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We use classical molecular dynamics simulations to study the collapse of single �SWNT� and double-walled
�DWNT� carbon nanotube bundles under hydrostatic pressure. The collapse pressure �pc� varies as 1 /R3, where
R is the SWNT radius or the DWNT effective radius. The bundles show �30% hysteresis and the hexagonally
close packed lattice is completely restored on decompression. The pc of DWNT is found to be close to the sum
of its values for the inner and the outer tubes considered separately as SWNT, demonstrating that the inner tube
supports the outer tube and that the effective bending stiffness of DWNT, DDWNT�2DSWNT. We use an elastica
formulation to derive the scaling and the collapse behavior of DWNT and multiwalled carbon nanotubes.
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I. INTRODUCTION

Since their discovery, carbon nanotubes have been subject
to intense theoretical and experimental investigations due to
their fascinating structural, electronic, and mechanical
properties.1 Carbon nanotubes are showing great promise in
such diverse fields as nanoelectronics, actuators, sensors,2

nanofluidics, hydrogen storage, and high-strength materials.
The mechanical properties of carbon nanotubes depend on
the number of coaxial graphitic rings that go into their mak-
ing. Significant advances have been made in the understand-
ing of single �SWNT� and multiwalled �MWNT� carbon
nanotubes. Double-walled carbon nanotubes �DWNT� have
been observed and synthesized3,4 more recently. Being the
simplest of the MWNT, they are ideal systems to study the
evolution of various properties from the single to the multi-
walled regime.

High-pressure Raman experiments on SWNT bundles5–7

point to a structural phase transition at �2 GPa. The current
understanding is that the initially circular nanotube cross sec-
tion is distorted to an oval shape under pressure. High-
pressure X-ray diffraction studies also indicate a phase
transition8 from the ambient triangular lattice symmetry,
which reappears under decompression. Molecular dynamics
simulations suggest that SWNT bundles9,10 as well as iso-
lated tubes11,12 collapse under hydrostatic pressure and that
the collapse pressure varies as an inverse power law of the
tube radius. More recently, several workers13–17 have used
Raman spectroscopy to study bundles of DWNT under hy-
drostatic pressure. They conclude that the environment inside
the outer tube is highly defect-free and unperturbed, that the
outer tube acts as a protective shield for the inner tube, and
that the inner tube provides structural support to the outer
tube.

In this paper, we describe a set of molecular dynamics
simulations performed to investigate the behavior of DWNT
under pressure, focusing on the response of the inner and the
outer tubes. These results are contrasted with similar MD
simulations on bundles of SWNT. Observed results are inter-
preted within the framework of the elastica theory.

II. SIMULATION METHODOLOGY

We have used DREIDING,18 a standard generic macromo-
lecular force field, in all our molecular dynamics �MD� simu-
lations. Table I lists the force field parameters used to calcu-
late intra- and inter-molecular interactions. Elliott et al.9 have
successfully used this force field to study the collapse of
SWNT bundles under hydrostatic pressure. Our simulations
have been performed using MODULASIM,19 a modular and
general purpose molecular modeling package. The ensemble
used was one of constant particle number, pressure, and
temperature �NPT�. The temperature �300 K� and the
applied hydrostatic pressure were maintained using the
Berendsen thermostat and barostat.20 The simulation cell
consisted of 16 independent SWNT or DWNT arranged
in a hexagonally close packed 4�4 bundle, with periodic
boundary conditions and pressure applied along all three
mutually perpendicular directions. The tubes were ten unit
cells long �2.3 nm�. It has been found9 that nine independent
tubes, ten unit cells long, are sufficient to avoid finite
size effects. The MD simulations were carried out on four
SWNT, �5,5�, �10,10�, �15,15�, and �20,20�, and four
DWNT, �5,5�@�10,10�, �7,7�@�12,12�, �10,10�@�15,15�,
and �15,15�@�20,20� bundles using the standard velocity
Verlet algorithm to integrate the equations of motion. The
gap between the inner and the outer tubes is �3.4 Å, close to
the interlayer gap in graphite. The bundles were initially
equilibrated at atmospheric pressure and subsequently sub-
jected to stepwise monotonically increasing hydrostatic pres-
sure increments, allowing the unit cell volume to equilibrate
for at least 10 ps at each step. The simulation time step was
1 fs. Information about the structural transition was obtained
by measuring the unit cell volume after equilibration at each
hydrostatic pressure step.

