assumes the one-electron wave
function � in the form of the following linear combination of
basis functions � �Ref. 20�

�kl�r� = 

r

cklr�klr�r� , �5�

where the basis functions � are represented by use of the
atomic orbitals � as

�klr�r� =
1

	Nc


lr�

ei�	�l�l+z�l�k�Trr��l��r��R�l� − r� . �6�

Here �r�R�l�−r� are based on atoms with position vector
R�l� and r=1,2 , . . . ,s labels the orbitals in the two-atom unit
cell �s=2 for the �-band TB model and s=8 for the all-
valence TB model�, and Nc is the number of two-atom unit
cells in the tube. Trr��l� are the matrices of the induced rep-
resentation of the screw symmetry group in the space of the
atomic orbitals.

After substitution of Eqs. �6� and �5� in the one-electron
Schrödinger equation for the tube, the electronic problem is
transformed into the matrix eigenvalue problem



r�

Hklrr�cklr� = Ekl

r�

Sklrr�cklr�, �7�

where the quantities Hklrr� and Sklrr� are given by

Hklrr�
= 


lr�

ei�	�l�l+z�l�k�Hrr��l�Tr�r��l� �8�

and

Sklrr�
= 


lr�

ei�	�l�l+z�l�k�Srr��l�Tr�r��l� . �9�

Here Hrr��l� and Srr��l� are the matrix elements of the Hamil-
tonian and the overlap matrix elements between the atomic
orbitals �r�R�0�−r� and �r��R�l�−r�.

The set of linear algebraic equations �7� has nontrivial
solutions for the coefficients c only for energies E which
satisfy the characteristic equation

�Hklrr�
− EklSklrr�

� = 0. �10�

The solutions of Eq. �10�, Eklm, are the electronic energy
levels �m=1,2 , . . . ,s�. The corresponding eigenvectors cklmr

are determined from Eq. �7�.
For structural relaxation of a nanotube one needs the ex-

pressions for the total energy and the forces acting on the
atoms. The total energy of a nanotube �per unit cell� is given
by

E = 

klm

occ

Eklm +
1

2 

ij�i�j�

��rij� , �11�

where the first term is the band energy EBS �the summation is
over all occupied states� and the second term is the repulsive
energy Erep, consisting of repulsive pair potentials ��r� be-
tween pairs of nearest neighbors. The band contribution to
the force on the atom with a position vector R is given by the
Hellmann-Feynman theorem

FBS = 

klm

occ
�Eklm

�R
= 


klm

occ



rr�

cklr
* � �Hklrr�

�R
− Eklm

�Sklrr�

�R
cklr�.

�12�

The repulsive contribution to the force Frep is the first deriva-
tive of the total repulsive energy with respect to the position
vector R.

D. The tight-binding approach to the lattice dynamics of
carbon nanotubes

The lattice dynamics of nanotubes can be studied by di-
rectly calculating the force-constant matrix. In this method, a
large enough supercell of the nanotube is considered so that
the displacements of atoms in it will not be felt by equivalent
atoms in adjacent supercells. This method cannot be applied
to all nanotubes because the condition of commensurability
of the supercell with the unit cell of the nanotube and the
condition for a tractable size of the supercell can be ensured
for all achiral tubes but only for a small fraction of chiral
tubes. An alternative method consists in the direct calculation
of the dynamical matrix. This matrix can be derived within
the tight-binding model considering the change in the total
energy due to a static lattice deformation �a phonon� �we
omit the index ql of e for brevity�

u�l�� = S�l�e���ei�	�l�l+z�l�q� + c.c. �13�

The band contribution to this change can be expressed with
the change of the one-electron eigenenergies up to second
order in perturbation theory. The derivation of the dynamical
matrix is too complicated because of the nonorthogonality of
the basis functions but it is quite similar to that for finite
systems.12 Here it suffices to provide the final expression for
the change of the band energy EBS

