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The low-temperature rates for site-to-site transfer of single atoms and molecules adsorbed on surfaces have
been determined in recent scanning tunneling microscopy �STM� studies within the temperature regime where
the dominant transfer mechanism changes from mostly activated transmission over to thermally assisted tun-
neling through the intersite �transition-state� barrier as the temperature is reduced. A model that has provided
useful conceptual and quantitative insights into thermally assisted field emission of electrons is used here as the
basis for a theory of site-to-site atom transfer in this temperature range where proper account of atomic
tunneling and quantum reflection, for energies below and above the transition state barrier, is required. The
predicted transfer rates, which are very sensitive to barrier shape as well as height, agree well with those
observed in the STM studies of Co and Cu on Cu�111� surfaces in the interesting 4 K�T�7 K transition
range which is relevant in the atom-by-atom fabrication of thermally stable surface nanostructures.
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I. INTRODUCTION

The scanning tunneling microscope �STM� operated at
low temperatures ��20 K� has made possible many stable
nearly noise-free experimental studies involving the lateral
manipulation of atoms and molecules adsorbed on metallic
surfaces.1–4 Issues related to the microscopic details of site-
to-site atom transfer have been of special interest since ques-
tions of thermally activated diffusive5 versus tunneling6 mo-
tion could be meaningfully addressed by observing the
temperature dependence of the transfer rate. A fundamental
question has been the conditions under which the adsorbate
transfer is mainly a result of atom tunneling from site to site
as opposed to thermal excitation over an activation barrier
separating the “reactant” from the “product,” this choice of
nomenclature intentionally inviting images of multiple-well
potentials from reaction rate theory.7 In some useful respects,
this is reminiscent of a past study on thermal field emission
�TFE� spectroscopy which sought to investigate the cross-
over from pure �electron� tunneling through to thermal acti-
vation over the rounded barrier formed by the image poten-
tial plus applied field at the surface of a field emission tip.8,9

Unambiguous interpretation of the spectroscopically ob-
served energy distribution of electrons “transferred” from
one side to the other enabled rather definitive conclusions to
be made on the details of thermally assisted tunneling that
can usefully be applied to the analysis of the nonspectro-
scopic kinetic atom-transfer studies using the STM. The pur-
pose of the current remarks is to present a model, an exten-
sion of the TFE theory, which accounts for the temperature-
dependent atom-transfer rate showing the high- and low-
temperature limiting forms of Arrhenius and temperature-
independent pure tunneling behavior, smoothly and
analytically interpolating between these two extremes with-
out having to make either/or specifications. Some of the ba-
sic issues and the TFE “solution” are elaborated upon in Sec.
II. Connections between thermal tunneling as embodied in
TFE,8 elementary one-dimensional unimolecular reaction
rate theory,7 and the thermal dependence of site-to-site ad-

sorbate transfer observed in recent studies3,4 are then pre-
sented and numerically illustrated in Sec. III. Some conclud-
ing thoughts are offered in Sec. IV. Considerations of
possible influences of the degrees of freedom associated with
additional dimensionality and with other atoms within a
polyatomic adsorbate are taken up in the Appendix.

II. THERMALLY ASSISTED FIELD EMISSION

An ensemble of quantum particles initially confined to a
spatially localized region by a barrier of finite �energetic�
height and �spatial� width will ultimately be found to have
some of the particles outside the confining barrier. The in-to-
out passage could occur either by quantum tunneling through
or thermally assisted transmission “over” the barrier. How-
ever, since the hot particles should experience some quantum
reflection by the barrier,10 even when their thermal energy
exceeds the barrier height ��b, the observable distinction
between “tunneling through” and “quantum passage over”
may not be so clearcut. The TFE experience illustrates this
nicely.

Field emission of electrons occurs when a potential of
order 1 keV is applied between the �cathode� tip of a metal
wire sharpened to a radius �50–100 nm and a relatively
large anode placed a few centimeters from the tip. The ap-
plied voltage produces an electric field �F at the tip whose
magnitude is in the range F�0.1–0.4 V/Å, which when
combined with the inherent image potential felt by an elec-
tron outside the tip results in an assumed one-dimensional
surface barrier

V�z� = �e + EF − e2/4z − eFz , �1�

with respect to an energy zero at the bottom of the conduc-
tion band, as shown in Fig. 1. Here �e is the electron work
function and EF the Fermi energy. The maximum in this
barrier is given by Em=�e+EF− �e3F�1/2=�e+EF−3.79F1/2

with F in V /Å, and it is located at a distance zm= �e /4F�1/2

=1.9/F1/2 Å from the surface image plane.11 For the typical
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fields �0.25 V /Å, zm�4 Å and with �e�4–5 eV, the
Fermi level barrier thickness is �20 Å.

