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We consider quantum kinetics of an open quantum system in the presence of periodic fields designed to
suppress the internal evolution and shield the system from a generic low-frequency environment �refocusing or
dynamical decoupling in an application to multiqubit systems�. Assuming that the refocusing has order K, that
is, for a frozen environment the cumulant expansion of the evolution operator over the period � begins with the
term ��K+1, we trace the associated cancellations in the kernel of the quantum kinetic equation in the Floquet
formalism and characterize the remaining decoherence processes.
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I. INTRODUCTION

The evolution of a quantum system subject to external
time-dependent fields is a well-studied problem that goes all
the way to the origins of quantum mechanics. However,
driven dynamics in conventional atomic physics rarely in-
volves dynamical interference patterns as intricate as those
that occur, e.g., in multidimensional nuclear magnetic reso-
nance �NMR� experiments and other applications of coherent
control, where precisely shaped and timed signals are used to
steer the quantum evolution of the system. One such control
method1–3 originally developed in NMR is a pulse-based
technique known as dynamical recoupling �also, “bang-
bang,” in the case of hard, �-function-like pulses�. In the
simplest setup, the system is a collection of individually con-
trolled weakly coupled parts �e.g., qubits�. Individual qubits
undergo a rapid forced precession, while the overall long-
time evolution of the system is governed by the effective
Hamiltonian averaged over their precession. For example,
the interaction J�1

z�2
z between the two qubits is canceled on

average if one of them is rapidly precessing around the x
axis. Such a cancellation of the quantum evolution is called
“dynamical decoupling” or “refocusing;” it is obviously re-
lated to the spin-echo experiment.4

An exciting thing about dynamical decoupling is its uni-
versality: one does not need to know the magnitude of the
interaction precisely to cancel it. Moreover, with sufficiently
fast pulse rate one can also cancel the evolution due to
slowly varying external perturbations, in effect suppressing
the decoherence caused by the environment.5–19 A general
analysis of such methods was limited to numerics and/or the
idealized �-function-like “hard” pulses whose duration was
either ignored or assumed small. In real experiments �espe-
cially in solid-state systems�, very short pulses are impracti-
cal because they tend to couple to degrees of freedom in
wide spectral ranges which leads to signal distortions and
heating.20 Besides, from the previous studies it is hard to
judge whether high-order refocusing sequences involving
more intricate cancellation �dynamical destructive interfer-
ence� of the quantum dynamics have a real advantage in
suppressing the decoherence.

The goal of this work is to construct a general theory of
quantum kinetics of open systems in the presence of periodic

refocusing fields designed to suppress the internal evolution
and decouple the system from outside degrees of freedom.
We describe the evolution of the density matrix of such sys-
tems, with weak internal and thermal bath couplings, in the
approximation of master �quantum kinetic� equation in the
Floquet formalism. The kinetics of the system is treated in a
non-Markovian approximation,21–24 which is essential to
trace the decoherence suppression with the bath “slow” on
the scale of the driven dynamics.

Our analysis begins with the assumption that the period-�
control fields provide order-K refocusing for the system with
the bath frozen. That is, if we replace the operators for the
external degrees of freedom by c numbers, the cumulant ex-
pansion of the evolution operator in powers of thus modified
internal Hamiltonian begins with the terms of order ��K+1.
The control fields are assumed to be strong and we treat them
exactly. We trace the cancellations associated with refocus-
ing in the kernel of the quantum kinetic equation �QKE�,
which describes the dissipative dynamics of the density ma-
trix of the system with the bath present, and characterize the
remaining decoherence processes. We illustrate the general
analytic results derived for orders K�2, which is the accu-
racy of the employed QKE, with the numerical simulations
of dynamics of a single spin in the presence of a classical
fluctuating magnetic field.

Our results can be summarized as follows. Generally, for
a weakly coupled system weakly interacting with slow de-
grees of freedom �thermal bath� with the correlation time �0,
the decoherence is due to dissipative processes �resonant de-
cay� which create excitation�s� in the environment, as well as
reactive processes which result in dephasing, or scrambling
of the phase of the system. The associated decoherence rate
is proportional to the square of the coupling matrix element
and the correlation time �0, see Eq. �30�. As a result of forced
precession of the system caused by the control fields, the
effective environment seen by the system is modulated out of
resonance, which may entirely suppress the state decay.25,26

Only first-order �K=1� refocusing is necessary to achieve
such an effect. We show that, in addition, the rate of reactive
processes is reduced by a factor of � /�0 �Eq. �41��, where the
period of the refocusing sequence, �, is assumed to be
smaller than �0. With second-order refocusing, K=2, the de-
coherence rate is additionally suppressed �Eq. �44��, and with
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time-reversal invariant bath couplings it may even become
exponentially small in this parameter �in which case it will
be determined by terms of higher order in bath coupling,
beyond the accuracy of our QKE�.

In addition to the decoherence rates which characterize
the exponential decay of quantum correlations with time, we
also analyze the corresponding prefactor, which determines
the initial decoherence.27 While for generic refocusing se-
quences with K�1 the initial decoherence is quadratic in �
and does not scale with the thermal bath correlation time �0;
we show that for symmetric pulse sequences it is reduced by
an additional power of �� /�0�.

Our results extend the well-established theory28 of the ki-
netics of few-level systems in the rf field to cases involving
a more intricate cancellation �dynamical destructive interfer-
ence� of the quantum dynamics characteristic of higher-order
refocusing sequences. They put in perspective the previous
analyses of decoherence in the presence of hard-pulse
sequences,5–19 establish a firm basis for future studies of de-
coherence scaling in large driven qubit systems �with and
without long-range coupling due to long-wavelength
phonons which may be correlated29 between distant qubits,
contrary to a common assumption in the quantum error-
correction theory30�, and present an efficient alternative to
optimum control techniques based directly on the master
equation.31–33

Some of the results regarding decoherence suppression in
the presence of higher-order refocusing sequences were an-
nounced previously,20 as a justification for developing a tech-
nique for designing higher-order pulses and pulse sequences.

