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The notion of zitterbewegung is a long-standing prediction of relativistic quantum mechanics. Here we
extend earlier theoretical studies on this phenomenon for the case of III–V zinc-blende semiconductors which
exhibit particularly strong spin-orbit coupling. This property makes nanostructures made of these materials
very favorable systems for possible experimental observations of zitterbewegung. Our investigations include
electrons in n-doped quantum wells under the influence of both Rashba and Dresselhaus spin-orbit interactions,
and also the two-dimensional hole gas. Moreover, we give a detailed anaysis of electron zitterbewegung in
quantum wires which appear to be particularly suited for experimentally observing this effect.
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I. INTRODUCTION

The spin degree of freedom of electrons in semiconductor
nanostructures is one of the central subjects in the growing
field of spin electronics.1 The latter keyword describes the
whole variety of efforts and proposals for using the electron
spin instead of, or in combination with, its charge for infor-
mation processing, or, even more ambitious, quantum infor-
mation processing. A central issue is the possibility of elec-
trical control electron spins, which avoids many difficulties
arising from applying and gating magnetic fields. Zinc-
blende III–V semiconductors show a particularly strong spin-
orbit interaction and are therefore natural candidates with
respect to the above goals.

In the present paper we extend earlier results on the rela-
tivistic effect of zitterbewegung in systems of the above
type.2 In this context we also discuss related recent work by
other authors.3–8 Our investigations include electrons in
n-doped quantum wells under the influence of both Rashba
and Dresselhaus spin-orbit interactions, and holes in two-
dimensional geometry. Phenomena related to spin-orbit cou-
pling in such systems are presently studied very intensively
also in the context of the intrinsic spin-Hall effect.9–11 Par-
ticular attention is paid to the case of electron zitterbewegung
in quantum wires which appear to be good candidates for
experimental investigations of this effect.

The coupling between the orbital and the spin degree of
freedom of electrons is a relativistic effect described by the
Dirac equation and its nonrelativistic expansion in powers of
the inverse speed of light c.12 In second order, one obtains,
apart from two spin-independent contributions, the following
well-known spin-orbit coupling term,

Hso =
1

2m0c2s� · ��V �
p�

m0
� , �1�

where m0 is the bare mass of the electron, s�, p� its spin and
momentum, respectively, and V is some applied external po-
tential. On the other hand, the free Dirac equation, V=0, has
two dispersion branches with positive and negative energy,

��p�� = ± �m0
2c4 + c2p2, �2�

which are separated by an energy gap of 2m0c2�1 MeV. In
particular, the nonrelativistic expansion of the Dirac equation
quoted above can be seen as a method of systematically in-
cluding the effects of the negative-energy solutions on the
states of positive energy starting from their nonrelativistic
limit.12 Moreover, the large energy gap 2m0c2 appears in the
denominator of the right-hand side of Eq. �1�, suppressing
the effects of spin-orbit coupling for weakly bound electrons.

On the other hand, the band structure of zinc-blende III–V
semiconductors shows many formal similarities to the situa-
tion of free relativistic electrons, while the relevant energy
scales are grossly different.13–15 For not too large doping of
such semiconductors, one can concentrate on the band struc-
ture around the � point. Here one has a parabolic s-type
conduction band and a p-type valence band consisting of the
well-known dispersion branches for heavy and light holes,
and the split-off band. However, the gap between conduction
and valence band is of order 1 eV or smaller. This heuristic
argument makes plausible that spin-orbit coupling is an im-
portant effect in III–V semiconductors which actually lies at
the very heart of the field of semiconductor spintronics.

Dating back to a seminal paper by Schrödinger16,17 from
1930, the notion of zitterbewegung has been a long-standing
theoretical prediction of relativistic quantum mechanics. In
the free Dirac equation, this oscillatory quantum motion oc-
curs for particle wave packets which are superpositions of
both solutions of positive and negative energy. Thus, the
dominant frequency of this dynamics is given by 2m0c2 /�
which is of order 1020 Hz. Moreover, the length scale of this
motion is given by the Compton wavelength � /m0c of the
free electron. Therefore, in order to experimentally observe
the zitterbewegung of free electrons, one would need to con-
fine these objects on a length scale of a few picometers. Now
it follows from general uncertainty arguments that such a
spatial confinement leads to an energy scale where electron-
positron pair production plays a serious and detrimental role.
These arguments have led many authors to the opinion that
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the zitterbewegung of electrons is impossible to observe; see,
e.g., Ref. 18.