EBS − EBS
�0� = 


kn

ckn
+ �H�2� − EknS�2��ckn − 


kn

ckn
+ �H�1�

− EknS�1��cknckn
+ S�1�ckn + 2 


knn�

�Ekn

− Ek+qn��
−1ckn

+ �H0+
�1� − EknS0+

�1��ck+qn�ck+qn�
+ �H+0

�1�

− EknS+0
�1��ckn + 2 


knn�

�Ekn − Ek−qn��
−1ckn

+ �H0−
�1�

− EknS0−
�1��ck−qn�ck−qn�

+ �H−0
�1� − EknS−0

�1��ckn. �14�

Here n� lm and n�� lm�; the summation is carried out over
the entire Brillouin zone and all occupied states �index n�
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and empty states �index n��. It can be shown that for q=0,
the last two sums give finite values except for armchair
tubes. H�1� and H�2� are first- and second-order changes of H
given by the expressions

H�2� =
1

2

l�

ei�	�l��l+z�l��k��	�
Hu	�0�l����u
�0�l���� ,

�15�

H�1� = 

l�

ei�	�l��l+z�l��k��	Hu	�0�l���� , �16�

where �	H and �	�
H are partial derivatives with respect
to u	�0�l�����u	�0��−u	�l���� and the exponentials are re-
moved from u	 and u
. H0+

�1�, H0−
�1�, H+0

�1�, and H−0
�1� are similar

to Eqs. �15� and �16� but u�0�l���� is substituted

with e*���ei�	�l��l+z�l��q�−S�l��e*����, e���e−i�	�l��l+z�l��q�

−S�l��e����, e���−S�l��e����ei�	�l��l+z�l��q�, and e*���
−S�l��e*����e−i�	�l��l+z�l��q�, respectively. Finally, S�1�, S�2�,
S0+

�1�, S0−
�1�, S+0

�1�, and S−0
�1� are defined by expressions similar to

those for the corresponding H’s but with H replaced by the
overlap matrix S.

The repulsive energy Erep is expanded in series of
u	�0�l���� up to second power. The dynamical natrix is de-
rived from the expression

D	
�����ql� =
1

M

�2�EBS + Erep�
�e	���ql��e
����ql�

. �17�

The phonon eigenvalues and eigenvectors are then obtained
as solutions of Eq. �2�.

III. RESULTS AND DISCUSSION

A. Phonon dispersion of graphene

We relaxed the atomic structure of graphene within the
NTB model using over 2000 k points in the irreducible Bril-
louin zone. The relaxed lattice constant was 2.458 Å. The
large number of k points was not necessary for the structural
relaxation but it was crucial for achieving convergence of the
phonon frequencies within 1 cm−1. The reason for the slow
convergence of the latter can be found in the presence of
crossing electronic bands at the Fermi energy at the K and K�
points of the Brillouin zone. For each pair of electronic
states, belonging to these two bands and having very small
energy difference, the last two terms in Eq. �14� become very
large. However, this does not cause any divergence problems
because the total contribution from the k points around the K
and K� points is finite.

The calculation of the phonon dispersion of graphene was
performed using the dynamical matrix �17�. In this approach,
one calculates the electronic band structure for the unit cell
only and uses only the electronic eigenenergies and eigen-
functions for the unit cell atoms in the estimation of the
matrix elements and the summation over the Brillouin zone.
Therefore, phonons in any point of the Brillouin zone can be
calculated with the same computational effort. In this re-
spect, this approach has an advantage over the supercell

method where only phonons with wavelength commensurate
with the supercell can be calculated.15 On the other hand, in
the dynamical matrix method, one has to sum over an infinite
number of unoccupied electronic bands and the use of a fi-
nite number of such bands can affect the final results.

The obtained phonon dispersion of graphene in shown
with crosses in Fig. 1 in comparison with available experi-
mental data.23–25 It is clear, that while there is an overall
good agreement for the out-of-plane phonons �ZA and ZO�,
there is a systematical overestimation of the in-plane ones of
bond-stretching character �TA, LA, TO, and LO� of about
11%. This overestimation can be reduced by downshifting
the mentioned phonon branches by a factor of 0.9. The
scaled branches, shown by empty circles, agree quite well
with the experimental points and the ab initio results.15,25