II. PROBLEM SETUP

A. Hamiltonian of the system

We consider an N-level open system with the Hamiltonian

H = HC�t� + HS + HSb + Hb, �1�

where the oscillator bath Hamiltonian Hb=����a�
† a� has

the usual form, while the control Hamiltonian

HC �
1

2�
�

V��t�	�, �2�

the system Hamiltonian

HS �
1

2�
�

J�	�, �3�

and the system-bath coupling Hamiltonian

HSb �
1

2�
�

b�	�, b� = �
�

f��a� + f��
* a�

†

�2m����1/2 , �4�

are expressed in terms of N
N Hermitian matrices 	�, �
=0, . . . ,N2−1, normalized so that Tr�	�	��=N���. It is con-
venient to specify explicitly 	0=1, choose the remaining ma-
trices traceless, and define the algebra via the commutators
and the anticommutators,

�	�,	�� = 2iC��
� 	�, �	�,	�	 = 2B��

� 	�. �5�

For example, for a single qubit �spin� N=2, we can choose
	����, �=0, . . . ,3, in terms of the unit matrix �0�1 and
the three Pauli matrices, in which case the net coefficients
B�t�=V�t�+J+b, =1,2 ,3, can be interpreted as the
components of the time-dependent magnetic field acting on
the spin.

Similarly, for two-qubit systems the full set can be chosen
in terms of the direct products �i � � j, i, j=0,1 ,2 ,3. In this
case, the coefficients in front of the single-spin operators
�1�� � �0 and �2��0 � � can be interpreted as the
components of the magnetic fields acting on the correspond-
ing spin, while the two-spin operators � � �� describe spin
couplings.

The same matrices will be used to parametrize the density
matrix of the system,

� =
1

N
	0 + �
��1

R�	�� . �6�

The normalization is chosen so that Tr �=1. Also, for a pure
state, �2=�, we have R2��R��2=N−1 �summation implicit�,
while for the fully mixed state R2=0.

Generally, only a few of all N2 allowed terms are expected
to be present in the Hamiltonian. Particularly, for n-qubit
systems with N=2n, it is common to have single-qubit con-
trolling fields Vl, l=1, . . . ,n, while the couplings �both in-
trinsic ones, J�, and bath, b�� can be one-, two-, or multipar-
ticle as physically appropriate.

B. Dynamical decoupling in a closed system

Here we consider an auxiliary control problem for the
system �1� with the thermal bath operators b� in Eq. �4�
replaced by constant numbers, which in effect modifies the
coefficients in the system Hamiltonian �3�. The control goal
is to suppress the unitary evolution with thus modified
Hamiltonian HS as fully as possible. Unless the fields V��t�
are specified to exactly compensate the Hamiltonian HS
�which is never practical�, the refocusing can only be
achieved at some discrete set of time moments t0=0, t1
=� , . . .. The unitary evolution over the refocusing interval �
is commonly analyzed in terms of the effective Hamiltonian
theory, a perturbative scheme based on the cumulant �Mag-
nus� expansion for the evolution operator.34,35 The expansion
is done around the evolution in the applied controlling fields
�Hamiltonian HC�t��, while the system Hamiltonian HS is
treated perturbatively. Obviously, this implies that the con-
trolling Hamiltonian dominates the evolution.

Explicitly, consider the evolution operator U�t�,

U̇�t� = − i�HC�t� + HS�U�t�, U�0� = 1 . �7�

As usual, the time-dependent perturbation theory is intro-
duced by separating out the bare evolution operator,

U�t� = U0�t�R�t�, U̇0�t� = − iHC�t�U0�t� . �8�

Then, the operator R�t� obeys the equation
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Ṙ�t� = − iHS�t�R�t�, HS�t� � U0
†�t�HSU0�t� , �9�

which can be iterated to construct the standard expansion
R�t�=1+R1�t�+R2�t�+¯ in powers of �tHS�,

Ṙn+1�t� = − iHS�t�Rn�t�, R0�t� = 1 . �10�

The standard Magnus expansion is readily obtained by
integrating Eqs. �10� formally and rewriting the result in
terms of cumulants,

R�t� = exp„C1�t� + C2�t� + ¯ … , �11�

C1�t� = − i�
0

t

dt1HS�t1� , �12�

C2�t� = −
1

2
�

0

t

dt2�
0

t2

dt1�HS�t1�,HS�t2��, . . . . �13�

Generally, the term Ck contains a k-fold integration of the
commutators of the rotating-frame Hamiltonian HS�ti� at dif-
ferent time moments ti and has an order �tHS�k. For a given
Hamiltonian HS, order-K refocusing is characterized by a
vanishing of the terms Ck of order k�K at the given time
moment t=�. This is equivalent to the condition Rk���=0 for
k=1, . . . ,K. The latter matrices can be efficiently evaluated
numerically, which gives a systematic method for an analysis
and optimization of the controlled dynamics in high orders of
the cumulant expansion.20

In terms of the matrices 	�, the unitary transformation
generated by the control fields amounts to a rotation,

U0�t�	�U0
†�t� � Q���t�	�, �14�

where the matrix Q̂�t� is orthogonal, Q̂tr= Q̂−1. We assume

the matrix to be periodic with the refocusing period �, Q̂�t�
= Q̂�t+��, which will be referred to as the “zeroth order”
refocusing condition. This condition is nontrivial; it does not
reduce to the periodicity of the control fields V��t�.