The geometry of the field emission spectrometer is such
that the total energy distribution �TED� of thermally excited
field-emitted electrons is measured. For a three-dimensional
free-electron metal, with �=E−EF, the TED is given by

dj���
d�

= j���� = �4�me/h3�f����
0

�+EF

D�W�dW , �2�

where f���= �1+e�/kT�−1 is the Fermi function and D�W� is
the barrier transmission function which accounts both for
tunneling through and passage over the barrier.9,12 D�W� is
integrated over all energetically allowed values of W, the
so-called “normal energy” or value of kinetic energy associ-
ated with the component of momentum perpendicular to the
surface. For tunneling problems it usually suffices to intro-
duce some sort of WKB approximation that leads to a
transmission/tunneling probability varying exponentially
with barrier height and thickness. This is inadequate when
dealing with energies near the barrier top since the transmis-
sion must saturate at a value no greater than unity. A vener-
able WKB-like approximation13 used by Miller and Good14

that has proven to be physically reasonable and useful for
energies below and above Em is given by

D�W� = �1 + eA�W��−1, �3�

with the phase integral

A�W� � 2�
zl

zr �2m

�2 �V�z� − W�	1/2

dz , �4�

in which the classical turning points zl and zr are solutions of
V�z�=W.14–17 Inserting the surface potential, Eq. �1�, into Eq.
�4�, standard field-emission theory shows that the phase in-
tegral can be expressed as

A�W� =
4

3

2m

�2 �1/2 �EF + �e − W�3/2

eF
v
 �e3F�1/2

EF + �e − W
� ,

�5�

where, as discussed by Good and Müller,18 v�y� is a tabu-
lated elliptic function whose value falls within the range 0
���1, going to zero when y=0 and is �0.6 for normal
field-emission conditions. The function ��y� accounts for the
image potential reduction of the pure “triangle barrier” due
to the electric field and equals 1 for the triangle barrier with-
out the image potential. Equations �2�, �3�, and �5� must be
numerically integrated to obtain theoretical thermal energy
distributions.19

A sequence of TFE distributions is shown in Figs. 2�a�
�experimental� and 2�b� �theoretical from Eqs. �2�, �3�, and
�5�� with T=1570 K, �e=4.8 eV, and EF�8 eV. Figure 2�a�
displays the measured results obtained using a spherical de-
flection energy analyzer9,20 for a series of emitter-to-anode
voltages corresponding to electric fields at the tip ranging
from �0.08 to 0.4 V/Å. The striking similarity between the
experimental results and theoretical expectations based on
the Miller-Good barrier transmission function can be seen in
Figs. 2�a� and 2�b�. There are three distinct energetic regions.
The two extrema are characterized by exponentially decay-
ing tails at �i� low energy with a �positive� slope dictated by
Eq. �5�, the expression which when exponentiated provides
the standard field emission tunneling probability, and �ii�
high energy with a �negative� slope=−1/kT due to the Bolt-
zman tail of the Fermi function. The intermediate transition
region, roughly between the Fermi level and the top of the
barrier �marked by arrows in Fig. 2�b��, has either a positive
or negative slope depending upon the values of field �or,
more generally, the barrier size and shape� and temperature
which in turn determine the relative importance of tunneling
versus thermal enhancement for a given set of conditions. In
all cases there is a distinct change of log slope near the
barrier top which is both predicted and observed for this T
=1570 K example. The dominant contribution to the total
current may be mainly due to tunneling �F	0.3 V/Å
curves�, pure thermal Arrhenius-type transmission �F

FIG. 1. Model potential at a metal surface under field-emission
conditions. The total surface barrier is the sum of the image poten-
tial Vimage, plus that due to the applied field �Ref. 8�.