III. RESULTS AND DISCUSSION

All the SWNT and DWNT equilibrated at atmospheric
pressure have nearly circular cross sections, as shown in
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Figs. 1�a� and 1�c� for a SWNT and a DWNT bundle, respec-
tively. At atmospheric pressure, rmin /rmax�0.93 where rmin
and rmax are the smallest and the largest distances from the
center to the circumference of the tube cross section. To
study the structural transition, we plot the reduced volume
�V /V0�, where V0 is the unit cell volume at atmospheric pres-
sure, for the various SWNT bundles as a function of pressure
as shown in Fig. 2�a�. It is clear that each of the four SWNT
bundles undergoes a spontaneous structural transition at a
critical pressure �pc�, which decreases as the radius of the
tubes increases, in agreement with previously published
results.9,10 Unless otherwise specified, pc refers to the struc-
tural change pressure on the loading curve. On plotting the
reduced volume versus pressure for the DWNT bundles, as
shown in Fig. 2�b�, we once again observe clear structural
transitions at well-defined critical pressures. Up to the criti-
cal pressure, the tube cross sections remain nearly circular
with slight deformations from the circular shape. When the
applied hydrostatic pressure exceeds pc, the tube cross sec-
tions assume an elliptical shape. Further increase in pressure
results in a dumbbell shape as shown in Figs. 1�b� and 1�d�.
The loading and unloading curves show a �30% hysteresis
in all the bundles studied. The hysteresis is calculated as
100% � �pc

loading− pc
unloading� / pc

loading. The hexagonally close
packed lattice is completely restored in all SWNT and
DWNT bundles on decompression. A closer look at the criti-
cal pressures of the DWNT bundles in Fig. 2�b� reveals sev-
eral interesting features. First, we notice that the pc of a
DWNT bundle is greater than the pc of an SWNT bundle
of the outer tubes alone. For example, the pc of the
�10,10�@�15,15� DWNT is 4.1 GPa, a value higher as com-
pared to the pc of �15,15� SWNT �0.9 GPa�. This shows that
the inner tube supports the outer tube under hydrostatic pres-
sure. Second, the pc of the DWNT bundle is even higher than
the pc of an SWNT bundle of the inner tubes alone. For the
�10,10�@�15,15� tubes, 4.1 GPa �pc of the DWNT bundle� is
higher than 3.2 GPa �pc of �10,10� SWNT bundle�. Having
demonstrated that the pc of a DWNT bundle is higher than
the pc of both the inner and the outer tubes, we now ask
whether one can predict the pc of a DWNT bundle with the
knowledge of the pc of the inner and the outer tubes. From
Fig. 2, we see that the pc of a DWNT bundle is close to the
sum of the pc of the inner and the outer tubes. In our ex-
ample, 4.1 GPa �pc of the �10,10�@�15,15� DWNT bundle�

is equal to 3.2 GPa �pc of �10,10� SWNT bundle� plus
0.9 GPa �pc of �15,15� SWNT bundle�. In Sec. IV, we derive
an analytical result that demonstrates this behavior.

Figure 3�a� shows the collapse pressure of the SWNT
bundles versus the tube radius along with a 1/R3 fit.11,12 If
we now define an effective radius of a MWNT with n walls,
as 1 /Ref f

3 = �1/n��i=1
n �1/Ri

3�, the collapse pressure of the
DWNT bundles is found to follow a 1/Ref f

3 dependence as
seen from Fig. 3�b�. Let D be the bending modulus of the
graphene sheet so that the energy per unit surface area asso-
ciated with curvature k is given by21–24 ue= �D /2�k2. The
value of DSWNT has been estimated from a plot of the single
point energies per unit surface area of seven isolated SWNT
as a function of 1/R2 �Fig. 4�a��, which gives the value of
DSWNT to be 2.9 eV. The mean curvature for a bundle was
calculated by averaging its local value at each atom of each
tube �see the Appendix�. Using the values of curvature and D
�from Fig. 4�, the values of the elastic energy per unit surface
area for all the bundles were calculated and are plotted as a
function of pressure in Fig. 5. It is clear that the elastic en-
ergy, as expected, follows the structural transition shown in
Fig. 2. The insets show that the relative increase in elastic

TABLE I. Parameters for the C �R atom type �sp2 hybridized carbon atom involved in resonance�, in
DREIDING,18 a standard generic macromolecular force field used in all our molecular dynamics simulations.