The periodicity of the real-valued matrix Q̂�t� implies the
Fourier expansion with the frequencies �m�2�m /�,

Q̂�t� = �
m

Âmei�mt, Â−m = Âm
* . �15�

From orthogonality Q̂�t�Q̂tr�t�=1̂ we have

�
k

ÂkÂm−k
tr = �m,01̂ . �16�

With these definitions, it is easy to rewrite the first two refo-
cusing conditions in algebraic form. Specifically,

iC1��� =
1

2
J�	��

0

�

dt Q���t� ,

and the first-order refocusing condition C1���=0 is

�Â0
tr���J� = 0, or just Â0

trJ = 0, �17�

where in the second form of the expression we treated the
coefficients J� as a column vector.

Performing the double integration in Eq. �13� in the as-
sumption that the first-order refocusing condition is satisfied,
we have for the second-order refocusing, C2���=0,

C��
� �

m�0

�Â−m
tr JJtrÂm���

i�−m
= 0, �18�

where the coefficients C��
� define the commutators, see Eq.

�5�. We note that the sum in Eq. �18� is antisymmetric with
respect to indices �, �, and an analogous condition with the
symmetric coefficients B��

� �which define anticommutators in
Eq. �5�� is trivially satisfied.

III. QUANTUM KINETICS

A. Quantum kinetic equation in rotating frame

In this work we consider slow �on the scale of the refo-
cusing period �� environment, which makes it necessary to
consider quantum dynamics of the system outside the com-
monly used Markovian approximation. We write the master
equation as21–24

�̇�t� = − i�H1�t��,��t�� − �
0

t

dt�Trb†�H1�t�,��H1�t��,��t���b�‡ ,

�19�

where H1�t���Trb(H1�t��b) and �H1�t��H1�t�− H1�t��.
Here H1�t� is the interaction representation of the perturba-
tion Hamiltonian H1�HS+HSb �see Eq. �1�� in the rotating
frame generated by the control and the thermal bath parts of
the Hamiltonian, H0�HC+Hb, and the bath is assumed
to be in thermal equilibrium, �b�exp�−�Hb� /Z, Z
�Trb exp�−�Hb�.

With the definitions �3� and �4� the average perturbation
Hamiltonian in the first term of the QKE �19� is given just by
Eq. �9�,

H1�t�� = HS�t� =
1

2
�Q̂tr�t�J��	�, �20�

while the corresponding fluctuating part is

�H1�t� = HSb�t� =
1

2
Q��

tr �t�b��t�	�, �21�

where the oscillator fields in the interaction representation
b��t� are given by Eq. �4� with the replacement a�

→a�ei��t.
The second term in the right-hand side of the QKE �19� is

evaluated in terms of two correlators,

F���t − t�� = Trb�b��t�b��t���b	 , �22�

F̄���t − t�� = Trb�b��t��bb��t��	 , �23�

which in turn can be conveniently expressed in terms of the
spectral coupling matrix �function�
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F����� �
�

2 �
�

f��f��
*

m��

��� − ��� . �24�

The fastest response time of the environment is characterized
by the largest frequency of an oscillator present in the sys-
tem. We will introduce the cutoff frequency �c, such that
F����� is only nonzero for ���c. In addition, we will char-
acterize the bath with a possibly slower “correlation time” �0,
which describes the width of typical features of the spectral
coupling function F�����.

Operators b��t� are Hermitian, thus F̂†�t�= F̂�−t�. An ex-

plicit calculation gives F̄���t�=F��
* �t�, and

F̂�t� = �
0

� d�

�
�F̂����n� + 1�ei�t + F̂*���n�e−i�t� . �25�

It is convenient to split this correlator into real and imaginary

parts, F̂�t�= F̂1�t�+ iF̂2�t�, where the real-valued matrices

F̂1�t� and F̂2�t� are, respectively, symmetric and antisymmet-
ric. The QKE �19� becomes

�̇�t� = −
i

2
Q��

tr �t�J��	�,��t��

−
1

4
�

0

t

dt��Q̂tr�t�F̂1�t − t��Q̂�t������	�,�	�,��t����

−
i

4
�

0

t

dt��Q̂tr�t�F̂2�t − t��Q̂�t������	�,�	�,��t��	� .

�26�

This can be further simplified with the help of the definitions
�5� and �6�:

Ṙ��t� = Q��
tr �t�J�C��

� R��t� + �
0

t

dt��Q̂tr�t�F̂1�t − t��Q̂�t�����


C���
� C��

��R��t�� + �
0

t

dt��Q̂tr�t�F̂2�t − t��Q̂�t�����


C���
� B��

��R��t�� + �
0

t

dt��Q̂tr�t�F̂2�t − t��Q̂�t�����C��
� ,

�27�

where the last term comes from the �time-independent� part
of the density matrix �6� proportional to 	0�1. This term is
responsible for establishing the equilibrium at large t �dy-
namical equilibrium with refocusing�.

We note that the structure of the QKE �in particular, Eqs.
�25� and �27�� remains the same even if the nature of the
thermal bath coupling is changed �e.g., by adding nonlinear
oscillator couplings� as long as the bath remains in thermal
equilibrium. In such cases, the only change would be a renor-
malization of the average Hamiltonian �20� and of the cou-
pling matrix �24�.

B. Kinetics in the absence of control

In the absence of refocusing, Q̂�t�=1̂, the QKE �27� does
not depend on time explicitly, and it can be solved with the
help of the Laplace transform �denoted with tilde, f�t�
→ f̃�p��,

pR̃��p� − R��0� = ����p�R̃��p� + F̃2,���p�C��
� , �28�

where the kernel

��� = J�C��
� + C���

�
„F̃1,���p�C��

�� + F̃2,���p�B��
��
… �29�

incorporates the first three terms on the right-hand side of
Eq. �27�.