Most recently, we have theoretically investigated zitter-
bewegung in III–V zinc-blende semiconductors and devel-
oped a proposal for its experimental observation. As already
mentioned, the mathematical treatment of effective band
structure models relevant to such systems on the one hand,
and the nonrelativistic expansion of the Dirac equation on
the other hand, show many formal similarities.13–15 In fact,
under certain aspects, the low-energy band structure of such
semiconductors around the Fermi level can be viewed as a
model for truly relativistic electrons, but with energy and
length scales which are much more favorable for observing
effects like zitterbewegung.

This paper is organized as follows. In Sec. II we study
zitterbewegung in the two-dimensional electron gas. We ex-
tend previous results2 to the situation where spin-orbit cou-
pling of both the Rashba and Dresselhaus types is present.
Moreover, we give a deeper discussion of zitterbewegung in
quantum wires and our related experimental proposal. Sec-
tion III is devoted to the same phenomenon for heavy holes
in two-dimensional quantum wells. We close with conclu-
sions in Sec. IV.

II. ZITTERBEWEGUNG IN THE TWO-DIMENSIONAL
ELECTRON GAS AND IN QUANTUM WIRES

A. The two-dimensional electron gas

For conduction band electrons in n-doped quantum wells
of zinc-blende semiconductor structures, the dominant ef-
fects of spin-orbit interaction can be described in terms of
two effective contributions to the Hamiltonian. One of them
is the Rashba spin-orbit term19 which is due to the inversion-
asymmetry of the confining potential and has the form

HR =
�

�
�px�

y − py�
x� , �3�

where p� is the momentum of the electron confined in a two-
dimensional geometry, and �� the vector of Pauli matrices.
The coefficient � is tunable in strength by the external gate
perpendicular to the plane of the two-dimensional electron
gas. The other contribution is the Dresselhaus spin-orbit term
which is present in semiconductors lacking bulk inversion
symmetry.20 When restricted to a two-dimensional semicon-
ductor nanostructure grown along the �001� direction this
coupling is of the form21,22

HD =
�

�
�py�

y − px�
x� , �4�

where the coefficient � is determined by the semiconductor
material and the geometry of the sample. These two contri-
butions to the effective Hamiltonian have also an interesting
interplay.23,24

We now consider the single-particle Hamiltonian of a free
electron under the influence of spin-orbit coupling of both
the Rashba and the Dresselhaus types,

H =
p�2

2m
+ HR + HD, �5�

where m is the effective band mass. The components of the
time-dependent position operator

r�H�t� = eiHt/�r��0�e−iHt/� �6�

in the Heisenberg picture read explicitly

xH�t� = x�0� +
px

m
t + ��

�
�y −

�

�
�x�t

+
�2 − �2

�2 py	1 − cos� 2

�2�t�
�

2
�z

−
�2 − �2

�3 py	 2

�2�t − sin� 2

�2�t�
	 , �7�

yH�t� = x�0� +
py

m
t − ��

�
�x −

�

�
�y�t

−
�2 − �2

�2 px	1 − cos� 2

�2�t�
�

2
�z

+
�2 − �2

�3 px	 2

�2�t − sin� 2

�2�t�
	 , �8�

with

�2�p� ;�,�� = ��2 + �2�p2 + 4��pxpy �9�

and

	�p� ,�� ;�,�� =
�

2
���px�

x + py�
y� + ��px�

y + py�
x�� .

�10�

Here the operators p� and �� on the right-hand sides are in the
Schrödinger picture and therefore time independent.

The oscillatory terms on the right-hand sides of Eqs. �7�
and �8� can be viewed as the zitterbewegung the electron
performs under the influence of spin-orbit coupling. This os-
cillatory quantum motion vanishes if relativistic effects are
absent, �=�=0. The contributions linear in time t in the first
lines in Eqs. �7� and �8� are just proportional to the velocity

v� =
i

�
�H,r�� , �11�

which is in the presence of spin-orbit coupling a spin-
dependent operator. The expressions �7� and �8� contain the
results given in Ref. 2 for pure Rashba or Dresselhaus cou-
pling as special cases. For instance, if only Rashba coupling
is present ��=0�, one can express the position operator in the
Heisenberg picture as
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xH�t� = x�0� +
px