Ebond�R�= 1
2Kb�R−R0�2 R0 1.39 Å Kb 1050 �kcal/mol� /Å2

Eangle���= 1
2K��cos �−cos �0�2 �0 120° K� 100 �kcal/mol� / rad2

Etorsion���= 1
2V�1−cos�n��−�0��� �0 180° V 25 kcal/mol n 2

Einv��� = 1
2

Ki

�sin �0�2 �cos � − cos �0�2
�0 0° Ki 40 �kcal/mol� / rad2

EvdW�R� = D0	
R0

R
�12

− 2
R0

R
�6� R0 3.8983 Å D0 0.0951 kcal/mol

FIG. 1. The upper figures show a 4�4 bundle of �10,10� SWNT
at �a� p=1 atm �before collapse� and �b� p=6.0 GPa �after col-
lapse�. The bottom figures show a 4�4 bundle of �10,10�@�15,15�
DWNT at �c� p=1 atm �before collapse� and �d� p=10.2 GPa �after
collapse�.
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energy during collapse increases linearly with radius for both
SWNT and DWNT, which can be understood by the follow-
ing argument. The elastic energy per unit length of a nano-
tube of radius R before collapse is Ubc=D� /R. After col-
lapse, the tube has flat regions, which have no elastic energy,
and bent regions. The shape of the bent regions is invariant
with respect to change in radius R. That is, any increase in R
simply increases the flat regions. Let R� be an effective ra-
dius of the bent regions. Then, the elastic energy of the col-
lapsed nanotube is Uac=D� /R�. Since R� is a fixed number
that is independent of R �but less than R in magnitude�, the
relative increase in elastic energy on collapse is

Uac − Ubc

Ubc
= 
D�/R� − D�/R

D�/R
� =

R

R�
− 1 � 0. �1�

This shows that the percent change in elastic energy on col-
lapse depends linearly on the radius of the nanotubes.

IV. SCALING OF THE RESPONSE WITH RADIUS,
ADHESION ENERGY, AND BENDING ELASTICITY

The main results so far, 1 /R3 dependence of pc and that
the pc for DWNT is a sum of the pc for packing of separate
SWNT bundles, can be derived from a formulation based on
elastica theory.25,26 Assume that the response of nanotube
bundles to external loading can be calculated by minimizing
a properly defined potential energy functional.23,24 For a
nanotube bundle of length L, assume that deformations are
primarily two-dimensional �2D� in the cross section of the
bundle. Let s denote length along a path that traverses the
graphene sheets in this 2D cross section. Let S represent the
complete path and SP the part of this path on which we apply

external pressure. Tubes interact with each other via an in-
teratomic potential that has an attractive van der Waals com-
ponent and a short-range repulsion. The latter component of
the interaction effectively prohibits two surfaces from ap-
proaching each other too closely. Therefore, the surface S
can be considered as consisting of two parts. Over the part of
S where the short-range repulsion creates a flat interface, Sa,
we say they are in contact; over the remaining surface,
S−Sa, we say that they are not in contact. The utility of this
partitioning is that a material property, the work of adhesion
of two graphene sheets, can be associated with Sa. The po-
tential energy per unit length of the bundle can be written
as23,24

V

L
= 


S

D

2
k2ds − WaSa − 


S−Sa

uvdw
ext ds − 


ST

T · vds + 

S

ugds ,

�2�

where the first term represents energy due to bending of the
graphene sheet to mean curvature k, the second and third
terms capture adhesive van der Waals interactions, the fourth
term represents the work of external forces with T, the ex-
ternal traction, and v, the displacement on the surface where
tractions are applied, and the last term is the energy of for-
mation of a flat sheet �ug is the energy of formation per unit
surface area of a graphene sheet�. The attractive van der
Waals energy has been written in two parts. The first, WaSa,
captures regions where graphene sheets are in contact; Wa is
the work of adhesion per unit area of bringing two flat nano-
tube walls from infinity to equilibrium separation. For
DWNT and MWNT, there is a contribution to the work of
adhesion due to interlayer contact. Because layers deform

FIG. 2. Reduced volume �V /V0� as a function
of applied hydrostatic pressure for �a� SWNT and
�b� DWNT bundles. The loading �solid symbols�
and unloading �open symbols� curves clearly
show hysteresis.