Since we are interested in the prediction of the bond-
stretching modes, we compare the various data in the high-
frequency region. The values of the in-plane phonon fre-
quencies at points �, M, and K are given in Table I. At the �
point, the experiment yields 1565, 1577, and 1583 cm−1,
while theory predicts values of 1595 cm−1 �Ref. 15�,
1581 cm−1 �Ref. 25�, and 1582 cm−1 �here�. All data exhibit
characteristic “overbending” of the LO phonon branch along
�M and �K. The experimental overbending, understood as
the highest LO frequency with respect the �-point one, is
about 30 cm−1. Theory gives overbending of �40 cm−1 �Ref.
15�, �35 cm−1 �Ref. 25�, and �54 cm−1 �this work�. Largest
deviations between theory and experiment are present for the
TO branches around the K point. There is no measurement of
the TO frequency at the K point and the cubic spline extrapo-
lation yields a splitting between LO�K� and TO�K� phonons
of 70 cm−1 �Ref. 25�. The predicted values for this splitting
has a large spread: 140 cm−1 �Ref. 15�, 80 cm−1 �Ref. 25�,
and vanishingly small �here�.

The discrepancy between the various estimations of the
LO�K�−TO�K� splitting can be explained in terms of a Kohn
anomaly originating from strong electron-phonon interac-
tions. The discontinuous first derivative with respect to the
wave vector of the LO branch at the � point and the TO

FIG. 1. The calculated phonon dispersion of graphene within the
NTB model �crosses� in comparison with available experimental
data �solid symbols�. The phonon curves, downshifted by a factor of
0.9, are shown by empty circles. The discontinuous first derivative
of the LO branch at the � point and the TO branch at the K point are
signatures of Kohn anomaly at these points �Ref. 26�.
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branch at the K point, clearly seen in Fig. 1, is a manifesta-
tion of such anomaly.26 Since this effect arises from electrons
close to the Fermi energy, the anomalous behavior is strongly
suppressed with the increase of the temperature. The ab ini-
tio models use finite temperature population of the electronic
levels15,26,17,18 which results in a higher TO phonon branch at
the K point compared to the NTB one, computed at zero
temperature. We have not studied the effect of finite tempera-
ture on this phonon branch because this goes beyond the
scope of this paper. However, we performed all calculations
of the RBM and the G-band phonons of nanotubes in the
next sections at temperature of 300 K. Technically, this is
done by using partial occupancy of the electronic bands in
Eq. �14� given by the Fermi-Dirac distribution function.

B. Phonon dispersion of carbon nanotubes

The nanotube structure of all 300 nanotubes in the radius
range from 2 to 12 Å was relaxed as described in Ref. 20.
The phonon dispersion of these tubes was then calculated for
the relaxed tube structure in the one-dimensional Brillouin
zone of the tubes. The convergence of the phonon frequen-
cies up to 1 cm−1 in semiconducting tubes, tiny-gap tubes,
and most of the branches of armchair tubes was achieved
with a number of k points given by the expression 5000/	N.
The obtained phonon dispersion for three narrow tubes
�11,0�, �12,0�, and �7,7� with small N is shown in Fig. 2. The
comparison between the behavior of the phonon branches of
these tubes reveals anomalous behavior of certain phonon
branches in tubes �12,0� and �7,7� due to strong electron-
phonon interactions. The tube �12,0� is metallic according to
the �TB picture but is a tiny-gap semiconductor according to
the NTB model.20 However, the tiny gap is not sufficient for
removing the anomalous branch softening and, in the study
of this anomaly, we shall refer to both armchair and tiny-gap
tubes as “metallic” ones.

In order to reveal the nature of the anomalous behavior in
metallic tubes, we assume k-independent numerator in Eq.

�14�. It is then clear that the strong coupling of two electrons
with wave vectors k1 and k2 with length kF at the Fermi
surface by a phonon with a wave vector q=k2−k1 leads to
small values of the denominator, divergence of the dynami-
cal matrix, and anomalous softening of certain phonon
branches, which is known as the Kohn anomaly. In nano-
tubes, there are two possible cases: �a� k2=k1=kF and there-
fore q=0, and �b� k2=−k1=kF and q=2kF �up to a reciprocal
lattice vector�.

Two branches of tube �12,0� soften around the zone cen-
ter. For our study it is important that the longitudinal A1
phonon of the G band �or, briefly, A1

LO phonon� of the higher-
frequency branch shows pronounced softening. The presence
of a tiny gap ensures, however, the convergence of the zone-
center phonons of these branches with the increase of the
number of the k points.