The dissipative dynamics of the system is defined by the

singularities of the matrix �1̂p−�̂�p��−1, whose location on
the complex plane p determine the spectrum of the decoher-
ence rates. For long-time dynamics, only the singularities
close to the imaginary axis are relevant. With both the intrin-
sic interactions J and bath couplings F weak on the scale of
the bath correlation time �0, a good accuracy can be obtained

by setting p→0 in the QKE kernel �̂�p� �Eq. �29��, which is
equivalent to the Markovian bath approximation. Then, the

real parts of the eigenvalues of the matrix �̂�0� will deter-
mine the spectrum of the decoherence rates. If we bunch
together all processes causing the evolution of the density
matrix, the maximum decoherence rate can be estimated as

�0 � max�J,��0��0� , �30�

where ��t���F̂�t�� is a norm of the correlator matrix �25�,
and �0 is the bath correlation time introduced below Eq. �24�.

C. Quantum kinetics in Floquet formalism

The full kinetic equation �27� in the presence of refocus-
ing can also be analyzed with the help of the Laplace trans-
formation, but in this case the structure of the solution is
complicated by the presence of the time-dependent rotation

matrices Q̂tr�t�, Q̂�t��. Assuming these are periodic �“zeroth-
order” refocusing condition�, we use the expansion �15� to
obtain �cf. Eq. �28��

pR̃��p� = �
m

�m,���p�R̃��p − i�m� + r��p� , �31�

where the kernel with the frequency transfer �m is

�m,���p� = �Am
tr���J�C��

�

+ C���
� �

m�
� d�

2�
��Âm−m�

tr F̃1���Âm����

p − i� − i�m−m�
C��

��

+
�Âm−m�

tr F̃2���Âm����

p − i� − i�m−m�
B��

��� , �32�

and the second term on the right-hand side of Eq. �31� is

r��p� = R��0� + �
m

sm,��p�
p − i�m

, �33�
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sm,��p� � �
m�
� d�

2�

�Âm−m�
tr F̃2���Âm����C��

�

p − i� − i�m−m�
. �34�

The obtained expression �31� is a set of functional equations

for the Laplace-transformed matrix elements R̃��p� of the
density matrix �6�. We iterate these equations to obtain a

formal series in powers of �̂m,

R̃�p� =
r�p�

p
+ �

m1

�̂m1
�p�

p

r�p1�
p1

+ �
m1,m2

�̂m1
�p�

p

�̂m2−m1
�p1�

p1

r�p2�
p2

+ �
�m	

�̂m1
�p�

p

�̂m2−m1
�p1�

p1

�̂m3−m2
�p2�

p2

r�p3�
p3

+ ¯ ,

�35�

where pn� p− i�mn
. Generally, long-time behavior corre-

sponds to small values of p, while that near the ends of the
refocusing interval is governed by values of p close to any
i�l, resulting in an asymptotic decomposition, R��t�
=�lR�

�l�ei�lt−�lt. We will analyze the terms with different l
separately, beginning with l�0.

To evaluate the dynamics around a given frequency �l,
we need to carefully account for the terms singular near p
= i�l. To this end, denote the sum of all nonsingular �for
small p− i�l with given l� terms connecting the terms with
the denominators p�� p− i�l� and p�� p− i�l�,

�̂l�,l�
�l� �p� � �̂l�−l��p�� + �

m1�l

�̂m1−l��p��
�̂l�−m1

�p1�

p1

+ �
m1,m2�l

�̂m1−l��p��
�̂m2−m1

�p1�

p1

�̂l�−m2
�p2�

p2
+ ¯ .

�36�

Note that this definition implies

�̂l�,l�
�l� �p� = �̂l�−l,l�−l

�0� �p − i�l� . �37�

The entire series near p= i�l, l�0, can now be written as

R̃�l��p� =
r�p�

p
+

�̂0,l
�l��p�
p

�p − i�l − �̂l,l
�l��p��−1


�r�p − i�l� + �
m�l

�̂l,m
�l� �p�

r�p − i�m�
p − i�m

� , �38�

while near p=0 it is

R̃�0��p� = �p − �̂0,0
�0��p��−1�R�0� + �

m

sm�p�
p − i�m

+ �
m�0

�̂0,m
�0� �p�

p − i�m
R�0�

+ �
m�0

�̂0,m
�0� �p�

p − i�m
�
m�

sm��p − i�m�

p − i�m − i�m�
� , �39�

where Eq. �33� for r�p� was substituted for completeness.
The analysis of the obtained expressions is dramatically

simplified with at least order-one refocusing, as long as the

couplings J� and the bath couplings F̂�t� are weak on the
refocusing time scale �, which is assumed to be short on the
scale of the bath correlation time �0, ���0.

Indeed, the universal order-one refocusing condition Eq.
�17� implies the disappearance of the average Hamiltonian
regardless of the specific values of the couplings J�. Thus, in

the kernel �̂m�p� �Eq. �32�� with m=0, the first term disap-
pears completely. Furthermore, if we assume that the set of
the fluctuating fields b� in the bath coupling Hamiltonian �4�
is the same as that of the constant parameters J� in the sys-
tem Hamiltonian �3�, the terms with resonant denominators
�m−m�=0� inside the � integrals in Eqs. �32� and �34� will
also be suppressed. Then, for small �p�, the resonant contri-
bution to these expressions will be limited by �����, which
by assumption is far out in the tail region of the spectral
coupling function �24�. The remaining nonresonant contribu-
tions can be calculated by expanding in powers of � under
the integrals.