FIG. 3. Critical collapse pressure �pc� as a
function of �a� SWNT radius and �b� DWNT ef-
fective radius defined in the text. We estimate the
values of 	c for both SWNT and DWNT using
Eq. �3�.
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together, this contribution does not change with deformation.
It will therefore vanish in a variation and for DWNT/MWNT
Sa can be identified as the area of contact between outermost
layers. The term uvdw

ext represents interactions outside the con-
tacting regions. Once the tubes are in contact, the change in
this term with further deformation can be neglected.23,24 The
scaling of the solution can be extracted simply by a suitable
normalization. Normalizing all length scales in Eq. �2� by the
radius, and dropping terms that vanish in a variation, we
obtain an expression for potential energy per unit length, v,

v =
RV

DL
= 


S̄

1

2
k̄2ds̄ − 
S̄a + 


S̄T

b̄ · v̄ds̄; 
 =
WaR2

D
;

b̄ =
TR3

D
= 	n; 	 =

PR3

D
, �3�

where b̄ is a dimensionless applied traction field, 	 is its
�scalar� value for the case of fixed applied pressure, and n is
the unit normal. Our dimensionless formulation implicitly
assumes that no other length scale enters into the problem,
for example, through boundary conditions. A possible excep-
tion is the interlayer spacing. Prior to collapse, it has been
shown that the deformation of two nanotubes in contact is
independent of this parameter.23,24 In the collapsed state the
interlayer spacing perturbs only slightly the solution obtained
by neglecting it.23,24 On this basis, we neglect its influence
on our formulation; this assumption is justified by good
agreement between the predicted scaling and simulation re-
sults.

Therefore, within our assumptions, the deformation de-
pends only on two dimensionless parameters, 
 and 	. If the
dominant influence on deformation is external pressure, then
events such as collapse or phase transitions will occur at

critical values of 	, say at 	c. This establishes the scaling of
critical pressure to be Pc=	cD /R3. In the absence of external
pressure such events will occur at critical values of 
, as
already established.23,24

For commensurately packed MWNT, where difference in
radius equals the equilibrium separation between graphene
sheets, this argument can be extended to DWNT and
MWNT. First, we recognize that the shape of any one shell
in a deformed MWNT can be obtained from the shape of
another shell simply by a change of scale. To build up a
deformed MWNT packing, we therefore first start with a
SWNT packing, say the shell with the largest diameter. Con-
sider Fig. 1�a�, a SWNT bundle, in the case of deformations
dominated by external pressure. At any stage of the deforma-

tion the solution k̄ is a function of 
 ,	. Denote by T the
surface tractions needed to support the shape of this shell.
Now make an identical copy of the deformed bundle and
reduce its diameter by a change in scale to a value just
small enough to fit inside the first shell. The new shape is
also a solution if we scale all the tractions according to
T=	D /R3. Take the smaller bundle, separate the nanotubes,
and insert each into its corresponding tube in the larger
bundle. If we assume that the interface between the walls of
a DWNT cannot carry any shear tractions, the resulting
bundle is also a solution. We note that the tractions on the
inner tube have to be provided by the outer tube. This leads
to the conclusion that the net external tractions we need to
apply to the outer shell is the sum of tractions needed to
bring the two constituent SWNT’s to similar shapes. This is
easily generalized to a MWNT, establishing the fact that for
deformation to the same normalized shape, the needed ap-
plied pressure is p=�i=1

n pi. All the nanotubes will collapse
simultaneously and so

FIG. 4. Single point energy per unit surface
area at 0 K as a function of 1/R2 for seven iso-

lated SWNT �a� and as a function of 1/ R̃2 for five
isolated DWNT �b�. The value of D, the bending
stiffness, is obtained from the fit to Eq. �5�.

FIG. 5. Energy per unit surface area as a func-
tion of applied hydrostatic pressure for �a�
SWNT, and �b� DWNT bundles. Notice the cor-
respondence with Fig. 2. The insets show the
relative increase in elastic energy during collapse
as a function of radius.
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pc = �
i=1

n

pci = 	cnD
1

n�
i

n
1

Ri
3 , �4�

thus establishing the result that the collapse pressure for a
MWNT packing is the sum of collapse pressures of the con-
stituent SWNT packings, and providing the rationale for the
effective radius defined earlier.

As an independent test of this model, we have plotted the
collapse pressure as a function of Ref f in Fig. 3�b�; it
fits a 1/Ref f