m
t +

py

p2

�

2
�z	1 − cos�2�p

�2 t�

+

px

p3

�

2
�px�

y − py�
x�	2�p

�2 t − sin�2�p

�2 t�

+

1

p

�

2
�y sin�2�p

�2 t� , �12�

yH�t� = y�0� +
py

m
t −

px

p2

�

2
�z	1 − cos�2�p

�2 t�

+

py

p3

�

2
�px�

y − py�
x�	2�p

�2 t − sin�2�p

�2 t�

−

1

p

�

2
�x sin�2�p

�2 t� . �13�

The case �= ±� is particular.23,24 As seen from Eqs. �7� and
�8�, the oscillatory part of the time-dependent position opera-
tor, i.e., the zitterbewegung, vanishes due to the prefactor
��2−�2�. Physically, this observation results from an addi-
tional conserved quantity arising at this point.23,24

It is straightforward to evaluate the above time-dependent
position operators within Gaussian wave packets. For sim-
plicity we concentrate on the case of pure Rashba coupling
described by Eqs. �12� and �13�. We consider a Gaussian
wave packet with initial spin polarization along the z direc-
tion perpendicular to the quantum well,

�r��
 =
1

2�

d
��

� d2ke−�1/2�d2�k� − k�0�2
eik�r��1

0
� . �14�

Clearly we have �
�r��
=0, �
�p� �
=�k�0, and the variances
of the position and momentum operators are ��x�2= ��y�2

=d2 /2, ��px�2= ��py�2=�2 /2d2. Thus, the group velocity of
the wave packet is given by �k�0 /m, while its spatial width is
described by the parameter d with the minimum uncertainty
product typical for Gaussian wave packets, �px�x=�py�y
=� /2.

A direct calculation gives

�
�xH�t��
 =
�k0x

m
+

d

2�
e−d2k0

2�
0

2�

d sin 

��
0

�

dqe−q2+2dq�k0x cos +k0y sin �

�	1 − cos�2�q

�d
t�
 . �15�

In the above expression q is a dimensionless integration vari-
able. The remaining integration over the polar angle  gives
a vanishing result if k0y =0, i.e., if the group velocity is along
the x direction. More generally, one finds that

�
�k�0 · r�H�t�/k0�
 =
�k0

m
t , �16�

which means that the zitterbewegung is always perpendicular
to the group velocity of the wave packet. The same observa-

tion is made for the case of pure Dresselhaus coupling, �
=0. Note that for pure Rashba coupling the sum of the z

component of the orbital angular momentum l�=r�� p� and the
z component of the spin s�=��� /2 is a conserved quantity,
�H , lz+sz�=0, while for pure Dresselhaus coupling we have
�H , lz−sz�=0. In the presence of these conservation laws, the
zitterbewegung can also be interpreted as a consequence of
spin rotation due to spin-orbit coupling. Consider, for in-
stance, an electron moving along the y direction with its spin
being initially aligned with the z direction. In the time evo-
lution of the particle, the spin will then be rotated due to
spin-orbit coupling which requires, by virtue of the conser-
vation law, also a finite component lz to develop, i.e., the
electron has to perform also a movement perpendicular to its
group velocity. In the general case ��0��, such an inter-
pretation does not seem to be possible since a conserved
quantity of the above kind does not exist.

Let us turn back to the case of pure Rashba coupling.
Without loss of generality we consider an electron wave
packet moving along the y direction, k0x=0. By expanding
the exponential containing the trigonometric functions in Eq.
�15�, one derives25

�
�xH�t��
 =
1

2k0y
�1 − e−d2k0y

2
� −

1

k0y
e−d2k0y

2

��
n=0

� 	 �dk0y�2�n+1�

n!�n + 1�! �0

�

dqq2n+1e−q2
cos�2�q

�d
t�
 .

�17�

Thus, the amplitude of the zitterbewegung is proportional to
the wavelength �0y =2� /k0y of the electron motion perpen-
dicular to it. In a semiconductor quantum well, this length
can be of order of a few ten nanometers, which is several
orders of magnitude larger than the length scale of the zitter-
bewegung of free electrons given by the Compton wave-
length. Note also that the oscillatory zitterbewegung changes
its sign if the translational motion is reversed.