In particular, the spectrum of the dissipation rates is de-
termined by the positions of the singularities of the QKE

resolvent, (p−�̂0,0
�0��p�)−1 �see Eq. �39��. At small coupling

these are determined by the eigenvalues of the matrix

�̂0,0
�0��p=0� �Eq. �36��. To the quadratic order in powers of the

perturbing Hamiltonian, with the help of Eq. �32�, we have

��̂0,0
�0��p���� = �

m�0

�Â−m
tr JJtrÂm���

p − i�−m
C���

� C��
��

+ �
m�0

�
k�0

C���
� ��Â−m

tr F̂1
�k��0�Âm���

�p − i�−m�k+1 C��
��

+
�Â−m

tr F̂2
�k��0�Âm���

�p − i�−m�k+1 B��
��� , �40�

where F̂�k��0� is the kth derivative of the correlator F̂�t� �Eq.
�25�� evaluated at t=0. The corresponding maximum deco-
herence rate with order-one refocusing �which is determined
by reactive nonresonant processes� can be estimated as

�1 � max�J2�,��0��� , �41�

where ��t���F̂�t�� was defined below Eq. �30�. Here the
first expression comes from the first term in Eq. �40� and
originates from the noncompensated evolution due to the
system Hamiltonian �3�, while the second term is an estimate
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of the leading order of the derivative expansion in Eq. �40�.
The presence of the instantaneous correlator can be inter-
preted as an effect of nearly static fluctuations of the coeffi-
cients J� due to the presence of the bath. Comparing with the
corresponding expression in the absence of refocusing, we
note that already with the first-order refocusing the decoher-
ence rate is reduced as long as the refocusing is fast enough,
� /�0�1, J��1.

With the second-order refocusing, Eq. �18�, all the evolu-
tion to quadratic order in J should be compensated. To dem-
onstrate this cancellation explicitly for the first term of Eq.
�40� with p=0, we denote

M�� � �
m�0

�Â−m
tr JJtrÂm���

− i�−m
, M̂tr = − M̂ . �42�

Then the second-order refocusing condition �18� implies

M��	�	� = M���B��
� + iC��

� �	� = 0, �43�

while the first term in Eq. �40� was obtained from the double
commutator,

�	�,�	�,	��� = 	�	�	� + 	�	�	� − 	�	�	� − 	�	�	�.

Clearly, the first two terms in the corresponding product with
M�� are zero due to the refocusing condition �43�, while the
remaining two terms cancel each other due to the antisym-

metry of the matrix M̂.
The cancellation works essentially the same way for the

terms involving symmetric matrices, even and odd deriva-
tives of the real and imaginary parts of the correlator matrix

F̂�t�, respectively, F̂1
�2k��0� and F̂2

�2k+1��0� �again, we use the
assumption that “frozen” bath fluctuations are refocused�.
Thus, under most general conditions, the leading order term

in the derivative expansion will be given by F̂2�0�, which
gives

�2 � �2�0�� , �44�

where �2�t���F̂2�t�� is defined in analogy with ��t� but

involves only the imaginary part of the correlator F̂�t�. For-
mally, this term is of the same order as that remaining after
the first-order refocusing, Eq. �41�. We note, however, that
this contribution represents essentially quantum effects; for
temperatures not small compared with the bath cutoff scale,
��c�1, it is expected to be small compared with ��t�.

In practice, the leading-order contribution to the decoher-
ence rate, Eq. �44�, is often suppressed altogether. Indeed,

the entire contribution of F̂2�t� to Eq. �40� is identically zero
for the terms involving a single spin, as the nested
commutator-anticommutator of Pauli matrices vanishes,
��� , ��� ,��	�=0 �the value �=0 is excluded from the im-
plicit summation, cf. Eqs. �26� and �27��. For more compli-
cated systems �e.g., involving thermal bath correlated across
several qubits�, the matrix F�t� is expected to be symmetric
as long as the bath is time-reversal invariant, that is, for

real-valued spectral coupling function �24�, F̂���= F̂*���. In
such cases all terms in the derivative expansion of the
second-order contribution to the decoherence rate are sup-

pressed, which may result in an exponentially smaller value
of �2 for �0��. Such a situation, where F̂2�t��0 and all
orders in the derivative expansion with F̂1

�k��0� are sup-
pressed, are discussed in Sec. IV �see Figs. 6 and 7�. Here the
second-order contribution to the decoherence rate is seen to
be small beyond the numerical precision already for �0 /�
�1.

D. Initial decoherence

The spectrum of the decoherence rates associated with the
modes around a frequency �l, l�0 is determined by the
positions of the poles of the corresponding resolvent (p
− i�l−�̂l,l

�l��p�)−1, in the vicinity of p= i�l. Because of the

formal identity �37�, �̂l,l
�l��p�=�̂0,0

�0��p− i�l�, the correspond-
ing poles are distributed around p= i�l in an identical fash-
ion as those around p=0. As a result, at time moments com-
mensurate with the refocusing period, t=�,2�,3� , . . ., the
contributions with all frequencies �l add coherently, with the
common set of decoherence rates ��	 whose maximum is
determined by Eqs. �41� and �44� depending on the order of
the refocusing sequence.36

The decoherence rates ��	 determine the long-time expo-
nential falloff of the refocusing accuracy. The corresponding
prefactor determines the initial decoherence;27 it can be
found as the sum of the �nonsingular� matrix elements in
Eqs. �38� and �39�. For t sufficiently small, �t�1, the cor-
rection due to the decoherence can be neglected, and the net
contribution of a sector with given l can be found as the sum
of the residues near p= i�l. For example, the total weight
associated with the l=0 sector can be obtained from Eq. �39�
as the coefficient in front of p−1R�0� at �� p��,

�̂0 = �1̂ − �̂0��
−1�1̂ + �

m�0

�̂0,m
�0� �0�

− i�m
�, �0� �� d�̂0,0

�0��p�
dp

�
p=0

.

�45�

The weight of an l�0 sector is obtained from Eq. �38�,

�̂l =
�̂−l,0

�0� �0�
i�l

�1̂ − �̂0��
−1�1̂ + �

m�0

�̂0,m
�0� �0�

− i�m
� , �46�

and the overall total, �=�l�l, is

�̂ = �1̂ + �
l�0

�̂−l,0
�0� �0�
i�l

��1̂ − �̂0��
−1�1 + �

m�0

�̂0,m
�0� �0�

− i�m
� .