3 relationship well. The fit yields a value for
	cDef f =8.92 eV. If we define the surface of DWNT to be a
cylinder with radius Ref f, the energy per unit surface area of
DWNT is given by

ue =
1

2�Ref f

�D

R1
+

�D

R2
− Wa��R1 + R2� + 2�ug�R1 + R2��

=
Def f

2R̃2
− Wa

R1 + R2

2Ref f
+ ug

R1 + R2

Ref f
, �5�

where 1/ R̃2= �1/2R1Ref f +1/2R2Ref f�, R1 is the radius of the
inner tube, and R2 is the radius of the outer tube. In Eq. �5�,
the first term corresponds to the elastic energies of the inner
and outer tubes, the second term to the interaction energy of
the two tubes and the third term to the energy of formation of
the two tubes. Equation �5� shows that the energy per unit
surface area of DWNT scales with the inverse square of the

length R̃. This quantity is readily computed for different
DWNT and Fig. 4�b� plots the single point energy per unit

surface area of five DWNT as a function of 1/ R̃2. A fit
using23,24 ug=0.765 and Wa=0.4 yields a value of
Def f =6.4 eV, which is close to twice DSWNT. Together with
the fit to collapse pressure, the DWNT data yield a value of
	c

DWNT=1.39, very close in value to the that obtained from
SWNT simulations �	c

SWNT=1.31�.

V. SUMMARY

To summarize, we use classical MD simulations to show
that DWNT bundles collapse at a critical pressure pc that, as
in the case of SWNT, varies as 1 /Ref f

3 , where Ref f is a suit-
ably defined effective radius. We find that the SWNT and
DWNT bundles show a �30% hysteresis and that the hex-
agonally close packed lattice is completely restored in all
SWNT and DWNT bundles on decompression. Interestingly,
we find that the pc of a DWNT bundle varies as the sum of
the pc of the inner and the outer tubes considered separately
as SWNT bundles �a result we derive analytically�, demon-
strating that the inner tube supports the outer tube and that
DDWNT�2DSWNT, where D is a bending stiffness.

Note. Recently, Ye et al.27 published constant pressure
MD simulations demonstrating a hydrostatic pressure-
induced structural transition for isolated DWNT. The values
of the critical pressures they obtain for isolated DWNT are
0.4 to 0.5 times the values we find for the same diameter
DWNT arranged in a bundle.
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APPENDIX: CALCULATION OF MEAN CURVATURES
FOR SWNT AND DWNT BUNDLES

The following algorithm was used for the calculation of
the mean curvature for a bundle of SWNT or DWNT. Each
of the 16 tubes in the system is an armchair tube �n ,n� with
ten unit cells. It can be shown that the total number of atoms
per tube is 40n. The local curvature is calculated at every
atom that belongs to the middle eight unit cells �32n atoms�.
The atoms belonging to the unit cells at the ends of the tubes
are not considered because these atoms do not have the suf-
ficient number of neighbors required for our calculations �as
will be clear later�.

Each of the 32n atoms is considered one at a time. For
each atom, the coordinates of its three nearest neighbors and
six next nearest neighbors are found using a search algo-
rithm. The central atom’s three nearest neighbors are used to
define a plane passing through them and the normal to this
plane is found. This is defined to be the new z axis. The new
x and y axes are suitably defined to be mutually perpendicu-
lar.

A rotation matrix is now constructed using the compo-
nents of the normal. The matrix is then used to transform the
coordinates of the ten atoms �the central atom and its nine
neighbors� to the new coordinate system. In the new coordi-
nate system, a quadratic surface of the form z=g�x ,y� is fit to
the ten points as follows. The expanded form of the equation
is given by z=ax2+by2+cxy+dx+ey+ f . This equation can
be written treating �a ,b ,c ,d ,e , f� as the unknowns and
�x2 ,y2 ,xy ,x ,y ,z� as the coefficients. The coordinates of the
ten points give us ten equations in six unknowns. In matrix
notation, we have �N�10�6�A�6�1= �Z�10�1, where �A� is the
matrix to be determined. The values of �a ,b ,c ,d ,e , f� are
obtained by calculating �A� using the relation �A�
= ��N�T�N��−1�N�T�Z�.

The mean curvature of a surface, as defined above, is
given by28

H = � · 
 �g

�1 + ��g�2
� . �A1�

The value of H at the central atom is now calculated using
the values of �a ,b ,c ,d ,e , f� and the coordinates of the cen-
tral atom.

This process is repeated for all the 32n atoms of the tube.
The local curvature values at atoms of the other 15 tubes in
the bundle are similarly calculated to yield a total of 512n
values. The average curvature for the bundle is simply the
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mean of these 512n values. For bundles of DWNT, the same
procedure is used, treating the inner and the outer tubes as
separate SWNT and averaging over atoms in 32 tubes.

This method gave good results for all tubes except the
very small �5,5� tube, which cannot be well approximated by

a smooth cylinder even at 0 K. The calculated mean curva-
ture, using the method described above, for an optimized
�5,5� tube at 0 K, differs from the value of the curvature of a
cylinder of the same radius �given by 1/radius� by more than
5%.
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