The phonon dispersion of the armchair tube �7,7� shows
logarithmic anomalies at the � point and in two mirror points
inside the Brillouin zone. For tube �7,7�, kF=0.325 �in units
of 2�� and Kohn anomalies are observed at q=0 �the A1

LO

phonon and a counterphase radial A1 phonon� and q=2kF
=2�0.325=0.65 or, reduced to the first Brillouin zone q
=0.35 �a circumferential phonon and a radial phonon, both
belonging to B1 branches� �see Figs. 2 and 3�. At low tem-
perature, the Kohn anomalies at q=0 can be the reason for
relaxation of the nanotube to a distorted structure with pres-
ervation of the unit cell, while the anomalies at q=0.35 can
give rise to incommensurate distorted structures. The type of
the distorted structures depends on the competition of the
soft phonons with temperature.18

Among the RBM and the G-band phonons, only the A1
LO

phonons of metallic tubes show Kohn anomaly. The simplest
way to suppress the Kohn anomaly and to simulate a more
realistic situation is by introducing thermal population of the
electronic bands in metallic tubes: close to the crossing of
the bands at the Fermi energy in armchair tubes and around
the gap in tiny-gap semiconductors. The use of rather large
and unrealistic broadening factors �0.1 eV ��1200 K�
yields higher A1

LO frequencies than the observed ones.15 We
use a realistic broadening factor of 0.025 eV ��300 K� �Ref.

TABLE I. Calculated phonon frequencies in several points of
the Brillouin zone of graphene in comparison with available experi-
mental and computational data.

Phonon
Branch Point Expt.a Calc.a Calc.b

Calc. here
��0.9�

� 1565 1581 1595 1582

TO M 1390 1425 1442 1430

K 1265c 1300 1370 1262

� 1577/1583 1581/1582 1595 1582

LO M 1323 1350 1380 1384

K 1194 1220 1240 1265

� 0 0 0 0

LA M 1290 1315 1339 1324

K 1194 1220 1240 1262

aReference 25.
bReference 15.
cObtained from a cubic spline extrapolation �Ref. 25�.

FIG. 2. The phonon dispersion of three narrow nanotubes �11,0�,
�12,0�, and �7,7� calculated within the NTB model. Certain
branches of tubes �12,0� and �7,7� show Kohn anomaly at the zone
center and at k points inside the Brillouin zone �bold lines� which
can be attributed to strong electron-phonon interactions.
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18� in all calculations of the RBM and the G-band modes in
the following sections. The finite temperature simulation in-
creases the A1

LO phonons frequency of tiny-gap semiconduc-
tors by about 80 cm−1. However, this procedure does not
remove the logarithmic divergence for armchair tubes in the
NTB model. This can be done in more sophisticated ap-
proaches where the electronic screening is accounted for.18

Tubes with large N have large number of optical phonon
branches which are almost disperseless and cover densely the
graph. In this case, the phonon density of states would be a
more suitable quantity for representation of the vibrational
eigenstates. The calculation of this quantity goes outside the
scope of this paper.

C. Radial-breathing mode

Next, we turn our attention to the RBM of nanotubes
because it gives most intense Raman signal and can be used
for nanotube characterization by Raman scattering spectros-
copy. The atomic motion in this mode is, within a few de-
grees, a uniform radial one, the departure from pure radiality
being larger for narrow tubes. Although normaly one can
assume a pure radial motion for the RBM, this assumption
has to be used with care because it can bring about large
errors in some cases, e.g., in the Raman intensity simula-
tions.

The calculated RBM frequencies of all 300 nanotubes in
the radius range from 2 to 12 Å were downshifted by 0.9 for
best agreement with available ab initio ones for narrow
tubes.27 Again as with the phonon dispersion of graphene,
the best downshift factor was found to be �0.9. The down-
shifted RBM frequencies �RBM were fitted by the chirality-
dependent expression

�RBM =
a2

Rn2
+

a3

Rn3
cos 3� , �18�

where a2, a3, n2, and n3 are fitting parameters. The best fit
with rms accuracy of 1 cm−1 is illustrated in Fig. 4 for R
�5.5 Å and the inset of Fig. 4 for R�12 Å, and the best fit
parameters are provided in Table II. The adding of more

power terms to the fitting expression did not improve much
the fit to the calculated data.