If the product dk0y is not too large, dk0y �1, only low
values of the summation index n in Eq. �17� lead to substan-
tial contributions, and the Gaussian factor in the integrand
suppresses contributions from large values of q. Thus, a typi-
cal scale of this integration variable is leading to sizable
contributions is q�1/�2. Thus, a typical time scale in the
integrand is T=�2��d /�, and when averaging the zitter-
bewegung over time scales significantly larger than T, the
cosine term drops, giving

�
�xH�t��
 =
1

2k0y
�1 − e−d2k0y

2
� , �18�

i.e., the time-averaged guiding center of the wave packet is
shifted perpendicular to its direction of motion. Note that the
zitterbewegung is absent for k0y =0.18

In the opposite case dk0y �1 the Gaussian approaches a �
function. In this limit one finds �for k0x=0�

�
�xH�t��
 =
1

2k0y
	1 − cos�2�k0y

�
t�
 . �19�
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Here the frequency of the zitterbewegung is �=2�k0y /�,
and the guiding center of the wave packet is also shifted in
the direction perpendicular to its group velocity. Note that
�� is the excitation energy between the two branches of the
Rashba Hamiltonian H at a given momentum k� =k0ye�y.
Rashba spin-orbit coupling is particularly strong in InAs
where values for the parameter � of a few 10−11 eV m can be
reached,26–32 leading to frequencies � in the terahertz re-
gime. This is much smaller than the typical frequency of the
zitterbewegung of free electrons which is of order 1020 Hz.
For GaAs, the Rashba coefficient is typically an order of
magnitude smaller than in InAs �Ref. 33� and the Dressel-
haus coupling plays a more important role.34–36 In summary,
the zitterbewegung of electronic wave packets in semicon-
ductor quantum wells as discussed above is characterized by
amplitudes and frequencies which are by orders of magni-
tude larger and smaller, respectively, than it is the case for
free electrons. This opens the perspective to experimentally
observe the electron zitterbewegung in semiconductor nano-
structures via terahertz methods, or using high-resolution
scanning-probe microscopy imaging techniques as developed
and discussed in Refs. 37 and 38. The latter approach will be
described in more detail in Sec. II B.

The issue of zitterbewegung of electrons in III–V semi-
conductors was also discussed recently by Zawadzki where
the three-dimensional bulk case was considered.4 The author
starts from an 8�8 Kane model for conduction and with the
valence band being diagonal in the hole sector.14,39 Special-
izing on particles moving along the z direction in real space
and neglecting the split-off band, the author obtains an effec-
tive Hamiltonian coupling only light holes and conduction
band electron states. Moreover, for an appropriate choice of
basis this Hamiltonian matrix mimics the Hamiltonian of the
free Dirac equation, which enables one to derive a zitter-
bewegung directly following Schrödinger’s original
approach.16,17 However, when reducing the underlying 8
�8 Kane model in a systematic way to an effective 2�2
Hamiltonian for conduction band electrons only, one obtains
in the absence of an additional potential and magnetic fields
to second order in the gap energy only a kinetic term involv-
ing an effective mass depending on band structure
parameters.14 This is analogous to the situation of the free
Dirac equation where, again in the absence of external fields,
the lowest order relativistic correction is an additional con-
tribution to the kinetic energy which does not lead to
zitterbewegung.12 The zitterbewegung studied in the present
work occurs, for the case of Rashba coupling, due to an
external potential introducing structure-inversion
asymmetry.14,19 For the case of Dresselhaus coupling, it
stems from the bulk Dresselhaus coupling term which results
from bulk-inversion asymmetry20 and is not included in the
8�8 Kane model. In this sense, Zawadzki’s result appears to
be an effect of higher order in the inverse gap energy which
can be of importance in materials with particularly small gap
such as InSb.39 Moreover, the zitterbewegung as discussed in
Ref. 4 always occurs in the direction of the group velocity of
the particle wave packet, i.e., in the z direction. This feature
is clearly different from the zitterbewegung investigated here
and might pose an obstacle against experimentally observing
this effect.