�47�

To quadratic order in powers of the perturbing Hamiltonian
�the accuracy of the employed QKE�, and to leading order in
the derivative expansion �cf. Eq. �40��,

�̂0,m
�0� �p� = �Am

trJ��C��
�

+ �
m��0

�Âm�
tr
„JJtr + F̂1�0�…Âm−m����

p − i�m�
C���

� C��
�� ,

�48�
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�̂−m,0
�0� �p� = �Am

trJ��C��
�

+ �
m��0

�Âm�
tr
„JJtr + F̂1�0�…Âm−m����

p + i�m−m�
C���

� C��
�� .

�49�

Performing the expansion to quadratic order in J and linear
order in F and collecting various terms, we obtain for the
overall coefficient �47�, with the same accuracy,

��̂ − 1��� = �q̂trF̂1�0�q̂���C���
� C��

�� , �50�

where

q̂ � lim
�→+0

�
0

�

dt e−�tQ̂�t� = �
m�0

Âm

− i�m
. �51�

Note that this expression was derived assuming solely order-
one refocusing, yet the constant coefficients J� give no con-
tribution to quadratic order here. For a generic first- or
second-order refocusing sequence 0� q̂�� and the initial
decoherence can be estimated as

��̂ − 1� � ��0��2. �52�

For sequences which produce time-reversal symmetric

evolutions, Q̂�t�= Q̂�−t�, the Fourier components are real-

valued, Âm= Â−m, and the sum �51� vanishes identically. In
such cases the initial decoherence is smaller, and it is deter-
mined by higher derivatives of the bath correlation function,
e.g.,

��̂ − 1�symm � ����0���4 �53�

for the symmetric sequence in Fig. 7.
So far we only considered the terms �R�0� which depend

on the initial conditions for the density matrix. The remain-
ing terms in the right-hand side of Eqs. �39� and �38� provide
an additional source of errors, as these terms are responsible
for establishing the correlations characteristic for the station-
ary state at large t; they are required to vanish at t→0. In
real time the corresponding contributions come with the
prefactors 1−e�i�l−��t, small at commensurate time moments
t=� ,2� , . . ., because the decoherence rates � are small. Ad-
ditional smallness arises because the refocusing tends to av-
erage out the correlations which would normally appear as
the equilibrium is reached. Therefore, we expect these con-
tributions to be quartic, beyond the accuracy of the present
calculation.

IV. EXAMPLE: SINGLE-SPIN KINETICS

In this section we illustrate the derived general expres-
sions on an example of a single qubit �spin� driven by clas-
sical fluctuating fields. Specifically, we use Gaussian random
fields b��t� along one �x� or all three directions, with the
correlators

b��t�� = 0, b��t�b��t��� = ���b0
2e−t2/�2�0

2�, �54�

where b0 is the rms amplitude of the random field and �0 is
the correlation time. The correlated field is generated using

the spectral filter based on the fast Fourier transformation of
a sequence of originally uncorrelated Gaussian random num-
bers. As a result, b��t� are actually periodic over the simula-
tion interval �which is always long compared to �0�.

The density matrix �6� is described by the three-
component vector R, R2=1, whose quantum dynamics is de-
scribed by the Bloch equation,

Ṙ = �B�t� 
 R� ,

where B��t�=V��t�+b��t� is the net magnetic field �see Eqs.
�2� and �4��. In terms of the vector R, the spin evolution in a
given classical field is a rotation; the goal of refocusing is to
reduce the total rotation angle �. The average fidelity of the
refocusing, the probability for the qubit to remain in the
original state, averaged over initial conditions, is equal to 1
− �1− cos ��� /3.

In Fig. 1 we show the results of time-dependent simula-
tions for a single spin driven by a one-component random
field with four different values of the correlation time �0. We
plot the quantity 1− cos ��, proportional to the deviation of
the average fidelity for the spin to remain in the same state
from one, as a function of time t in units of �p, a time scale
equal to the interval between consecutive refocusing pulses.
The rms amplitude of the random field is the same for all
curves �in fact, everywhere throughout this work�, b0
=0.0355/�p. The numerical data are compared with the exact
analytical solution,

1 − cos ��t�� = 1 − e−�2�t��/2, ��t� = �
0

t

bx�t�dt , �55�

FIG. 1. “Refocusing error” �specifically, three times the devia-
tion of the average fidelity for the spin to remain in the initial state
from one�, in the absence of refocusing. The Gaussian random field
is applied along the x axis only. For different curves, it has the same
rms amplitude b0 but different values of the correlation time �0 �see
Eq. �54��. Symbols show the results of simulation averaged over
900 samples of the random field; lines show the corresponding ex-
act results �55� and �56� which for t��0 are also very close to the
QKE result �not shown�. See text for other notations.
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�2�
2

= b0
2�0

2��1/2x erf x + e−x − 1�, x =
t

�2�0

. �56�

For long-time asymptotics we obtain

cos ��t�� → eb0
2�0

2
e−�exactt, �exact = b0

2�0��/2�1/2. �57�

To make a connection to the quantum kinetic equation, we
notice that in the simulations we perform the averaging over
the classical random fields, instead of that over the quantum
dynamics of the thermal bath. As a result, the correlation
matrix F���t− t��= b��t�b��t��� is explicitly real-valued,

F̂2�t�=0. In the absence of the control fields, the Laplace-
transformed QKE �28� is

R̃�p� = �p − �̂�p��−1R�0� , �58�

����p� = J�e��� + F̃���p� − ���F̃���p� . �59�

With J�=0, and for the random field along the x axis only,
the exponent and the prefactor of the exact long-time asymp-
totics can be calculated to quadratic order in the noise am-
plitude by expanding the resolvent of Eq. �58� around the
point p=0,

R̃�p� � �p − p�̂��0� − �̂�0��−1R�0� .

This gives in real time �cf. Eq. �57��

cos �� → �1 − b0
2�0

2�−1e−�t, � =
�exact

1 − b0
2�0

2 .