FIG. 2. �a� Experimental TED with emitter-to-anode voltage
varied parametrically for T=1570 K. �b� Theoretical TED with
equivalent field treated parametrically for 
e=4.8 eV and T
=1570 K. The units of j� are arbitrary �Ref. 8�.
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	0.2 V/Å�, or a nondistinguishable combination of both
�0.2�F�0.3 V/Å�. This mix is indeed more subtle than
was originally anticipated.8 Related behavior should occur
for atomic motion over and/or through barriers separating
metastable adsorption sites on a surface, the realization of
which we now turn.

III. ATOM TRANSFER: TUNNELING VS ACTIVATED
HOPPING

A number of STM studies have been reported on issues
involving controlled manipulation of individual atoms or
molecules adsorbed on the Cu�111� surface to form some
preselected object such as a surface molecule, quantum cor-
ral, or other mesoscopic construction.1–4 The actual fabrica-
tion involves dragging single atoms from site to site on the
Cu�111� template using the STM tip as the positioning
tool.21 Thermal stability of the composite structure requires
deep local minima in the potential-energy surface topology
characterizing the adsorbate-substrate system on an energy
scale set by the ambient temperature whereas ease of atom
transfer in the actual assembly process favors shallow
minima or low intersite barriers. The consequences of these
conflicting demands have been nicely demonstrated in STM
studies on the temperature dependence of the atom-transfer
rate for Cu dimer motion on the Cu�111� surface at tempera-
tures below 21 K where the whole range of thermally as-
sisted atom tunneling and transmission processes �similar to
those experienced by electrons in TFE, as documented in
Sec. II� come into play. The Cu�111� surface is characterized
by two inequivalent three-fold hollow sites with slightly dif-
ferent binding energies called the fcc and hcp sites, depend-
ing upon their locations with respect to the second layer
atoms. Repp and co-workers have ascertained the hopping
rate for Cu dimers in terms of the rate for single-atom trans-
fer while still bound to a stationary partner atom.3 They as-
sumed that the mobile atom moved within the one-
dimensional double-well potential shown in the upper
portion of Fig. 3 with well minima located at the three-fold
hollow sites of the surface. This two-dimensional f f → fh
displacement closely resembles that of a one-dimensional
�f →h� hindered rotor centered on the fixed �f� atom. For
such transfer in which one atom remains fixed in a fcc site
and the other moves between the closest fcc and �slightly
less bonded by �1.3 meV� hcp site, the relevant surface
crystallography requires that the minima be separated by a
distance d=1.47 Å. The main reported observations for
present purposes were dimer f f-to-fh hopping rates as a
function of temperature in the range 4 K�T�7 K. For T
	6 K, they represent the thermally activated transfer as pro-
cess A in Fig. 3, which is analogous to the electron emission
responsible for the high-energy leading edge in Fig. 2. As T
is reduced to �4 K, the transfer rate becomes more or less
independent of temperature which is the widely accepted sig-
nature for pure tunneling transfer,3–7,22 as exhibited in the
low-energy experimental cutoff of electron emission in Fig. 2
and depicted as process B in Fig. 3. Similar low-temperature
tunneling transfer in the range 2.3 K�T�4 K has been ob-
served by Stroscio and Celotta for single-Co-atom transfer

also on the Cu�111� surface.4 Within the temperature range
4 K�T�6 K, dimer transfer occurs via a thermally acti-
vated tunneling process like that which is responsible for the
transition behavior in the field electron energy range 0 eV
���3 eV shown in Fig. 2 and schematically represented as
C in Fig. 3.

The simple unified formulation that accounted well for all
the observed features in the TFE studies is now adopted as
the basis for a quantitative model of thermally assisted sur-
face atom transfer without need to make any explicit deci-
sions on quantum tunneling versus thermally activated diffu-
sion mechanisms. To this end, the normalized one-
dimensionalized transfer rate, in analogy with Eq. �2�, is

dn

dt
= �0�

0

�

D���f���d��/kT� , �6�

where �0 is an appropriate preexponential with �suggestive
but perhaps misleading7,23� units of �attempt� frequency,
D��� is the barrier transmission function given by Eqs. �3�
and �4� evaluated with the relevant atomic mass and potential
energy function, and f���=e−�/kT. An extensive discussion of
“beyond one-dimensional modeling” is given in the Appen-
dix. Following Repp et al.,3 a parabolic simplification to