The discrete atomic structure of the tubes gives rise to a
chirality dependence of the RBM frequency, especially pro-
nounced for narrow tubes, as seen in Fig. 4. The data show
well-expressed “family” patterns with L1+L2=const. The
end points of each family are those of zigzag tubes �lower
frequency end� and armchair �or close to armchair type�
tubes �higher-frequency end�. It is interesting to note that all
data lie in a strip with the points for zigzag tubes at the lower
boundary and the points for armchair tubes at the upper
boundary. In other words, close-to-armchair tubes have
slightly higher RBM frequencies than those for close-to-
zigzag tubes with similar radii. Similar behavior have the
points of the ab initio data for narrow tubes �crosses in Fig.
4�.27

Finally, as it is customary, the calculated RBM frequen-
cies were fitted by a much simpler and chirality-independent
power law a /R where a=1141 cm−1 Å �see Fig. 4, inset�.
This value of a is in agreement with the ab initio estimates of
1160 �Ref. 14�, 1170 �Ref. 27�, and 1144 �Ref. 15�.

D. G-band modes

We calculated the G-band modes frequencies for all 300
nanotubes in the radius range from 2 to 12 Å. The eigenvec-
tors correspond with accuracy of several degrees to circum-
ferential or axial atomic displacement. This allows us to refer
to these modes as transverse and longitudinal �TO and LO�.
The obtained G-band frequencies were downshifted by a fac-
tor of 0.9 and all but the A1

LO�M� ones of metallic �M� tubes
were fitted by use of the expression

�G band = a0 +
a1

Rn1
+

a2

Rn2
+

a3

Rn3
cos 3� , �19�

where a0, a1, a2, a3, n1, n2, and n3 are fitting parameters, a0
is the same for all G-band phonons, and a1 and n1 are set to

FIG. 3. The eigenvectors of the soft phonons at points q=0 and
q=2kF of nanotube �7,7� calculated within the NTB model. These
phonons are either A1 ones, or belong to B1 phonon branches. The
upper figures correspond to higher phonon frequency and vice
versa, as indicated by the side arrow. FIG. 4. The RBM frequency of all nanotubes in the radius range

from 2 to 12 Å, obtained by fitting Eq. �18� to the NTB results,
reduced by a factor of 0.9. The data were fitted by the power law
1141/R �inset�. The RBM frequencies in the small-radius region are
shown in comparison with available ab initio results �crosses� �Ref.
27�.

V. N. POPOV AND P. LAMBIN PHYSICAL REVIEW B 73, 085407 �2006�

085407-6



zero for the A1
TO, E1

LO, and E2
LO phonons. The obtained best fit

parameters are given in Table II. For the sake of clarity, we
present in Fig. 5 only the results of the fittings. The fits have
rms accuracy below 2 cm−1 with larger deviations for nar-
rower tubes. The calculated data for the A1

LO�M� frequencies
of tiny-gap semiconducting tubes could not be fitted by
means of Eq. �18�. In fact, the smearing of the Kohn
anomaly and the upshift of the softened mode frequency de-
pends crucially on the thermal population of the electronic
states close to the Fermi energy through an exponential fac-
tor. Therefore, we tried fitting the latter data with the combi-
nation of exponentials

�M = a0 + a1e−b1R + a2e−b2R cos 3� �20�

and obtained satisfactory r.m.s. accuracy of the same order as
for the other G-band modes �see Fig. 5�. Here, a0
=1582 cm−1, a1=−433.08 cm−1, b1=0.30037 Å, a2
=340.45 cm−1, and b2=0.64747 Å. The data for armchair

tubes were not included in the fitting because of the inherent
divergence of the A1

LO�M� frequency but we suppose that Eq.
�20� should give a fair prediction for this case as well and the
points for armchair tubes were added to the A1

LO�M� strip in
Fig. 5.