B. Quantum wires

The zitterbewegung of an electron in a quantum well as
described above is naturally accompanied by a broadening of
the wave packet, where the dominant contribution stems
from the dispersive effective-mass term in the Hamiltonian.
Such a broadening might pose an obstacle for experimentally
detecting the zitterbewegung. However, the broadening can
be efficiently suppressed and limited if the electron moves
along a quantum wire. In fact, the motion of electrons in
quantum wells is generally under better control if additional
lateral confinement is present. We therefore consider a har-
monic quantum wire along the y direction described by

H =
p�2

2m
+

1

2
m�2x2 + HR, �20�

where the frequency � parametrizes the confining potential
perpendicular to the wire.40,41 It is instructive to write the
Hamiltonian in the form

H = H0 + H1, �21�

with

H0 = ���a+a +
1

2
� +

�2k0y
2

2m
+ �k0y�

x, �22�

H1 = − i��m�

2

�

�
�a − a+��y . �23�

Here a, a+ are the usual harmonic climbing operators, and
k0y is the component of the electron wave vector along the
quantum wire. Due to the properties of the “mixing operator”
H1, analytical progress as before without employing further
approximations does not seem to be possible. We therefore
project the Hamiltonian H onto the lowest two orbital sub-
bands. This approximation is known to give very reasonable
results for not too wide quantum wells,41 and we will also
compare its results with a full numerical simulation of the
above multi-band Hamiltonian.

For a given k0y the truncated Hilbert space is spanned by
the states �0, ↑, �0, ↓, �1, ↑, �1, ↓, where the arrows denote
the spin state with respect to the z direction, and 0 and 1
stand for the ground state and the first excited state of the
harmonic potential, respectively. In the above basis, the trun-
cated Hamiltonian reads

H =�
�0 − �k0y 0 −����R

2

− �k0y �0 ����R

2
0

0 ����R

2
�1 − �k0y

−����R

2
0 − �k0y �1

� ,

�24�

with
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�0 =
1

2
�� +

�2k0y
2

2m
, �25�

�1 =
3

2
�� +

�2k0y
2

2m
�26�

being the subband energies in the absence of spin-orbit cou-
pling, and �R=m�2 /�2 is the energy scale of the Rashba
coupling. When applying the transformation

U =
1
�2�

1 1 0 0

0 0 1 − 1

1 − 1 0 0

0 0 1 1
� , �27�

the projected Hamiltonian and in turn the time evolution op-
erator become block diagonal,

Ue−�i/��HtU+ = �h+�t� 0

0 h−�t�
� , �28�

where

h±�t� = 	1 cos� 1

�
�±t� − i

�� ±

�±
· �� sin� 1

�
�±t�


�exp	−
i

�
��� +

�2k0y
2

2m
�t
 �29�

and

�� ± = �±��m�

2�
,0,−

��

2
� �k0y� . �30�

Let us first consider an electron with a given momentum k0y
along the wire and injected initially into the lowest subband
of the confining potential with the spin pointing upwards
along the z direction, i.e., the initial wave function �
z
= �0, ↑  for the x direction is a Gaussian whose width is
determined by the characteristic length �=�� /m� of the har-
monic confinement. Using

UxU+ =
�

�2
� 0 �x

�x 0
� , �31�

one obtains for the above initial state the following time-
dependent expectation value

�
z�xH�t��
z =
�

�2

�+
x�−

z + �−
x�+

z

�+�−
sin� 1

�
�+t�sin� 1

�
�−t� .

�32�

The amplitude of this oscillatory dynamics perpendicular to
the wire direction becomes maximal when the resonance
condition ��= ±2�k0y is fulfilled. At that point we have
��

z =0, and if �±
x can be neglected compared to �±

z �which is
the case for large enough k0y�, and the amplitude of the
zitterbewegung is approximately � /�2. This result from the
truncated Hamiltonian is in excellent agreement with nu-
merical simulations of the full multiband system. In Fig. 1
we have plotted simulation results for �
z�xH�t��
z where the

wave number along the wire is fixed to be k0y�=5 and the
Rashba parameter � is varied around the resonance condi-
tion. Clearly, the amplitude is maximum at resonance.
Equivalent observations are made if the Rashba coupling is
fixed while the wave number k0y is varied. In Fig. 2 we have
plotted the amplitude of the zitterbewegung as a function of
� /�=2�k0y /�� for different values of the wave number k0y
along the wire. In this range of parameters, the resonance
becomes narrower with increasing k0y, while its maximum
value is rather independent of this quantity and remarkably
well described by � /�2.