FIG. 3. Top: double-well potential used by Repp et al. for atom
transport on surfaces via �A� activated hopping, �B� pure tunneling,
and �C� thermally assisted tunneling. Bottom: analytic sinusoidal
and parabolic intersite barriers used to obtain Eqs. �9� and �10�
phase integrals.
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Vs�x� = ��b/2��1 + cos�2�x/d�� , �7�

their assumed sinusoidal approximation of the double-well
potential can be written as

Vs�x� � �b −
1

2

2�2�b

d2 �x2, 
x
 
 d/�;

= 0, otherwise, �8�

which is sometimes expressed in terms of a characteristic
parameter �b= �� /d��2�b /m�1/2. While �b has dimensions of
angular frequency, it should really be regarded as a mass-
weighted alternative specification of the curvature �thus ex-
tension� of the parabolic barrier and not as a true frequency
associated with oscillatory motion. In Eqs. �7� and �8�, the
peak-to-peak amplitude of the sinusoidal potential ��b can
be thought of as the classical diffusion barrier height and d as
the wavelength characterizing the adsorption site separation.
With regards to tunneling, assignment of �b, d, and the bar-
rier shape �sinusoidal, parabolic, or something else� com-
pletely specifies the effective barrier height and width and
hence A���, the phase integral given by Eq. �4�. Using the
parabolic barrier, Eq. �8�, in Eq. �4�, A��� easily reduces to

Apar��� = 2�
�b

��b
�1 − �/�b� = 
2m

�2 �b�1/2

�d , �9�

where the first form follows an intriguing historical
precedent24 whereas the second more clearly demonstrates
the functional form as the product of a “decay constant” �the
square root factor� multiplied by �d���1−� /�b�, together
providing a measure of the barrier height and thickness as
seen by the tunneling particle. For comparison, the phase
integral evaluated with Eq. �7�, the full sinusoidal potential,
is

Asin��� =
4

�

2m

�2 �b�1/2

�1/2E�sin−1��1/2�,1/��d , �10�

where E�
 ,m�=�0

�1−m sin2��1/2d� is an elliptic integral of

the second kind.25

Questions about barrier shapes have significant implica-
tions when considering site transfer behavior at the low tem-
peratures characteristic of the over-to-through-barrier transi-
tion region. This can be seen by considering the sinusoidal
and parabolic potential given by Eqs. �7� and �8� and dis-
played in the bottom portion of Fig. 3. Clearly the barriers
are quite similar at higher energies �� /�b	0.65�, whereas
for � /�b�0.5, the full sinusoidal barrier is noticeably
thicker. This has a profound influence on the low-energy tun-
neling behavior. The barrier shape influence follows from the
ratio of the phase integrals, Eqs. �9� and �10�:

RA��/�b� � Asin���/Apar���

=
4

�����1/2E�sin−1�����1/2�,1/����� , �11�

which is shown in Fig. 4. The importance of this lower-
energy enhancement in Asin is emphasized when calculating
the exponentially small tunneling probability.

It is informative to consider the �nonmeasureable but all-
important� one-dimensional energy distribution of the trans-
fer rate implied by Eq. �6�,

dṅ

d��/�b�
= �o��b/kT�D���f��� , �12�

in order to make contact with the TFE considerations out-
lined in Sec. II. Introducing the dimensionless quantities a
�2��b / ��b and b��b /kT, �1/�o��dṅ /d��=bD�� ;a�f�� ;b�
given by Eq. �12� for the parabolic barrier �Eq. �9�� is shown
in Fig. 5 as a function of ��� /�b setting b=25, with a
=20, 25, 30, and 35 appropriate to the low-temperature STM
studies of Repp et al. These distributions are simpler than the

FIG. 4. Ratio of sinusoidal-to-parabolic WKB phase integral as
a function of ��� /�b.