For large radii, the derived frequencies of all six G-band
modes tend to the frequency of the in-plane optical mode of
graphite with measured value of 1582 cm−1. For small radii,
there is a well-expressed curvature-induced softening of the
frequencies of all modes and additional softening of the
A1

LO�M� strip because of strong electron-phonon interactions.
For moderate- and large-radius tubes, the inequality
A1

LO�M��E2
LO�E1

LO�A1
TO�A1

LO�E1
TO�E2

TO holds for the
frequencies of the six modes. This behavior agrees with the
ab initio results15 except for the larger E1

TO−E1
LO and E2

TO

−E2
LO splitting. For example, for tube �12,6�, we obtain val-

ues of 31 and 64 cm−1, which are almost twice larger than
the ab initio ones 15 and 48 cm−1, obviously due to the
larger overbending of the LO phonon branch of graphene
predicted here. The same is true for the downshift of the A1

LO

frequency of metallic tubes relative to the optical phonon
frequency of graphene, e.g., the NTB value of 63 cm−1 for
the tiny-gap semiconductor �12,6� is larger than the ab initio
one of 48 cm−1 �derived from the fitting expression 300/R to
ab initio data� and the experimental one of 51 cm−1 �derived
from the empirical expression 1987.5/R�.25 On the other
hand, the A1

LO−A1
TO splitting of 32 cm−1 for the semiconduct-

ing tube �10,0� is smaller than the ab initio result of about
40 cm−1.

The effect of the tube curvature on the radius dependence
of the G-band modes can be seen in comparison with the
zone-folding results �see Fig. 5�. The A1 modes are zone-
center ones in graphene and they do not change upon zone
folding. Therefore, the zone-folded A1 mode frequencies lie
on a horizontal line. The A1 NTB data is an almost horizontal
line down to R�6 Å and a downward going curve for R
�6 Å. Therefore, the curvature effects on the A1 are essen-
tial below 6 Å and, in this radius range, calculations based
on the relaxed tube structure have to be carried out instead of
using the zone-folded results. The E1 and E2 modes of nano-
tubes originate from the inside of the Brillouin zone of
graphene. For this reason, the zone-folding method yields
radius dependence of these tube modes for the NTB data but
the zone-folding data do not have the profound chirality de-
pendence of the NTB data. Again, we notice that while the

TABLE II. Fitting parameters of Eq. �18� for the RBM and all G-band modes with the exception of the A1
LO ones of metallic tubes. For

the RBM, a0=0, while the value a0=1582 cm−1 is the same for all G-band modes.

Mode a1 n1 a2 n2 a3 n3

RBM 0 0 1300.28 1.00692 −149.83 2.34283

A1�LO� −386.90 1.68479 196.12 1.01650 −369.46 2.81735

A1�TO� 0 0 −768.09 2.16246 53.66 1.49888

E1�LO� 0 0 −641.98 2.47920 −391.14 2.57209

E1�TO� −833.31 1.64039 457.86 1.06488 −700.32 3.11029

E2�LO� 0 0 −690.21 1.99125 −818.61 2.56233

E2�TO� −1567.81 1.76031 740.95 1.05585 −826.76 2.88743

FIG. 5. The G-band mode frequencies for all nanotubes in the
radius range from 2 to 12 Å obtained by fitting Eqs. �19� and �20�
to the NTB results, reduced by a factor of 0.9. The corresponding
frequencies, obtained by zone-folding of the NTB phonon disper-
sion of graphene, are provided for comparison. Major differences
between both sets of data are observed for R�6 Å. All curves tend
to the optical phonon frequency of graphene of 1582 cm−1 �dashed
line� in the large-radius limit. The A1

LO mode frequency of metallic
tubes exhibits large softening due to strong electron-phonon
interactions.
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zone-folding method gives acceptable results for radii larger
than �6 Å, this method is no longer reliable for smaller
radii.