A qualitative explanation for this resonance can be given
in terms of the decomposition H=H0+H1 of the Hamil-

FIG. 1. Zitterbewegung of an electron in a harmonic quantum
wire perpendicular to the wire direction. The electron is initially
injected into the lowest subband with its spin pointing along the z
direction. The wave number k0y for the motion along the wire is
k0y�=5. The amplitude of the zitterbewegung is maximal at the
resonance 2�k0y =�� �middle panel�.

FIG. 2. Amplitude of the zitterbewegung perpendicular to the
wire direction as a function of � /�=2�k0y /�� for different values
of the wave number k0y along the wire. Again the electron spin
points initially in the z direction.
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tonian. The zitterbewegung is induced by the perturbation H1
which can act most efficiently if the unperturbed energy lev-
els of H0 are degenerate having opposite spins. This is the
case at �2�k0y�=��.

We propose that electron zitterbewegung in semiconduc-
tor nanostructures as described above can be experimentally
observed using high-resolution scanning-probe microscopy
imaging techniques as developed and discussed in Refs. 37
and 38. As a possible setup, a tip can be moved along the
wire and centered in its middle. For an appropriate biasing of
the tip, the electron density at its location is partially de-
pleted leading to a reduced conductance of the wire. Since
the amplitude of the zitterbewegung reflects the electron den-
sity in the center of the wire, the zitterbewegung will induce
beatings in the wire conductance as a function of the tip
position. These beatings are most pronounced at the reso-
nance �see Fig. 1�. Note that the oscillations shown there as a
function of time can be easily converted to the real-space y
coordinate by multiplying the abscissa by �k0y /m. Moreover,
for tuning the system to the resonance condition �2�k0y�
=��, at least two parameters can be varied experimentally:
the group velocity of the injected electron along the wire
given by k0y, and the Rashba parameter � which is tunable
by a gate voltage across the quantum well. Thus, quantum
wires defined in InAs quantum wells are favorable systems
for experiments of the above kind, since this material can
exhibit a quite large Rashba coupling but has a compara-
tively small Dresselhaus term. The group velocity can be
varied by changing the gate to the two-dimensional electron
gas. This alters the global electron density and therefore also
the wave vector for motion along the wire. Generally we
expect spin-orbit effects in scanning tunneling microscope
�STM� experiments to be more pronounced in the presence
of additional confinement such as in a quantum wire.

The present considerations concentrate on the case of pure
Rashba coupling neglecting a possible Dresselhaus contribu-
tion. Very analogous observations as above can be made for
pure Dresselhaus coupling, while in the case of both cou-
plings being present the analytical theory becomes techni-
cally more involved. We note that the Dresselhaus coupling,
different from the Rashba term, cannot be tuned by an exter-
nal gate. Therefore, materials with pronounced Rashba cou-
pling are favorable for tuning the system to the above reso-
nance condition.

Let us now analyze the situation when the electron is
injected into the lowest subband of the wire, but its spin is
not aligned with the z direction. If the spin points along the x
direction, no zitterbewegung occurs,

�
x�xH�t��
x = 0. �33�

This is a property of both the full multiband model and the
truncated Hamiltonian and follows from symmetry consider-
ations: Under a reflection in the yz plane x, px and the y and
z components of the spin change sign while the other com-
ponents of spin and momentum remain unchanged. Thus, the
Hamiltonian is invariant under this operation, a property
which is also shared by the initial state �
x. Therefore, the
expectation value of xH�t� has to be equal to its negative and
is consequently zero. Finally, if the spin points initially along

the y direction one finds from the truncated Hamiltonian

�
y�xH�t��
y =
�

�2

1

2
	�+

x�−
z + �−

x�+
z

�+�−
sin� 1

�
�+t�sin� 1

�
�−t�

+
�+

x

�+
cos� 1

�
�+t�sin� 1

�
�−t�

−
�−

x

�−
sin� 1

�
�+t�cos� 1

�
�−t�
 . �34�

Thus, the zitterbewegung also occurs if the electron spin is
initially aligned along the wire direction.