FIG. 5. �a� Energy distribution of the atom-transfer rate over and
through a parabolic barrier as a function of ��� /�b with b=25 �or
T=8.35 K with �b=18 meV� and a=20, 25, 30, and 35, as labeled.
�b� Energy distributions of the atom-transfer rate through parabolic
�p� and sinusoidal �s� barriers as a function of ��� /�b
1 with
a=35 and b=30, 40, and 45 �or T�7, 5.2, and 4.6 K� as labeled
and �o=1012 s−1.
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TFE ones which were characterized by three distinct ener-
getic regimes, as discussed in Sec. II. In the present example
in which a Maxwell-Boltzmann-distributed flux is incident
upon a parabolic barrier, there are only two extended ener-
getic regimes.26 Pure tunneling occurs for energies between
zero and the top of the barrier and quantum transmission for
energies above the top. A smooth transition between the two
results from the complimentary nature of quantum reflection
and transmission and tunneling for energies slightly above
and below the barrier maximum10,17 which is implicitly ac-
counted for in D��� given by Eq. �3�. Since D��� attains an
energy-independent maximum value as � rises above the
“transition zone” around �b, the energy dependence of the
transfer rate in this limit is simply that of the exponential
Maxwellian tail independent of the value of a �which is es-
sentially a measure of the tunnel barrier shape and/or thick-
ness�. For the special case of the parabolic or inverted har-
monic oscillator barrier7,24,27, Eq. �9� shows that the WKB
phase integral varies linearly with � or �. Thus, when com-
bined with the thermal function, the energy distribution in
the lower-energy �WKB� range is dṅWKB/d��exp��a−b���,
a simple exponential in which the sign of the slope depends
on whether the gain from the increased tunneling probability
at higher energy exceeds �a=30,35�b�, precisely equals
�a=25=b�, or fails to match �a=20�b� the loss of current
due to diminished thermal population of the higher-energy
states. For fixed temperature and barrier height and hence
fixed b, the a parameter could be varied by changing the
barrier curvature �b which is equivalent to controlling the
barrier thickness. Thicker barriers �unfavorable for tunnel-
ing� imply smaller �b, hence larger a, which is reflected in
the a ordering of low-energy distributions �for a specified
choice of �� seen in Fig. 5. However, the thinner the barrier,
the less of a problem is barrier penetration to begin with and
this has the consequence that the gain in barrier transmission
does not make up for the loss in numbers of thermally ex-
cited atoms �exactly balanced when a=25=b�. Thus the
transfer rate monotonically decreases with increasing energy
as typlified by the a=20 distribution.

Of considerable relevance is the story behind the similari-
ties and/or differences in calculated energy distributions �Eq.
�12�� for the parabolic �Eq. �9�� versus sinusoidal �Eq. �10��
barriers displayed in Fig. 5�b� with a=35 and b=30, 40, and
45, equivalent to letting T=7, 5.2, and 4.6 K. Obviously, for
any specified temperature, at a given energy the transfer rate
is larger for the parabolic than for the sinusoidal barrier, as
already discussed in conjunction with Fig. 4. Also, all
parabolic-barrier energy distributions are purely exponential
for � less than about 0.9 with a slope=a−b whose magnitude
and sign are both dependent upon temperature. What is par-
ticularly noteworthy is the extreme sensitivity to barrier
shape, as exemplified by the contrasting parabolic- and
sinusoidal-barrier distributions in the �4 K�T�7 K range.
At the highest temperature, the maximum atom-transfer rate
occurs for energies near the top of the barrier independent of
barrier shape, as expected for pure thermal activation. More
interesting is the intermediate situation around T�5.2 K in
which maximal passage with a parabolic barrier, occurs for
the most populated states, those at the bottom of the barrier,
whereas with a sinusoidal barrier, the opposite extreme pre-

vails, maximum transfer rate for the states near the top where
the barrier is thinnest in spite of the loss of thermal popula-
tion. Thus when asked whether it is tunneling or activated
hopping, at least at this temperature it is mostly pure tunnel-
ing if the barrier is parabolic whereas it is thermally activated
tunneling and hopping if the barrier is sinusoidal. Finally, at
T�4.6 K, the lowest temperature displayed here, the maxi-
mum transfer rate involving the sinusoidal barrier occurs
with the more populated states which are far below the bar-
rier top, tending towards the pure tunneling limit as T is even
further reduced.