The simulations with refocusing were performed using
a symmetric length-8 pulse sequence “8p” �XYXYYXYX�,
as well as a set of “concatenated” pulse sequences,
“4c” �XYX̄Y�, “8c” �XYX̄YXYXȲ�, “16c”
�XYX̄YXYXYXYXYXYXY�, etc., where X is a �-pulse along
the x direction, X̄ is a negative-� pulse, and the longer se-
quences are obtained recursively by ramping the signs of the
pulses. This concatenation procedure is somewhat similar but
differs from that used in Ref. 37.

We used the Gaussian pulses,38 as well as the first- and
second-order self-refocusing �-pulses, SL and QL, respec-
tively, designed by the authors previously.20 Pulses SL, L
=1,2 are analogous to the first-order Hermitian pulses39 but
they were constructed so that the amplitude of the signal
�along with the derivatives up to 2Lth� turn to zero at the
ends of the interval of the duration �p. Pulses QL, L=1,2 are
similarly designed one-dimensional second-order self-
refocusing pulses.

The order of the sequences with the particular pulses and
for different directions of the applied constant field are listed
in Table I. The sequence 8p has the duration �=8�p, and so
the Fourier expansion of the corresponding evolution opera-
tor Q�t� starts with the frequency �=2� / �8�p�. Similarly, for
sequences 4c ,8c , . . ., the Fourier expansion starts with
2� / �4�p�, 2� / �8�p�, etc. However, due to the structure of
these sequences, the low-frequency Fourier coefficients for
sequences in the nc series with larger n turn out to be very
small numerically, and scaling as ��2, as illustrated in Figs.

2–5. As a result, for relatively fast fluctuations �small �0� the
long-time refocusing accuracy for these sequences can be
substantially better than that of equal or shorter ordinary se-
quences �compare the slopes with �0=22�p in Figs. 6 and 7�.
We also note the suppressed high-frequency tail of the spec-

TABLE I. Order of the refocusing sequences �rows� with differ-
ent pulse shapes �columns�, depending on the direction of the ap-
plied constant field. The order values listed represent the number of
canceled terms in the cumulant expansion �11� of the evolution
operator with the bath variables replaced by c numbers. “G” stands
for Gaussian pulses �Refs. 38 and 39�, SL and QL, L=1,2 are first-
and second-order one-dimensional self-refocusing pulses, respec-
tively, with up to 2L−1 derivatives vanishing at the ends of the
interval �Ref. 20�. The superscripts * or ** denote that the first
nonvanishing cumulant is “small” or “very small” numerically
�smaller by some two and four orders of magnitude, respectively,
compared to what is expected from naive scaling�. The expansion
was done numerically keeping ten orders in the time-dependent
perturbation theory as explained in Ref. 20. See text for definitions
of the sequences.

1: Bx�0 2: Bz�0 3: Bx ,By ,Bz�0

Seq\pulse G SL QL G SL QL G SL QL

4c 0 2 2 0 1 2 0 1 1

8c 2 4 6 1 3 5* 1 1 1

16c 2 4 6* 2 6* 8* 1 1 1

32c 2 4* 6** 4* 8** �10 1 1 1

64c 2 4** 6** 4** �10 �10 1 1 1

8p 1 1 3 1 1 3 1 1 2

FIG. 2. The Frobenius norm of the matrices Âm �Fourier trans-

form of the evolution matrices Q̂�t�, see Eq. �15�� with frequencies
�m=2�m /�p for sequences nc, n=4,8 , . . . ,64 with Gaussian
�-pulses. The width of a pulse is chosen to be 0.05�p so that the
discontinuity at the ends of the interval is numerically negligible,
which results in a steep cutoff at high frequencies. Vertical lines
mark the spectral features of the parent sequence 4c, which domi-
nate the spectrum of all higher-order sequences. Thin dotted lines
guide the eye with the slope corresponding to power laws as
indicated.
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tra in Fig. 5 which illustrates the advantage of the pulses Q2
designed20 specifically for reduced spectral width.40

Figures 6 and 7 show the refocusing error, 1− cos ��,
with the refocusing pulses present as described in the cap-
tions. The amplitudes of the fluctuating field b��t� �along one
or three directions� are the same as for the data in Fig. 1, but
the vertical scale here is reduced by some two orders of
magnitude. This totally hides the curvature of the plots a few
correlation times away from the origin, which allows a linear
fit,

1 − cos �� = A + Bt/�p. �60�

The coefficients represent the initial decoherence propor-
tional to the intercepts A with the vertical axis, and the de-
coherence rate proportional to the slopes B. We note that the
random field used in the simulations is periodic with the
period T=256�p; as a result the overall error is almost en-
tirely compensated towards the end of the simulation inter-

val. Respectively, only the data further than �t=3�0 from the
ends of the interval were used in the fits.

The pulse shapes and the fluctuating fields chosen for
simulations in Figs. 6 and 7 are such that the pulse sequences
provide at least second-order refocusing. With solely classi-

cal correlations, F̂2�t�=0 and F̂1�t� symmetric, the decoher-
ence rate is expected to go down dramatically with increas-
ing �0. This is exactly what is seen in Figs. 6 and 7: already
at �0�� the real-time graphs look almost horizontal and the
corresponding slopes B scale down rapidly with increasing
�0, so that they become too small for the numerical precision
of the calculation.

While the sequence 8p is explicitly symmetric with re-
spect to the origin, the sequences nc are not. As a result, with
slow fluctuations �0 /��1, the initial decoherence for the lat-
ter sequence tends to a constant value, as can be seen from
the intercepts A in Fig. 6. On the other hand, the intercepts
tend to be much smaller in Fig. 7, where the symmetric
sequence 8p was used. This results in an excellent overall
refocusing accuracy.

We have also simulated the spin dynamics under the 4c
sequence in the presence of the fluctuating magnetic field
along the z direction, using Gaussian, S1, and Q1 pulses
which provide zeroth-; first-, and second-order refocusing,
respectively �not shown�. The decoherence rates in the three
cases are seen as proportional to �0, independent of �0, and
vanishing rapidly with �0��, as expected from the analytic
calculations.