It is instructive to also investigate the dynamics of the
spin degree of freedom as the electron passes along the wire.
For a situation where the spin is pointing again initially in
the z-direction, the truncated Hamiltonian leads to the fol-
lowing expressions:

�
z��H
x �t��
z =

1

2
	cos2� 1

�
�+t�

+
− ��+

x�2 + ��+
z �2

�+
2 sin2� 1

�
�+t� − cos2� 1

�
�−t�

−
− ��−

x�2 + ��−
z �2

�−
2 sin2� 1

�
�−t�
 , �35�

�
z��H
y �t��
z =

�−
z

�−
cos� 1

�
�+t�sin� 1

�
�−t�

+
�+

z

�+
cos� 1

�
�−t�sin� 1

�
�+t� , �36�

�
z��H
z �t��
z = cos� 1

�
�+t�cos� 1

�
�−t�

+
�+

x�−
x + �+

z �−
z

�+�−
sin� 1

�
�+t�sin� 1

�
�−t� .

�37�

Interestingly the expectation value �
z��H
x �t��
z shows a

particular behavior at the resonance ��= ±2�k0y. Here we
have ��

z =0, and if �±
x can again be neglected compared to

�±
z �as it is the case for the choice of parameters used in Figs.

1 and 2�, this expectation value is approximately given by

�
z��H
x �t��
z � ± 	1 − cos� 2

�
��

x t�
 . �38�

Thus, the time dependence is, to a very good degree of ap-
proximation, governed by a single frequency. This remark-
able result is also confirmed by numerical simulations of the
full multiband model shown in Fig. 3.

Finally, if the electron spin points initially in the x direc-
tion, we have
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�
x��H
x �t��
x = cos2� 1

�
�+t� +

− ��+
x�2 + ��+

z �2

�+
2 sin2� 1

�
�+t� ,

�39�

while the expectation values of the other two spin compo-
nents strictly vanish. The latter result is also true for the full
multiband model and follows from the same symmetry con-
siderations as above.

Let us finally summarize other recent theoretical develop-
ments pertaining to the issue of zitterbewegung in quantum
wires. The electron dynamics in ballistic quantum wires in
the presence of spin-orbit coupling were also recently ana-
lyzed by Nikolic et al. concentrating on transverse forces on
the electron induced by spin-orbit coupling.6 A study similar
in spirit was carried out by Shen, who also made a connec-
tion between transverse forces due to spin-orbit interaction
and the occurrence of zitterbewegung.7 Lee and Bruder re-
cently studied quantum wires with spin-orbit coupling of
both the Rashba and Dresselhaus types.5 Their approach is
mainly numerical and concentrates on mapping out charge-
and spin-density modulations in ferromagnet-semiconductor
single-junction quantum wires. The shape of these modula-
tions is explained in terms of the symmetry properties of the
eigenstates of the wire. Finally, Zawadzki has most recently
analyzed the band structure of narrow-gap single-wall carbon
nanotubes, making a connection to relativistic effects in the
free Dirac equation.8 Similar to Ref. 4, the kind of zitter-
bewegung predicted from these investigations is along the
group velocity of the electron wave packet, i.e., along the
wire, which is considered there as a strictly one-dimensional
system. This is in contrast to the present study where we
consider a quantum wire of finite width and obtain a zitter-
bewegung of electronic wave packets perpendicular to the
wire direction.

III. HOLES IN A TWO-DIMENSIONAL
QUANTUM WELL

We now turn to the case of holes in the p-type valence
band of III–V semiconductors as opposed to s-type conduc-
tion band electrons studied so far. We note that Jiang et al.
have very recently performed a semiclassical study of the
time evolution of holes in three-dimensional bulk systems
under the influence of a homogeneous electric field.3 This
investigation was motivated by the recent prediction of the
intrinsic spin-Hall effect.9–11 Here we shall analyze the full
quantum time evolution of heavy-hole states in quantum
wells, a scenario for which spin-Hall transport was most re-
cently predicted11 and experimentally reported.42

At low temperatures and for not too wide wells, only
heavy-hole states are occupied with their angular momentum
pointing predominantly along the growth direction,43 corre-
sponding to the total angular momentum states ± 3

2 . Due to
this constraint, the effects of structure-inversion asymmetry
on the hole spins are trilinear in the momentum, and the
Hamiltonian incorporating this type of spin-orbit coupling
reads for appropriate growth directions of the quantum
well,43,44

H =
p�2

2m
+ i

�̃

2�3 �p−
3�+ − p+

3�−� , �40�

using the notations p±= px± ipy, �±=�x± i�y, where p� , �� de-
note the hole momentum operator and Pauli matrices, respec-
tively. These Pauli matrices operate on the total angular mo-
mentum states with spin projection ± 3

2 along the growth
direction; in this sense they represent a pseudospin degree of
freedom rather than a genuine spin 1