Of course the STM studies do not have the possibility
afforded field-emission spectroscopy of measuring the en-
ergy distribution of the transferred particles.9 Therefore the
integrated transfer rate �Eq. �6�� is the only experimentally
accessible quantity. The theoretical transfer rates that follow
from Eqs. �3�, �6�, �9�, and �10� for both the parabolic and
sinusoidal barriers are shown in Fig. 6 as a function of b
=�b /kT corresponding to temperatures �4 K�T�9 K
when �b=0.018 eV. The a parameter has been assigned val-
ues of 25 and 35, the latter being deduced from the experi-
ments of Repp et al.3 These curves follow the generic form
of high-temperature exponential Arrhenius behavior blending
into a temperature-independent low-T limit.6,22 The details
within the transition region shown here are sensitive to both
the magnitude of a, the hybrid measure of the barrier height
and width, and the barrier shape. In the low-temperature
limit, the overall transfer rate for surface atoms confined by
the sinusoidal barrier is nearly three orders of magnitude less
than for the equivalent parabolic barrier which demonstrates
how important knowledge of the intersite potential is if one
requires quantitative predictive power for atomic transport
rates in the tunneling regime. It should be reemphasized that
in spite of barrier-shape issues, the rate does show the ven-
erable T-dependent topological form ubiquitous to thermal
studies of this sort.6,7,22

Finally the transfer rates calculated from Eqs. �3�, �6�, �9�,
and �10� are shown in Fig. 7, now as a function of inverse
temperature to facilitate comparison with the observed rates
that are also displayed in the figure. Suggested values for the

FIG. 6. Total atom transfer rate as a function of b=�b /kT for
both parabolic and sinusoidal barriers, with a=25 and 35, the latter
value suggested by Repp et al. as appropriate for their Cu-on-
Cu�111� data also shown in the figure. The temperature scale is
displayed at the top of the figure.
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input parameters inferred from the data of Repp et al. include
�0�0.8�1012 s−1, �b�0.018 eV, and d=1.47 Å, which,
with kads=m�b

2=2�2�b /d2 �from Eq. �8�� implies that ��b
�0.003 28 eV and thus a�35. The curves in Fig. 7 again
convey the sensitivity to both barrier shapes and characteris-
tic parameters, at least in the temperature range of interest
here. With the recommended �b�0.018 eV and a�35, the
sinusoidal �hence thicker� barrier better reproduces the low-T
order of magnitude of the transfer rate than does the para-
bolic barrier that is obtained from the ��b�0.018 eV, a
�35� quadratic form in the expansion of the sinusoid. How-
ever, the measured rate of change with temperature below
�5 K looks to more closely follow that of this parabolic
barrier. Variation of �b shifts �without distorting� the sinu-
soidal barrier curves as exemplified by the two examples
shown in Fig. 7. Thus choice of barrier height does not seem
to be the source of the discrepancy between the observed and
sinusoidal behaviors. Furthermore, all the rates approach a
shape-independent Arrhenius high-temperature limit with a
logarithmic slope=−�b which requires that �b�0.018 eV
within the experimental error limits. However, if one permits
a �or, equivalently, �b and/or d� to be varied, then the para-
bolic barrier characterized by �b�0.018 eV, a=39.5 �or
��s=0.0029 eV� reasonably reproduces the experimental
low-temperature-dependent atom site-to-site transfer rates.
The price that has been paid for allowing this “best-fitting”
procedure is the sacrifice of the purity of the a parameter, as
used up to this point. So far, it has provided a rigorous link
between the sinusoidal potential �which allows for the intro-
duction of d, the natural length scale of the double-well prob-
lem� and one particular parabolic barrier, that one whose
curvature at the barrier top is identical with that of the sinu-
soidal barrier. In fact, there is no physical reason why this
parabolic barrier is any more meaningful than any other one,
provided the thickness of the barrier separating the two sites
is �d, the distance between them. Arguing sinusoid versus
parabola is akin to “fitting” a barrier shape �using predeter-

mined “size” parameters� and as such is no more fundamen-
tal than choosing a shape �e.g., parabola� and fitting its width
�as embodied here in a�. In fact, the parabolic barrier that
provided the best fit in Fig. 7, that one with a=39.5, and
hence ��s=0.0029 eV, if plotted in Fig. 3, would intercept
the x /d axis at 0.362 rather than at 0.32 as shown for the
“pure” parabolic offspring of the sinusoid, a distinction that
should not alter the qualitative picture. Still it is satisfying to
see that reasonable models, even if not definitive, credibly
produce site-transfer rates that are in accordance with
thoseobserved. Various implications of atom-transfer life be-
yond one dimension and why they are not likely to be im-
portant here are taken up in the Appendix.