V. CONCLUSIONS

In this work we discussed the kinetics of a quantum sys-
tem subject to a pulse-based control field of arbitrary shape.
We concentrated on the simplest case of dynamical decou-
pling, or refocusing, where the only goal is to cancel any
evolution due to intrinsic or extrinsic couplings. We solved
the problem in the approximation of a non-Markovian quan-

FIG. 3. As in Fig. 2 for first-order self-refocusing pulses S1.

FIG. 4. As in Figs. 2 and 3 with second-order pulses Q1. Note a
suppression of the low-frequency part of the spectrum compared
with lower-order pulses.

FIG. 5. As in Figs. 2–4 for second-order pulses Q2. These
shapes vanish at the ends of the interval along with the first three
derivatives, which suppresses the high-frequency part of the
spectrum.
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tum kinetic equation, which limits the accuracy to quadratic
order in powers of the perturbations, but considered the evo-
lution due to the control fields exactly. The equations cor-
rectly represent long-time dissipative dynamics. The corre-
sponding decoherence rates and the prefactor are evaluated
to second order in powers of the small parameter, the evolu-
tion amplitude due to the perturbation over the period of the
refocusing sequence.

We demonstrated that higher-order refocusing sequences
can be very effective in canceling the decoherence effects of
the couplings to slow external degrees of freedom. If in the
absence of control the decoherence rate due to the bath with
the characteristic correlation time �0 is �0 �Eq. �30��, with
sufficiently fast order-one period-� refocusing ����0�, the
decoherence rate can be reduced by a factor of ��� /�0� �Eq.
�41��. This reduced value accounts for both dissipative and
reactive terms and is dominated by the latter, as long as the
driven dynamics is in the spectral gap of the thermal bath.
With second-order refocusing, the decoherence rate is further
reduced, as it is now determined only by the quantum part of
the bath correlator �Eq. �44��. With the bath coupling time-

reversal invariant, additional cancellations are possible,
which may ultimately lead to the decoherence rate �in the
QKE order� smaller than any power of the adiabaticity pa-
rameter � /�0.

As noted on many occasions in NMR literature, symmet-
ric refocusing sequences provide for additional cancellations
in the evolution operator and often provide superior refocus-
ing accuracy.41 Here we show that the symmetry is also cru-
cial for reducing the initial decoherence, an effective dephas-
ing which occurs at the beginning of the refocusing
sequence. While generic first- or higher-order control se-
quences result in an initial decoherence proportional to the
square of the amplitude of the fluctuating fields, ��0�2 /�0
�Eq. �52��, with symmetric sequences this leading-order con-
tribution is canceled, which produces an additional reduction
by a power of the adiabaticity parameter � /�0.

We illustrated these cancellations by simulations of a
single qubit in the presence of a classical fluctuating mag-
netic field. Our simulations suggest that using nonsymmetric
refocusing sequences of an order higher than 2 does little to
improve the decoherence rate of the controlled system. Un-
like the formulas that target the scaling, the simulations also
illustrate the actual magnitude of the achieved reduction in
decoherence.

In this work we concentrated on the dynamics of a rela-
tively small quantum system and ignored the scaling of the
decoherence rates with the size of the system. For example,
the estimate Eq. �44� can be rewritten as an upper bound on
the decoherence rate, in which case it contains an additional
factor of N, the number of levels in the controlled system.
Further studies with specific models of bath coupling are

FIG. 6. Refocusing error with the fluctuating magnetic field
along the x axis as in Fig. 1, but now in the presence of refocusing
sequence 8c with pulses Q1 �order 2, see Table I�. Symbols repre-
sent the data averaged over 900 realizations of noise and dashes are
the linear fits �Eq. �60�� for data further than �t=3�0 from the ends
of the interval. The inset shows the fit coefficients for sequences 4c,
8c, and 16c as a function of the correlation time �0. Dotted lines on
the inset indicate the slope corresponding to the power laws as
indicated. The decoherence rate �proportional to the slopes B� is
reduced dramatically for the correlation time �0 exceeding the du-
ration of the sequence, �=n�p for sequence nc. Yet the refocusing
error does not disappear altogether because of the initial decoher-
ence �proportional to the intercept A� which does not vanish with
increased noise correlation time �0 for these nonsymmetric se-
quences �see Eq. �52��. The data on the inset also show that the
refocusing accuracy is not improved with the longer sequences of
order above second, but it also does not worsen even for small �0 /�

�the low-frequency harmonics Âm are suppressed, see Fig. 4�. The
refocusing errors are strongly suppressed near the end of the inter-
val because the fluctuating field used in the calculation is periodic
with the period T=256�p.

FIG. 7. As in Fig. 6 but for the sequence 8p �pulses Q1� and for
the magnetic field fluctuating in all three directions, Eq. �22�. Am-
plitude b0 along each direction and other simulation parameters are
as in Fig. 6. Inset shows the linear fit coefficients for this sequenc
with the magnetic field fluctuating in one �8p:1� and all three
�8p:3� directions. The effective decoherence rate for the fastest
fluctuations, �0=4�p, is bigger then those in the simulations with nc
sequences. However, with �0��=8�p, the decoherence rate �slope
B� again goes down dramatically, while the initial decoherence also
scales down quadratically with increasing �0, resulting in a superior
refocusing accuracy.
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needed to understand in what cases this scaling with N can
be suppressed. Present estimates are useful for small, few-
qubit systems, or for situations where the thermal bath does
not induce long-range correlations between distant qubits.
We plan to analyze the scaling with the system size and the
range of correlations in the thermal bath in a future publica-
tion. Another planned extension of this work is to analyze
the quantum kinetics of a system and ways to reduce deco-

herence during the operation of a quantum algorithm, with-
out the assumptions that the control fields are periodic.
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