The discrete atomic structure begins to manisfest itself
through the chirality dependence of the G-band modes fre-
quencies. Similarly to the RBM data, the points here show
clear pattern arrangement for L1+L2=const but also for
2L1+L2=const. This behavior is best seen in the small-radius
region, as shown in Fig. 6. Again as for the RBM, the ob-
tained points lie on strips, which become wider for smaller
radii. The points for close-to-armchair tubes are situated at
the upper boundaries of the strips and the points for close-
to-zigzag tubes are at the lower boundaries. An exclusion to
this are the A1

TO data where the close-to-zigzag tube frequen-
cies are higher than those of the close-to-armchair tubes.
This peculiar behavior can be observed for the data from
phenomenological force-constant calculations.4 In the latter
case, two different assumptions for the tube structure were
made: �1� equal bond-length and equal-bond-angle structure
and �2� rolled-up tube structure �see, Sec. II A�. Therefore,
there is no evidence for correlation of the mentioned behav-
ior of the A1

TO data with the bond lengths and bond angles in
tubes. Obviously, this behavior is mainly due to the nonpla-
narity of the three adjacent bonds and the resulting softening
of the bond-stretching and angle-bending force constants.

The curvature-induced change of the A1 modes has been
observed in the case of isolated nanotubes.5 The limited ra-
dius distribution of the tubes allowed to conclude that �1� the
A1 modes frequencies are chirality independent, �2� the A1
data lie on two subbands: a higher-frequency nondispersive
one G+ of the A1

LO mode and a lower-frequency dispersive
one G− of the A1

TO mode, �3� the G− subband has a higher-
frequency component due to semiconducting tubes and a
lower-frequency component due to metallic tubes, and �4�
both G+ and G− subbands contain points of metallic and
semiconducting tubes. Our extended study reveals that both

subbands soften at small radii though to a different extent.
According to the calculated data for the A1 modes of all
considered tubes, we can conclude that �1� the G+ strip
should be due only to A1

LO modes of semiconducting tubes
with no contribution from metallic tubes �see also Ref. 15�,
�2� the semiconducting G− subband should contain contribu-
tions from A1

TO modes of both semiconducting and metallic
tubes, and �3� the metallic G− subband should arise from A1

LO

phonons of metallic tubes. The softening of the latter modes
depends on temperature and this effect requires additional
study. The major and quite puzzling discrepancy between
theory and experiment is the observation of lines due to me-
tallic tubes in the G+ subband and the assignment of the
lower-frequency component of the G− subband to A1

TO

phonons, which is in contradiction with the theoretical pre-
dictions of strong-electron–A1

LO phonon interactions in me-
tallic tubes accompanied by drastic softening of the A1

LO pho-
non frequencies. In order to resolve the puzzling
disagreement of the determined subband character with the
observations, precise experimental data and more sophisti-
cated computer simulations are necessary.

IV. CONCLUSIONS

In this paper, we show that a semiquantitative description
of the phonon dispersion of the carbon nanotubes can be
achieved by using the dynamical matrix method within the
tight-binding electronic band-structure picture of the tubes.
The symmetry-adapted scheme, which is incorporated in the
tight-binding model, allows for handling practically all cur-
rently produced carbon nanotubes.

The obtained data for the frequency of the RBM and the
G-band modes were found to show curvature-induced soft-
ening with the decrease of the tube radius as well as well-
expressed chirality dependence and clearly seen family pat-
terns. Major differences between the NTB and zone-folding
results are observed for radii smaller than �6 Å that can be
considered as the limiting tube radius for reliability of the
zone-folding predictions. We found that the NTB eigenvec-
tors of the RBM and the G-band modes correspond within
several degrees to predominantly radial, axial, and circum-
ferential atomic motion.

The strong-electron–A1
LO phonon interaction in metallic

nanotubes leads to Kohn anomalies in the phonon dispersion.
In particular, the frequency of the A1

LO phonons softens be-
low that of the A1

TO ones and therefore the A1
LO phonons

should give rise to a lower-frequency component of the G−

subband of the Raman spectra. This result is in disagreement
with the wide-spread assignment of this component to A1

TO

phonons of metallic nanotubes.
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FIG. 6. The small-radius region of the graph in Fig. 5 showing
the strong chirality dependence of the G-band mode frequencies
�solid circles�. The empty circles on the left panel only mark the
positions of the A1

LO�M� frequencies as obtained from Eq. �19�. The
bottom strip of points on the same panel gives the A1

LO�M� frequen-
cies derived by fitting Eq. �20� to the NTB results. The circles on all
panels show characteristic family patterns for L1+L2=const and
2L1+L2=const illustrated with solid and dotted lines, respectively.
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