IV. SUMMARY

The underlying rate-determining aspect of atomic site-to-
site transfer kinetics that is possible for atoms adsorbed on
solid surfaces has provided the focus for this theoretical in-
quiry. Of particular interest has been the characteristics in the
low-temperature region where the rate changes from a ther-
mally driven Arrhenius �high-T� to temperature-independent
�low-T� behavior. The intermediate transfer regime of inter-
est and relevance in atomic-scale STM manipulations is
characterized by thermally assisted tunneling and thermally
activated above-barrier hopping �with quantum reflection�,
both of which must be treated on an equal footing. This has
been carried out in the spirit of past work in the area of
thermally assisted field electron emission8,9 in which a modi-
fied form of the WKB tunneling probability advanced by
Miller and Good14 has been the essential ingredient enabling
smooth transition between the asymptotic Arrhenius and
temperature-independent limits. With regards pure tunneling,
the sensitivity of intersite tunneling rates to the shape of the
barrier has been demonstrated. With the not-unreasonable al-
ternative choices of parabolic versus sinusoidal potentials,
for a given barrier height the theoretical low-temperature
tunneling transfer rate differs by nearly three orders of mag-
nitude in the case of Cu on Cu�111�. Experimentally ascer-
tained transfer rates show “best” agreement with theoretical
expectations based on a parabolic intersite barrier slightly
thicker than that one which would be inferred from an
equivalent sinusoidal potential evaluated with the barrier
height and surface lattice spacing parameters determined by
Repp and co-workers.3 Thus one concludes that knowledge
of the “correct” intersite barrier shape, not just its height and
nominal width, is highly desirable in order to predict low-
temperature, tunneling-dominated atom-transfer rates at a
truly quantitative level.
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APPENDIX

When asking the question as to what relevant physics
might have been omitted in this one-dimensional description

FIG. 7. Total atom-transfer rate as a function of T−1 for sinu-
soidal �solid lines: a=35, �b=0.018 eV, 0.019 eV� and parabolic
�dashed lines: �b=0.018 eV, a=35, 39.5� using parameters sug-
gested by Repp et al. as appropriate for their Cu-on-Cu�111� data
also shown in the figure.
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of dimer hopping, an obvious response is that it is the de-
grees of freedom associated with both the other two dimen-
sions of the moving atom and also with other atoms within a
polyatomic adsorbate. Consider the possibility of periodic
two-dimensional displacements along the surface, first for
single-atom transfer. This is just commonplace surface
diffusion5,28,29 frequently treated within the context of
transition-state theory �TST�.7,30 For the low temperatures
and energies characterizing the present problem, the addi-
tional dimension does not provide any qualitatively new
paths for travel between sites �such as greater-than-nearest-
neighbor hops5,31 or Levy walks32� but only an increased
number of nearest neighbors and thus “jump-equivalent di-
rections available to the adatom.”29 This is simply included
as a multiplicative correction of order unity in conventional
surface diffusion theory.5,28,29 With regards to the influence
of the atom motion orthogonal to the reaction coordinate, it
is a well-established result of TST �Refs. 5, 7, and 30� that
for a metastable system consisting of a reaction coordinate
nonlinearly coupled to N−1 orthogonal vibrational degrees
of freedom, �o, the appropriate preexponential introduced in
Eq. �6� should be taken as

�o ⇒ �ads
�o�

�
i=1

N−1

�i
�o�

�
i=1

N−1

�i
�b�

, �A1�

where the normal-mode frequencies are evaluated both at the
position of the local adsorption minimum �o� and also at the
saddle point �b� along the reaction coordinate.7,30 The fre-
quency �ads

�o� is just the vibrational frequency determined by
the curvature of the potential-energy curve along the reaction
coordinate at the adsorption equilibrium site. From a physi-
cal point of view, Eq. �A1� accounts for the effects of the
change in the higher-frequency modes as the potential energy
associated with the low-energy hindered translation changes
by �0.018 eV, the height of the barrier of the double well.
Certainly such a small perturbation cannot change the prod-
uct of the orthogonal higher-energy normal-mode frequen-
cies by anything beyond a multiplicative factor of order 1, so
within the framework of TST, the additional freedom pro-
vided by two dimensions should not alter the simple picture
in a quantitatively significant way. To further quantify two-
dimensional rate problems of this type it has proven useful33

to draw upon analogies with isomerization dynamics34 in
which the temporal evolution is calculated for a classical
trajectory or a quantum wave packet propagating over a two-
dimensional �2D� potential-energy surface that has been syn-
thesized from a double-well potential �representing the two
isomeric forms of the system� nonlinearly coupled to a �usu-
ally quadratic� potential representing the other degrees of
freedom under consideration. Such inquiries have usually fo-
cused on issues of chaos and ergodicity.34–36 While similar
studies carried out for the atom-transfer problem considered
here could be equally enlightening, this far exceeds the
present scope to the present paper.