2 . In the above equation,
m is the heavy-hole mass, and �̃ is Rashba spin-orbit cou-
pling coefficient due to structure inversion asymmetry. The
components of the time-dependent position operator read

xH�t� = x�0� +
px

m
t +

py

p2

3�

2
�z	1 − cos�2�̃p3

�4 t�

+

px

p5

3�

2
��3pxpy

2 − px
3��x − �3px

2py − py
3��y�

�	sin�2�̃p3

�4 t� −
2�̃p3

�4 t

+

�̃

�3 t�6pxpy�
x + 3�py

2 − px
2��y� , �41�

yH�t� = y�0� +
py

m
t −

px

p2

3�

2
�z	1 − cos�2�̃p3

�4 t�

−

py

p5

3�

2
��3pxpy

2 − px
3��x − �3px

2py − py
3��y�

�	sin�2�̃p3

�4 t� −
2�̃p3

�4 t

+

�̃

�3 t�3�px
2 − py

2��x + 6pxpy�
y� . �42�

FIG. 3. The spin expectation values �
z��� H�t��
z as a function
of time at the resonance condition 2�k0y =�� with k0y�=5 �cf. mid
panel of Fig. 1�. The time evolution of �
z��H

x �t��
z �solid line� is
governed by a single frequency as shown in Eq. �38�, while the
other components �
z��H

y �t��
z and �
z��H
z �t��
z �dashed lines�

show beatings between two frequencies given by �±.
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Again, the zitterbewegung of a wave packet with its spin
pointing initially in the z direction is perpendicular to the
group velocity. Specifically, for an initial state of the form
�14� moving along the y direction �k0x=0�, one finds in the
limit dk0y �1

�
�xH�t��
 =
3

2k0y
	1 − cos�2�̃k0y

3

�
t�
 . �43�

Thus, the amplitude of the zitterbewegung is again propor-
tional to the wavelength �0y =2� /k0y of the particle motion
perpendicular to it. The frequency of the zitterbewegung is

given by �̃=2�̃k0y
3 /�. Winkler et al.45 have studied both

theoretically and experimentally the magnitude of the
Rashba spin-orbit coupling in GaAs-based quantum well
samples with heavy-hole densities of a few 1014 m−2 and
have found typical values for the characteristic length scale
m�̃ /�2 of a few nanometers. Assuming a value of 2 nm this
corresponds to a coupling parameter of �̃=0.3 eV nm3,
where we have used the heavy-hole mass m�0.5m0 for
GaAs.39 For a typical wave vector with k0y �0.1 nm−1 this

leads to frequencies �̃ of order 1011 Hz, an estimate which is
of a similar order of magnitude as for the case of an n-doped
quantum well.

IV. CONCLUSIONS

We have investigated the notion of zitterbewegung in both
n- and p-doped III–V zinc-blende semiconductor quantum
wells, extending previous work on the two-dimensional elec-
tron gas.2 Zitterbewegung in the two-dimensional electron
gas has been studied for the case of spin-orbit coupling of

both the Rashba and Dresselhaus type. In the context of these
investigations we have also discussed recent work by
Zawadzki.4 The crucial difference between zitterbewegung
of free electrons and electrons bound in the above semicon-
ductor nanostructures is the fact that in the latter systems the
frequency of the oscillations is by orders of magnitude
smaller while the amplitude is grossly larger. This circum-
stance make such systems favorable candidates for the ex-
perimental detection of zitterbewegung.

The case of electron dynamics in a quantum wire is stud-
ied in great detail for various initial conditions. For this type
of system we propose possible experiments for detecting the
zitterbewegung of electronic wave packets. For a harmonic
quantum well in the presence of Rashba spin-orbit coupling,
the dynamical parameters can be tuned to a resonance con-
dition where the amplitude of the zitterbewegung becomes
maximal.2 This property should facilitate the experimental
observation of this effect. In addition to the orbital dynamics,
we have also analyzed in detail the electron spin dynamics,
which also show peculiarities at the resonance.

Finally we have also discussed in detail the zitter-
bewegung in the two-dimensional hole gas. Here we have
considered spin-orbit coupling of heavy holes due to
structure-inversion asymmetry. Concerning the frequency
and amplitude of the zitterbewegung, similar results are ob-
tained as for the two-dimensional electron gas.
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