Moving beyond classical TST, the reaction probability
�given by the integral in Eq. �6� for a 1D system� has been
extended to multidimensional systems by Miller within the
semiclassical limit of quantum TST.37,38 He demonstrates
that when all N degrees of freedom are separable �i.e., nor-
mal modes for multiatom systems�, then D��� in Eq. �6� can
be replaced by

P��� � �
n>

D1d��n>� , �A2�

where D1d��n>�= �1+eA��n>��−1 is the standard one-dimensional
tunneling/transmission probability �Eqs. �3� and �4� with
translational energy �n>� and

�n> � � − �
i=1

N−1 
ni +
1

2
� � �i

b, �A3�

with the summation notation in Eq. �A2� shorthand for

�
n>

D1d��n>� = �
n1=0

�

�
n2=0

�

¯ �
nN−1=0

�

D1d���n1,n2,. . .,nN−1�� .

�A4�

Since the second term on the right in Eq. �A3� is the vibra-
tional energy in the N−1 modes of the activated complex at
the saddle point, �n> is the energy remaining as translational
energy along the reaction coordinate. An implication of the
Miller theory, as conveyed by Eqs. �A2� and �A4� is that “the
cumulative reaction probability is simply the sum over all
quantum states of the activated complex of the one-
dimensional tunneling probability for each state.”37 A key
factor is the extent to which any of these �vibrational� states
are occupied since for given total energy �, the translational
energy inserted into the phase integral, Eq. �4�, is so reduced
and the consequent tunneling, and hence the reaction prob-
ability via the vibrationally excited-state path, tends towards
insignificance at the low total energies and temperatures
characteristic of the present study. The zero-point energy in-
cluded in Eq. �A3�, for convenience, can be absorbed as a
shift in the origin of the energy scale. With these procedures,
even classical models have been successfully utilized pro-
vided outcomes in which the energy in a mode falls below its
zero-point value are not allowed.39

Turn now to the specifics of the dimer transfer. It has
already been suggested that the dimer transport reported by
Repp et al., at least in the plane of the surface, is basically
hindered rotation of one of the Cu atoms between an ff and fh
site adjacent to the partner Cu atom that is fixed at an ff site.
Since both angular and radial displacements beyond the ad-
jacent ff and fh sites require an extension of the Cu2 bond,
these displacements must overcome a significantly steeper
barrier than that of the transition state of the double-well
potential shown in Fig. 3. Thus the double-well rather than
an extended sinusoidal potential more appropriate for a
single atom seems justified for the hindered rotational poten-
tial. Radial stretching and compression of the dimer will also
require much more force than the gentle rise and fall of the
soft hindered rotation which has the consequence that
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�radial��ads
0 and thus its role is effectively frozen out at the

low temperatures of the present study.
The last concern has to do with possible influences asso-

ciated with motion normal to the surface. This could be par-
ticularly important since the corrugation and hence diffusion
barrier felt by an adsorbate would be significantly reduced
for those atoms in excited perpendicular vibrational states,
those with correspondingly greater mean displacement from
the surface. However, the disparity between the transverse
hindered rotational frequencies �b and that of the perpen-
dicular vibrations provides a low-temperature resolution of
the problem. To a reasonable approximation, the curvature at
the well minimum �hence frequency� of a well-behaved
binding potential �e.g., Morse, Lennard-Jones, etc.� of depth

D and atomic-scale range is such that ��D1/2. Therefore the
ratio of the perpendicular to transverse frequencies is
�z /�b���des /�b�1/2 where �des is the binding energy of the
adsorbate to the surface. For Cu on Cu, �des�3 eV has been
calculated.40 Since �b�0.018 eV, the ��z vibrational quan-
tum of the perpendicular mode is not only more than a factor
of 10 larger than ��b but also considerably in excess of �b.
Once again, at the low temperatures of this study excited
states and thus perpendicular extension of the adsorbate are
almost completely frozen out and therefore are of no conse-
quence in the present realization. However, at higher tem-
peratures, the perpendicular extension effect just discussed
could become increasingly important.
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